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PREFACE

In the past half century we have seen an explosive growth in the study of chem-
ical reaction dynamics, spurred by advances in both experimental and theoretical
techniques. Chemical processes are now measured on timescales as long as many
years and as short as several femtoseconds, and in environments ranging from high
vacuum isolated encounters to condensed phases at elevated pressures. This large
variety of conditions has lead to the evolution of two branches of theoretical studies.
On one hand, “bare” chemical reactions involving isolated molecular species are
studied with regard to the effect of initial conditions and of molecular parameters
associated with the relevant potential surface(s). On the other, the study of chem-
ical reactions in high-pressure gases and in condensed phases is strongly associated
with the issue of environmental effects. Here the bare chemical process is assumed
to be well understood, and the focus is on the way it is modified by the interaction
with the environment.

It is important to realize that not only does the solvent environment modify the
equilibrium properties and the dynamics of the chemical process, it often changes
the nature of the process and therefore the questions we ask about it. The principal
object in a bimolecular gas phase reaction is the collision process between the
molecules involved. In studying such processes we focus on the relation between
the final states of the products and the initial states of the reactants, averaging
over the latter when needed. Questions of interest include energy flow between
different degrees of freedom, mode selectivity, and yields of different channels.
Such questions could be asked also in condensed phase reactions, however, in
most circumstances the associated observable cannot be directly monitored. Instead
questions concerning the effect of solvent dynamics on the reaction process and
the inter-relations between reaction dynamics and solvation, diffusion and heat
transport become central.

As aparticular example consider photodissociation of iodine I <> I 4+ I that was
studied by many authors in the past 70 years.! In the gas phase, following optical
excitation at wavelength ~500 nm the I, molecule dissociates and this is the end of
the story as far as we are concerned. In solutions the process is much more complex.
The molecular absorption at ~500 nm is first bleached (evidence of depletion of
ground state molecules) but recovers after 100-200 ps. Also some transient state

! For a review see A. L. Harris, J. K. Brown, and C. B. Harris, Ann. Rev. Phys. Chem. 39, 341
(1988).
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Fic. 0.1 A simplified energy level diagram for I, (right), with the processes discussed in the text
(left). (Based on Harris et al. (see footnote 1).)

which absorbs at ~350 nm seems to be formed. Its lifetime strongly depends on
the solvent (60 ps in alkane solvents, 2700 ps (=2.7 ns) in CCly). Transient IR
absorption is also observed and can be assigned to two intermediate species. These
observations can be interpreted in terms of the schematic potential energy diagram
shown in Fig. 0.1 which depicts several electronic states: The ground state X,
bound excited states A and B and a repulsive state that correlates with the ground
state of the dissociated species. A highly excited state corresponding to the ionic
configuration ITI™ is also shown. Note that the energy of the latter will be very
sensitive to the solvent polarity. Also note that these are just a few representative
electronic states of the I, molecule. The ground state absorption, which peaks at
500 nm, corresponds to the X— B transition, which in the low-pressure gas phase
leads to molecular dissociation after crossing to the repulsive state. In solution the
dissociated pair finds itself in a solvent cage, with a finite probability to recombine.
This recombination yields an iodine molecule in the excited A state or in the higher
vibrational levels of the ground X states. These are the intermediates that give rise
to the transient absorption signals.

Several solvent induced relaxation processes are involved in this process:
Diffusion, trapping, geminate recombination, and vibrational relaxation. In addi-
tion, the A— X transition represents the important class of nonadiabatic reactions,
here induced by the solute—solvent interaction. Furthermore, the interaction
between the molecular species and the radiation field, used to initiate and to
monitor the process, is modified by the solvent environment. Other important
solvent induced processes: Diffusion controlled reactions, charge (electron, proton)
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transfer, solvation dynamics, barrier crossing and more, play important roles in other
condensed phase chemical dynamics phenomena.

In modeling such processes our general strategy is to include, to the largest
extent possible, the influence of the environment in the dynamical description of
the system, while avoiding, as much as possible, a specific description of the envir-
onment itself. On the most elementary level this strategy results in the appearance of
phenomenological coefficients, for example dielectric constants, in the forces that
enter the equations of motion. In other cases the equations of motions are modified
more drastically, for example, replacing the fundamental Newton equations by the
phenomenological diffusion law. On more microscopic levels we use tools such as
coarse graining, projections, and stochastic equations of motion.

How much about the environment do we need to know? The answer to this
question depends on the process under study and on the nature of the knowledge
required about this process. A student can go through a full course of chemical
kinetics without ever bringing out the solvent as a participant in the game—all
that is needed is a set of rate coefficients (sometimes called “constants”). When
we start asking questions about the origin of these coefficients and investigate
their dependence on the nature of the solvent and on external parameters such
as temperature and pressure, then some knowledge of the environment becomes
essential.

Timescales are a principle issue in deciding this matter. In fact, the need for
more microscopic theories arises from our ability to follow processes on shorter
timescales. To see how time becomes of essence consider the example shown in
Fig. 0.2 that depicts a dog trying to engage a hamburger. In order to do so it has to
go across a barrier that is made of steps of the following property: When you stand
on a step for more than 1 s the following step drops to the level on which you stand.
The (hungry) dog moves at constant speed but if it runs too fast he will spend less
than one second on each step and will have to work hard to climb the barrier. On the
other hand, moving slowly enough it will find itself walking effortlessly through
a plane.

In this example, the 1 second timescale represents the characteristic relaxation
time of the environment—here the barrier. The dog experiences, when it moves

o =

Fic. 0.2 The hamburger—-dog dilemma as a lesson in the importance of timescales.
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Fic. 0.3 Typical condensed phase molecular timescales in chemistry and biology. (Adapted from
G. R. Fleming and P. G. Wolynes, Physics Today, p. 36, May 1990).

slowly or quickly relative to this timescale, very different interactions with this
environment. A major theme in the study of molecular processes in condensed
phases is to gauge the characteristic molecular times with characteristic times of
the environment. Some important molecular processes and their characteristic times
are shown in Fig. 0.3.

The study of chemical dynamics in condensed phases therefore requires the
understanding of solids, liquids, high-pressure gases, and interfaces between them,
as well as of radiation—matter interaction, relaxation and transport processes in
these environments. Obviously such a broad range of subjects cannot be treated
comprehensively in any single text. Instead, I have undertaken to present several
selected prototype processes in depth, together with enough coverage of the neces-
sary background to make this book self contained. The reader will be directed to
other available texts for more thorough coverage of background subjects.

The subjects covered by this text fall into three categories. The first five chapters
provide background material in quantum dynamics, radiation—matter interaction,
solids and liquids. Many readers will already have this background, but it is my
experience that many others will find at least part of it useful. Chapters 6—12 cover
mainly methodologies although some applications are brought in as examples. In
terms of methodologies this is an intermediate level text, covering needed subjects
from nonequilibrium statistical mechanics in the classical and quantum regime as
well as needed elements from the theory of stochastic processes, however, without
going into advanced subjects such as path integrals, Liouville-space Green functions
or Keldysh nonequilibrium Green functions.
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The third part of this text focuses on several important dynamical processes in
condensed phase molecular systems. These are vibrational relaxation (Chapter 13),
Chemical reactions in the barrier controlled and diffusion controlled regimes
(Chapter 14), solvation dynamics in dielectric environments (Chapter 15), electron
transfer in bulk (Chapter 16), and interfacial (Chapter 17) systems and spectroscopy
(Chapter 18). These subjects pertain to theoretical and experimental developments
of the last half century; some such as single molecule spectroscopy and molecular
conduction—of the last decade.

I have used this material in graduate teaching in several ways. Chapters 2 and 9
are parts of my core course in quantum dynamics. Chapters 6—12 constitute the
bulk of my course on nonequilibrium statistical mechanics and its applications.
Increasingly over the last 15 years I have been using selected parts of Chapters
6—12 with parts from Chapters 13 to 18 in the course “Chemical Dynamics in
Condensed Phases” that I taught at Tel Aviv and Northwestern Universities.

A text of this nature is characterized not only by what it includes but also by
what it does not, and many important phenomena belonging to this vast field were
left out in order to make this book-project finite in length and time. Proton trans-
fer, diffusion in restricted geometries and electromagnetic interactions involving
molecules at interfaces are a few examples. The subject of numerical simulations,
an important tool in the arsenal of methodologies, is not covered as an independent
topic, however, a few specific applications are discussed in the different chapters
of Part 3.
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1

REVIEW OF SOME MATHEMATICAL AND PHYSICAL
SUBJECTS

The lawyers plead in court or draw up briefs,
The generals wage wars, the mariners

Fight with their ancient enemy the wind,
And I keep doing what I am doing here:

Try to learn about the way things are

And set my findings down in Latin verse . ..

Such things as this require a basic course
In fundamentals, and a long approach

By various devious ways, so, all the more,
I need your full attention . . .

Lucretius (c.99—c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968.

This chapter reviews some subjects in mathematics and physics that are used in
different contexts throughout this book. The selection of subjects and the level of
their coverage reflect the author’s perception of what potential users of this text
were exposed to in their earlier studies. Therefore, only brief overview is given of
some subjects while somewhat more comprehensive discussion is given of others.
In neither case can the coverage provided substitute for the actual learning of these
subjects that are covered in detail by many textbooks.

1.1 Mathematical background

1.1.1 Random variables and probability distributions

A random variable is an observable whose repeated determination yields a series
of numerical values (“realizations” of the random variable) that vary from trial to
trial in a way characteristic of the observable. The outcomes of tossing a coin or
throwing a die are familiar examples of discrete random variables. The position ofa
dust particle in air and the lifetime of a light bulb are continuous random variables.
Discrete random variables are characterized by probability distributions; P, denotes
the probability that a realization of the given random variable is #n. Continuous
random variables are associated with probability density functions P(x): P(x1)dx
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denotes the probability that the realization of the variable x will be in the interval
X1 . ..x1+dx. By their nature, probability distributions have to be normalized, that is,

doP=1; /de(x) =1 (1.1)

The jth moments of these distributions are
M= (W) = /dxij(x) or (W)= Zn/P,, (1.2)
n

Obviously, My = 1 and M; is the average value of the corresponding random
variable. In what follows we will focus on the continuous case. The second moment
is usually expressed by the variance,

(8x%) = ((x — (x)?) = My — M} (1.3)

(8xH12 = My — M? (1.4)

is a measure of the spread of the fluctuations about the average M. The generating
function' for the moments of the distribution P(x) is defined as the average

The standard deviation

g(a) = (") = fde(x)eax (1.5)

the name generating function stems from the identity (obtained by expanding e**
inside the integral)

g@) =1+al) + (1/2)a*(x) + -+ (1/n)a" (") + - -- (1.6)

which implies that all moments (x") of P(x) can be obtained from g(«) according to

8}1
(x") = [ g(a)] (1.7)

da” a=0

Following are some examples of frequently encountered probability distributions:
Poisson distribution. This is the discrete distribution

n,—a

ae

Pn) = pr

n=0,1,... (1.8)

! Sometimes referred to also as the characteristic function of the given distribution.
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which is normalized because ), a”/n! = e“. It can be easily verified that
(n) = (8n®) = a (1.9)

Binomial distribution. This is a discrete distribution in finite space: The prob-
ability that the random variable n takes any integer value between 0 and N is
given by

N!pnqN—n
Pn)= ———; =1; =0,1,...,N 1.10

(n) AN ! p+tq n (1.10)
The normalization condition is satisfied by the binomial theorem since
ZnN:O P(n) = (p+¢q)". We discuss properties of this distribution in Section 7.3.3.

Gaussian distribution. The probability density associated with this continuous

distribution is

P(x) = exp(—[(x — %)%/20%)); —00 < X < 00 (1.11)

1
V2ro?
with average and variance

(x) =X, (AX?) = o2 (1.12)
In the limit of zero variance this function approaches a § function (see Section 1.1.5)

P(x) — 5(x — ) (1.13)

Lorentzian distribution. This continuous distribution is defined by

T

P(x):()c_));)/—2+)/2; 00 < X < 00 (1.14)
The average is (x) = X and a § function, §(x — X), is approached as y — 0,
however higher moments of this distribution diverge. This appears to suggest that
such a distribution cannot reasonably describe physical observables, but we will see
that, on the contrary it is, along with the Gaussian distribution quite pervasive in our
discussions, though indeed as a common physical approximation to observations
made near the peak of the distribution. Note that even though the second moment
diverges, y measures the width at half height of this distribution.

A general phenomenon associated with sums of many random variables has
far reaching implications on the random nature of many physical observables. Its
mathematical expression is known as the central limit theorem. Let x1,x2,...,Xy,
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(n > 1) be independent random variables with (x;) = 0 and (xjg) = ajz. Consider
the sum

Xo=x1+x2+---+x, (1.15)

Under certain conditions that may be qualitatively stated by (1) all variables are
alike, that is, there are no few variables that dominate the others, and (2) certain
convergence criteria (see below) are satisfied, the probability distribution function
F(X,) of X, is given by?

FX,) = ! ( an) (1.16)
= €X — .
W P\ 282
where
S,2,=012+o*22+-~—|-crn2 (1.17)

This result is independent of the forms of the probability distributions f;(x;) of the
variables x; provided they satisfy, as stated above, some convergence criteria. A
sufficient (but not absolutely necessary) condition is that all moments [ dx_,-xj’?f ()
of these distributions exist and are of the same order of magnitude.

In applications of these concepts to many particle systems, for example in statist-
ical mechanics, we encounter the need to approximate discrete distributions such as
in Eq. (1.10), in the limit of large values of their arguments by continuous functions.
The Stirling Approximation

NI ~ NVInN=N when N — oo (1.18)
is a very useful tool in such cases.

1.1.2 Constrained extrema

In many applications we need to find the maxima or minima of a given function
f(x1,x2,...,x,) subject to some constraints. These constraints are expressed as
given relationships between the variables that we express by

gr(x1,x2...x,) = 0; k=1,2,...,m (for m constraints) (1.19)

2 If (xj) = aj # 0and 4, = a; +ay + --- + ay then Eq. (1.16) is replaced by F(X,) =
(Suv/27) 7 exp(—(Xn — 42)?/282).
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Such constrained extrema can be found by the Lagrange multipliers method: One
form the “Lagrangian”

L1, ouXn) =f (1o 0Xn) = Y Akgh(XL - -, Xn) (1.20)
k=1

with m unknown constants {A;}. The set of n + m equations

oL oL 0
0x1 a o 0xy, o (1.21)
gl :Oa"': m:0

then yield the extremum points (x1,...,x,) and the associated Lagrange multipli-

ers {Ar}.

1.1.3 Vector and fields
1.1.3.1 Vectors

Our discussion here refers to vectors in three-dimensional Euclidean space, so
vectors are written in one of the equivalent forms a = (ay, az,a3) or (ay, ay,a;).
Two products involving such vectors often appear in our text. The scalar (or dot)
product is

3
a-b=> ab, (1.22)
n=1
and the vector product is
u u u3
axb=-bxa=|a a a (1.23)
by by b

where u;(j = 1,2, 3) are unit vectors in the three cartesian directions and where | |

denotes a determinant. Useful identities involving scalar and vector products are
a-(bxe)=(axb)-c=b-(cxa) (1.24)
ax(bxc)=Db(a-¢)—c(a-b) (1.25)

1.1.3.2 Fields

A field is a quantity that depends on one or more continuous variables. We will
usually think of the coordinates that define a position of space as these variables, and
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the rest of our discussion is done in this language. A scalar field is a map that assigns
ascalarto any position in space. Similarly, a vector field is a map that assigns a vector
to any such position, that is, is a vector function of position. Here we summarize
some definitions and properties of scalar and vector fields.

The gradient, VS, of a scalar function S(r), and the divergence, V - F, and rotor
(curl), V x F, of a vector field F(r) are given in cartesian coordinates by

VS=—u+ —u, +—u, (1.26)
X y

(1.27)

uy uy, u; OF. OF, 0F,  OF,
VxF=|0/ox 0/dy 0/0z =ux< Z——y)—“y< e x)
F, F, F 0x dz

dF, F
+u, (=2 - == (1.28)
ox ay

where uy, u,, u; are again unit vectors in the x,y,z directions. Some identities
involving these objects are

V x (VxF)=V(V-F)— VF (1.29)
V-(SF)=F-VS+SV-F (1.30)
V- (VxF) =0 (1.31)
V x (VS) =0 (1.32)

The Helmholtz theorem states that any vector field F can be written as a sum of its
transverse F and longitudinal F! components

F=F! +Fl (1.33)
which have the properties

V.-Ft=0 (1.34a)
VxFl =0 (1.34b)
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that is, the transverse component has zero divergence while the longitudinal
component has zero curl. Explicit expressions for these components are

1 V' x F(
Fir)= —V x /d%/x—(r) (1.35a)
4 r — 1’|
1 v . F(r'
Flr) = —V/d%’ﬁ (1.35b)
47 r — 1’|

1.1.3.3 Integral relations

Let V'(S) be a volume bounded by a closed surface S. Denote a three-dimensional
volume element by 37 and a surface vector element by dS. dS has the magnitude
of the corresponding surface area and direction along its normal, facing outward.
We sometimes write dS = fid?x where f is an outward normal unit vector. Then
for any vector and scalar functions of position, F(r) and ¢ (r), respectively

/ &*r(V-F) = f dS-F (Gauss’s divergence theorem) (1.36)
4 S

fd3r(V¢) = ?gd&p (1.37)
4 S

/d3r(V x F) = fds x F (1.38)
4 s

In these equations § denotes an integral over the surface S.

Finally, the following theorem concerning the integral in (1.37) is of interest:
Let ¢ (r) be a periodic function in three dimensions, so that ¢ (r) = ¢ (r + R) with
R = ma;+nyay+n3az witha;(j = 1,2, 3) being three vectors that characterize the
three-dimensional periodicity and n; any integers (see Section 4.1). The function is
therefore characterized by its values in one unit cell defined by the three a vectors.
Then the integral (1.37) vanishes if the volume of integration is exactly one unit cell.

To prove this statement consider the integral over a unit cell

() = f ror+r) (1.39)

Vv
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Since ¢ is periodic and the integral is over one period, the result should not depend
on r’. Therefore,

0=V.II)= / BPrvgg@r+r) = / BPrveg+1) = / d*rv¢(r)
14

V 14
(1.40)

which concludes the proof.

1.1.4 Continuity equation for the flow of conserved entities

We will repeatedly encounter in this book processes that involve the flow of con-
served quantities. An easily visualized example is the diffusion of nonreactive
particles, but it should be emphasized at the outset that the motion involved can
be of any type and the moving object(s) do not have to be particles. The essential
ingredient in the following discussion is a conserved entity O whose distribution
in space is described by some time-dependent density function pg(r, f) so that its
amount within some finite volume V' is given by

01 = /d3r,0Q(r, 1) (1.41)

4

The conservation of Q implies that any change in Q(¢) can result only from flow of
Q through the boundary of volume V. Let S be the surface that encloses the volume
V', and dS—a vector surface element whose direction is normal to the surface in the
outward direction. Denote by Jo(r, 7) the flux of O, that is, the amount of Q moving
in the direction of Jo per unit time and per unit area of the surface perpendicular to
Jo. The O conservation law can then be written in the following mathematical form

dQ _ 3 3PQ(1'J) _ .
= /d e = /ds Jo(r,t) (1.42)
%4 N

Using Eq. (1.36) this can be recast as

30 (r, t
/d%% - _/d3rv-JQ (1.43)
V V

which implies, since the volume V' is arbitrary

oo (r, 1
% =-V.J (1.44)
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Equation (1.44), the local form of Eq. (1.42), is the continuity equation for the
conserved Q. Note that in terms of the velocity field v(r,7) = r(r,?) associated
with the O motion we have

Jo(r,1) = v(r,t)po(r,1) (1.45)

It is important to realize that the derivation above does not involve any physics.
It is a mathematical expression of conservation of entities that that can change their
position but are not created or destroyed in time. Also, it is not limited to entities
distributed in space and could be applied to objects moving in other dimensions.
For example, let the function p1(r,v,?) be the particles density in position and
velocity space (i.e. p1(r, v, £)d>rd>v is the number of particles whose position and
velocity are respectively within the volume element > about r and the velocity
element d3v about v). The total number, N = [ d°r [ d>vp(r,v, 1), is fixed. The
change of p; in time can then be described by Eq. (1.44) in the form

api(r,v, 1)

o —Vy - (vo1) — Vy(Vp1) (1.46)

where V, = (d/0x,9/dy,d/0z) is the gradient in position space and V, =
(3/0vy,d/0vy,0/0v;) is the gradient in velocity space. Note that vp is a flux in
position space, while vp is a flux in velocity space.

1.1.5 Delta functions

The delta function® (or: Dirac’s delta function) is a generalized function that is
obtained as a limit when a normalized function ffooo dxf(x) = 1 becomes zero
everywhere except at one point. For example,

L a g L almw
S(x) = all)ngo \/; e or S(x) = igno a2 or
5() = lim S (1.47)

a—>00  TTX

Another way to view this function is as the derivative of the Heaviside step function
(n(x) =0forx < 0and n(x) = 1 for x > 0):

d
8(x) = —-nx) (1.48)
X

® Further reading: http://mathworld.wolfram.com/DeltaFunction.html and references therein.
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In what follows we list a few properties of this function

b £ (x0) ifa<xy<b

/dxf(x)&(x—xo)= 0 if xo <aorxg>>b (1.49)
a (1/2)f(xp) ifxg=aorxy=2>b
3(x —x;)
1) = _ 1.50
Ll JZ /0l (150
where x; are the roots of g(x) = 0, for example,
8(ax) = L(S()c) (1.51)
|al
and
s —a%) = %(S(x—l—a)—i—é(x—a)) (1.52)
a

The derivative of the § function is also a useful concept. It satisfies (from integration
by parts)

[ ar 56— =~ (153
and more generally
™ () — of sin-1)
dxf (x)6V" (x) = — dxa—(S (x) (1.54)
b
Also (from checking integrals involving the two sides)
x8'(x) = —8(x) (1.55)
X8 (x) =0 (1.56)

Since for —m < a < 7 we have

f dx cos(nx)é(x — a) = cos(na) and f dx sin(nx)8(x — a) = sin(na)

(1.57)
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it follows that the Fourier series expansion of the & function is

1
d(x —a) = — + Z cos(na) cos(nx) + sin(na) sin(nx)]
=1

1
=+ Z cos(n(x — a)) (1.58)
Also since
/ dxe™ 8 (x — a) = 'k (1.59)
it follows that
T 1T
S —a) = 5— f dke™h6—a) — e f dke* =@ (1.60)
—00 —00

Extending § functions to two and three dimensions is simple in cartesian coordinates
82(r) = 8()3()
5%(r) = 813 (2)

In spherical coordinates care has to be taken of the integration element. The result is

(1.61)

§2(r) = 5(? (1.62)
3,0 8(r)
£ =2 (1.63)

1.1.6 Complex integration

Integration in the complex plane is a powerful technique for evaluating a certain
class of integrals, including those encountered in the solution of the time-dependent
Schrodinger equation (or other linear initial value problems) by the Laplace trans-
form method (see next subsection). At the core of this technique are the Cauchy
theorem which states that the integral along a closed contour of a function g(z),
which is analytic on the contour and the region enclosed by it, is zero:

%dzg(z) =0 (1.64)
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and the Cauchy integral formula—valid for a function g(z) with the properties
defined above,

%dz& =2mig(a) (1.65)
z—«

where the integration contour surrounds the point z = « at which the integrand has
a simple singularity, and the integration is done in the counter-clockwise direction
(reversing the direction yields the result with opposite sign).

Both the theorem and the integral formula are very useful for many applications:
the Cauchy theorem implies that any integration path can be distorted in the complex
plane as long as the area enclosed between the original and modified path does not
contain any singularities of the integrand. This makes it often possible to modify
integration paths in order to make evaluation easier. The Cauchy integral formula
is often used to evaluate integrals over unclosed path—if the contour can be closed
along a line on which the integral is either zero or easily evaluated. An example is
shown below, where the integral (1.78) is evaluated by this method.

Problem 1.1. Use complex integration to obtain the identity for ¢ > 0

0
1 3 1 fe
— f dwe—ior 1 _ 0 fort <0 (1.66)
2 w — wy + i —je =l fort > ()

—00

In quantum dynamics applications we often encounter this identity in the limit
& — 0. We can rewrite it in the form

o0
1 . 1 .
— / doe™@ — 28 _ippyeiont (1.67)
2 w — wo + ie

—o

where 1(¢) is the step function defined above Eq. (1.48).
Another useful identity is associated with integrals involving the function (w —
wo + ie)~! and a real function f(x). Consider

b b b
flw) (@ —wo)f (@) . €
fdww—woﬂe _fdw(w—wo>2+e2 ’/dw(w—wo)erszf(w)
(1.68)

where the integration is on the real w axis and where a < wy < b. Again we are
interested in the limit ¢ — 0. The imaginary term in (1.68) is easily evaluated
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to be —inmf (wp) by noting that the limiting form of the Lorentzian function that
multiplies f'(w) is a delta-function (see Eq. (1.47)). The real part is identified as

b b
fdwm e PP/da) /(@) (1.69)
w— wy

(@ — w)? + &2
a
Here PP stands for the so-called Cauchy principal part (or principal value) of the
integral about the singular point wg. In general, the Cauchy principal value of a
finite integral of a function f'(x) about a point xo with @ < xo < b is given by

b xXo—& b
PP / dxf (x) = m& / dxf (x) + / dxf (x) (1.70)
a a xXo+é&

We sometimes express the information contained in Eqgs (1.68)—(1.70) and (1.47)
in the concise form

1 e—>0+
—

PP

- — in8(w — w) (1.71)
w—wy+1i¢e w — W

1.1.7 Laplace transform

A function £ (¢) and its Laplace transform f'(z) are related by

o0

f@) = / dte £ (1) (1.72)
0
ooi+&
fly = f dze”'f () (1.73)
27 _
Covite

where ¢ is chosen so that the integration path is to the right of all singularities of
f (2). In particular, if the singularities of / (z) are all on the imaginary axis, € can be
taken arbitrarily small, that is, the limit ¢ — 04 may be considered. We will see
below that this is in fact the situation encountered in solving the time-dependent
Schrodinger equation.

Laplace transforms are useful for initial value problems because of identities
such as

e.¢] o0

/ = [e™fIF +2 f dief () =z @) —ft=0) (174

0 0
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and

i —zt dzf 27 /
fdte =@ -F =0 -=0) (1.75)
0

which are easily verified using integration by parts. As an example consider the
equation

a
== af (1.76)
Taking Laplace transform we get
2f @) —f(0) = —af 2) (1.77)
that is,
e+ioco
f@O=C+o) 0 and f@)=Qmi)7! / dze” (z + ) 11 (0).
B (1.78)

If « is real and positive ¢ can be taken as 0, and evaluating the integral by closing
a counter-clockwise contour on the negative-real half z plane* leads to

f@) =e1(0) (1.79)

1.1.8 The Schwarz inequality

In its simplest form the Schwarz inequality expressed an obvious relation between
the products of magnitudes of two real vectors ¢ and ¢, and their scalar product

Ccic) = €1 - C (1.80)

It is less obvious to show that this inequality holds also for complex vectors,
provided that the scalar product of two complex vectors e and f is defined by
e* - f. The inequality is of the form

lelIf] = |e* - f] (1.81)

* The contour is closed at z — —oo where the integrand is zero. In fact the integrand has to vanish
faster than z~2 as z — —oo because the length of the added path diverges like 22 in that limit.
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Note that in the scalar product e* - f the order is important, that is, e* - f = (f* - e)*.
To prove the inequality (1.81) we start from

(a*e* — b*f*) - (ae — bf) > 0 (1.82)

which holds for any scalars a and b. Using the choice

a=+{* -fle*-f) and b=./(e*-e)f*- e) (1.83)

in Eq. (1.82) leads after some algebra to /(e* - e)(f* - f) > |e* - f|, which implies
(1.81).

Equation (1.80) can be applied also to real functions that can be viewed as
vectors with a continuous ordering index. We can make the identification ¢, =
(cr - )2 = (fdxc2(x)/% k= 1,2and ¢; - ¢ = [ dxei(x)ea(x) to get

2
(/ dxc%(x)) (/ dxc%(x)) > (/ dxcl(x)cz(x)) (1.84)

The same development can be done for Hilbert space vectors. The result is

(WY (le) = [(wp)I (1.85)

where ¥ and ¢ are complex functions so that ({|¢) = f dry*(r)¢ (r). To prove
Eq. (1.85) define a function y(r) = ¥ (r) + A¢ (r) where X is a complex constant.
The following inequality is obviously satisfied

/dry*(r)y(r) >0
This leads to
/dl’i//*(r)llf(r)+k/drl/f*(r)¢(r)+k*/dr¢*(l‘)1//(r)

+ A*A / dre*(1)e(r) > 0 (1.86)
or

(WIY) + AW lg) + A (ply) + A1 (lp) = 0 (1.87)
Now choose

_ @) . Wle) (158

(Dlg)” (9l9)
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and also multiply (1.87) by (¢|¢) to get

(W) (B1d) — (W) > — [ @l) > + [(¥]g) > = 0 (1.89)

which leads to (1.85).

An interesting implication of the Schwarz inequality appears in the relationship
between averages and correlations involving two observables A and B. Let P,
be the probability that the system is in state » and let 4, and B, be the values
of these observables in this state. Then (4?) = Y. P,42, (B?) = Y., P,B2, and
(AB) =), PyA,B,. The Schwarz inequality now implies

(4%)(B*) > (4B)? (1.90)

Indeed, Eq. (1.90) is identical to Eq. (1.80) written in the form (a-a)(b-b) > (a-b)?
where a and b are the vectors a, = /P,Ay; by, = /PnBy.

1.2 Classical mechanics

1.2.1 Classical equations of motion

Time evolution in classical mechanics is described by the Newton equations

o
= —pi
o (1.91)

pi=F =-ViU

r; and p; are the position and momentum vectors of particle i of mass m;, F; is the
force acting on the particle, U is the potential, and V; is the gradient with respect
to the position of this particle. These equations of motion can be obtained from the
Lagrangian

L=K({i) - U(ix)) (1.92)

where K and U are, respectively, the total kinetic and potential energies and {x},
{x} stands for all the position and velocity coordinates. The Lagrange equations of
motion are

d oL 9dL

— — = — (and same for y, z 1.93

dt 0x; ox; ( y,2) ( )
The significance of this form of the Newton equations is its invariance to coordinate
transformation.
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Another useful way to express the Newton equations of motion is in the
Hamiltonian representation. One starts with the generalized momenta

e (1.94)
b= ‘
and define the Hamiltonian according to
H=—| L}, (&) = Y piy (1.95)
J

The mathematical operation done in (1.95) transforms the function L of variables
{x}, {x} to a new function H of the variables {x}, {p}.> The resulting function,
H ({x}, {p}), is the Hamiltonian, which is readily shown to satisfy

H=U+K (1.96)
that is, it is the total energy of the system, and

oH . oH (1.97)
= = p=—7— :
apj J

X
which is the Hamiltonian form of the Newton equations. In a many-particle system
the index j goes over all generalized positions and momenta of all particles.

The specification of all positions and momenta of all particles in the system
defines the dynamical state of the system. Any dynamical variable, that is, a func-
tion of these positions and momenta, can be computed given this state. Dynamical
variables are precursors of macroscopic observables that are defined as suitable
averages over such variables and calculated using the machinery of statistical
mechanics.

1.2.2 Phase space, the classical distribution function, and the Liouville equation

In what follows we will consider an N particle system in Euclidian space. The
classical equations of motion are written in the form

i = M pN — _M (1.98)
opV orN ’

> This type of transformation is called a Legendre transform.
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which describe the time evolution of all coordinates and momenta in the sys-
tem. In these equations r" and p" are the 3N-dimensional vectors of coordinates
and momenta of the N particles. The 6/N-dimensional space whose axes are
these coordinates and momenta is refereed to as the phase space of the sys-
tem. A phase point (rN,p") in this space describes the instantaneous state
of the system. The probability distribution function f(r",p";s) is defined
such that £(rN, p";)drVdp" is the probability at time ¢ that the phase point
will be inside the volume drVdp" in phase space. This implies that in an
ensemble containing a large number A\ of identical systems the number of those
characterized by positions and momenta within the dr"dp”" neighborhood is
NF@N, pV; t)drN dp" . Here and below we use a shorthand notation in which, for
example, dl‘N = dl‘ldl‘z .. .dl‘N = dxldedX3dX4dX5dx6, ey dx3N72dX3N71dX3N
and, (3F /arV) (G /op") = ijl(aF/axj)(aG/apj).

As the system evolves in time according to Eq. (1.98) the distribution function
evolves accordingly. We want to derive an equation of motion for this distribution.
To this end consider first any dynamical variable A(r", p"). Its time evolution is
given by

dA  dA .y dA . A OH  9A 9H

- — ={H, Al =ilLA
dt ord' T op8® T arNopV T apN arV A =1 (1.99)

L =—i{H,}

The second equality in Eq. (1.99) defines the Poisson brackets and L is called the
(classical) Liouville operator. Consider next the ensemble average A(t) = (A),
of the dynamical variable A. This average, a time-dependent observable, can be
expressed in two ways that bring out two different, though equivalent, roles played
by the function A(r", p"). First, it is a function in phase space that gets a distinct
numerical value at each phase point. Its average at time ¢ is therefore given by

A(r) = / dr’ / dp"ra, pV; nAxN, pY) (1.100)

At the same time the value of A at time ¢ is given by AN (), p" () and is
determined uniquely by the initial conditions (r" (0), p" (0)). Therefore,

At) = / dr / ap" 7@, p; 0AC (), p" (1) (1.101)
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An equation of motion for f* can be obtained by equating the time derivatives of
Eqgs (1.100) and (1.101):

N N.
[ [ap D awh g = [ [anrapi0 S

0A o0H 0A 0H

(1.102)

Using integration by parts while assuming that f vanishes at the boundary of phase
space, the right-hand side of (1.102) may be transformed according to

0A 0H 0A 0H
d N d N N N.O _

oH of oH of
= | ar™ | 4oV _ N N 1.103
/ r / P (8rN apN 8pN arN> A p7) ( )

_ / arV / dp (—iLf) A, pY)

Comparing this to the left-hand side of Eq. (1.102) we get
3N
of N, pNny af 0H  of oH
oV = —
o1 i =2
(1.104)

This is the classical Liouville equation. An alternative derivation of this equation
that sheds additional light on the nature of the phase space distribution function
£, p";1) is given in Appendix 1A.

An important attribute of the phase space distribution function f is that it is
globally constant. Let us see first what this statement means mathematically. Using

d 8+,N8+,N8 8+8H8 0H 9 8+'£
_— = — r — _— —_ = — 1
dt ot orN opVy  ar  opNoarV  arNopVN ot
(1.105)
Equation (1.104) implies that
d
Ul =0 (1.106)

dt
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that is, /" has to satisfy the following identity:

£V ©0),pY (0);t =0) =1 @), p" (1); 1) (1.107)

As the ensemble of systems evolves in time, each phase point moves along the
trajectory (r" (), p¥ (¢)). Equation (1.107) states that the density of phase points
appears constant when observed along the trajectory.

Another important outcome of these considerations is the following. The unique-
ness of solutions of the Newton equations of motion implies that phase point
trajectories do not cross. If we follow the motions of phase points that started at a
given volume element in phase space we will therefore see all these points evolving
in time into an equivalent volume element, not necessarily of the same geometrical
shape. The number of points in this new volume is the same as the original one, and
Eq. (1.107) implies that also their density is the same. Therefore, the new volume
(again, not necessarily the shape) is the same as the original one. If we think of this
set of points as molecules of some multidimensional fluid, the nature of the time
evolution implies that this fluid is totally incompressible. Equation (1.107) is the
mathematical expression of this incompressibility property.

1.3 Quantum mechanics

In quantum mechanics the state of a many-particle system is represented by a
wavefunction W (r", ¢), observables correspond to hermitian operators® and results
of measurements are represented by expectation values of these operators,

A) @) = (W, 41w @, 1))

. 1.108
N /drN\If*(rN,t)A‘I'(rN,f) o

When A is substituted with the unity operator, Eq. (1.108) shows that acceptable
wavefunctions should be normalized to 1, that is, (/|) = 1. A central problem is
the calculation of the wavefunction, W (r", ¢), that describes the time-dependent
state of the system. This wavefunction is the solution of the time-dependent

® The hermitian conjugatre of an operator A is the operator A that satisfies
[ erahava = [arta@roayrva

for all ¢ and  in the hilbert state of the system.



QUANTUM MECHANICS 23

Schrédinger equation

— =——HVY 1.109
at h ( )

where the Hamiltonian A is the operator that corresponds to the energy observable,
and in analogy to Eq. (1.196) is given by

H=K+Ux") (1.110)

In the so-called coordinate representation the potential energy operator U amounts
to a simple product, that is, U @M aN, ) = vaeMw N, ) where U@V) is
the classical potential energy. The kinetic energy operator is given in cartesian
coordinates by

o 2
K=—h sz, f (1.111)

where the Laplacian operator is defined by

L A

—+t—+—
J 2 2 2
8xj 8yj 8Zj

(1.112)

Alternatively Eq. (1.111) can be written in the form
N PN
k = —] = J J 1 . 1 13
Z 2mj Z 2m; ( )

where the momentum vector operator is

Ao o9 0
= —(— — — - | = A/ —1 1.114
Pj i (axj’ayj’az)’ ! ( )

The solution of Eq. (1.109) can be written in the form

V) = Z Y (rN e~ Ent/ (1.115)

where v, and E,, are solutions of the time-independent Schrodinger equation

Hiry = Enrn (1.116)
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Equation (1.116) is an eigenvalue equation, and ¥, and E,, are eigenfunctions and
corresponding eigenvalues of the Hamiltonian. If at time ¢ = 0 the system is in a
state which is one of these eigenfunctions, that is,

vV, r=0) = ¢,@") (1.117)
then its future (and past) evolution is obtained from (1.109) to be
W, 1) =y, )ye Ent/h (1.118)

Equation (1.108) then implies that all observables are constant in time, and the
eigenstates of H thus constitute stationary states of the system.

The set of energy eigenvalues of a given Hamiltonian, that is, the energies that
characterize the stationary states of the corresponding system is called the spectrum
of the Hamiltonian and plays a critical role in both equilibrium and dynamical
properties of the system. Some elementary examples of single particle Hamiltonian
spectra are:

A particle of mass m in a one-dimensional box of infinite depth and width a,

2 h 2.2
g, =& (1.119)
8ma?
A particle of mass m moving in a one-dimensional harmonic potential U (x) =

(1/2)ke?,

1
En:ha)(n—i-z) n=0,1...; w=+k/m (1.120)
A rigid rotator with moment of inertia /,

n(n + 1)h2‘

E, = :
" 21

wy, =2n+1 (1.121)
where w, is the degeneracy of level n. Degeneracy is the number of different
eigenfunctions that have the same eigenenergy.

An important difference between quantum and classical mechanics is that in
classical mechanics stationary states exist at all energies while in quantum mech-
anics of finite systems the spectrum is discrete as shown in the examples above. This
difference disappears when the system becomes large. Even for a single particle
system, the spacings between allowed energy levels become increasingly smaller
as the size of accessible spatial extent of the system increases, as seen, for example,
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in Eq. (1.119) in the limit of large a. This effect is tremendously amplified when
the number of degrees of freedom increases. For example the three-dimensional
analog of (1.119), that is, the spectrum of the Hamiltonian describing a particle in
a three-dimensional infinitely deep rectangular box of side lengths a, b, c is

Qmh)? (n)zc n§ n?

E(ne,ny,nz) = —— ;+—+—Z); nem,n=1,2,...  (1.122)

b2 c2

showing that in any energy interval the number of possible states is much larger
because of the various possibilities to divide the energy among the three degrees
of freedom.

For a many particle system this argument is compounded many times and the
spectrum becomes essentially continuous. In this limit the details of the energy
levels are no longer important. Instead, the density of states pg(E) becomes the
important characteristic of the system spectral properties. pg(E) is defined such
that pg(E)AE is the number of system eigenstates with energy in the interval
E,...,E + AE. For an example of application of this function see, for example,
Section 2.8.2. Note that the density of states function can be defined also for a
system with a dense but discrete spectrum, see Eqs (1.181) and (1.182) below.

1.4 Thermodynamics and statistical mechanics

1.4.1 Thermodynamics

The first law of thermodynamics is a statement of the law of energy conservation.
The change in the system energy when its state changes from A4 to B is written as the
sum of the work W done on the system, and the heat flow Q into the system, during
the process. The mathematical statement of the first law is then

AE=Fp—E =0+ W (1.123)
The differential form of this statement is
dE = TdS — PdQ (1.124)

where S is the system entropy, 7 is the temperature, P is the pressure, and €2 is the
system volume, respectively, and where we have assumed that all the mechanical
work is an expansion against some pressure, that is, d/W = —Pd <. If the material
composition in the system changes during the process a corresponding contribution
to the energy appears and Eq. (1.124) becomes

dE = TdS — PdQ + ) _ ji;dN; (1.125)
J
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where N; is the number of molecules of species j and p; is the chemical potential of
this species. An important observation is that while the energy is a function of the
state of the system, the components of its change, /¥ and O are not—they depend
on the path taken to reach that state. The entropy S is also a function of state; its
difference between two equilibrium states of the system is

B
dQ
AS = (—) (1.126)
A/ T rev

where ();.y denotes a reversible process—a change that is slow relative to the
timescale of molecular relaxation processes, so that at each point along the way the
system can be assumed to be at equilibrium.

When conditions for reversibility are not satisfied, that is, when the transition
from A4 to B is not much slower than the internal system relaxation, the system
cannot be assumed in equilibrium and in particular its temperature may not be well
defined during the process. Still AS = Sp — S4 is well defined as the difference
between entropies of two equilibrium states of the system. The second law of
thermodynamics states that for a nonreversible path between states 4 and B

B
do
AS > | = (1.127)
I

where T is the temperature of the surroundings (that of the system is not well
defined in such an irreversible process).

Finally, the third law of thermodynamics states that the entropy of perfect
crystalline substances vanishes at the absolute zero temperature.

The presentation so far describes an equilibrium system in terms of the extensive
variables (i.e. variables proportional to the size of the system) £, 2, S,{N;;j =
1,...,n}. The intensive (size-independent) variables P, T, {u;;j = 1,...,N} can
be defined according to Eq. (1.125)

oE oE oE
=)o TT eR)g T ey
2,{N} S,{N} 7/ S, QINVEN;

(1.128)

however, the independent variables in this representation are £ (or S), €2 and {N;}
that characterize a closed system.
Other representations are possible. The enthalpy

H =E + PQ (1.129)
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is a function of the independent variables S, P, and {/;}, as can be seen by using
Eq. (1.125) in dH = dE + QdP + Pd2 to get

dH = TdS + QdP + Y _ dN; (1.130)
J

The Helmholtz free energy
F=E-TS (1.131)
similarly satisfies

dF = —SdT — Pd+ ) _ dN; (1.132)
J

This characterizes it as a function of the variables T, €2, and {N;}. The Gibbs free
energy

G=E+PQ—TS (1.133)

is then a function of 7', P, and {N;}. Indeed

dG = —SdT + VdP + ) _ pdN; (1.134)
J

These thermodynamic functions can be shown to satisfy important extremum
principles. The entropy of a closed system (characterized by the variables E, 2, and
{N;}) at equilibrium is maximum in the sense that it is greater than the entropy of any
other closed system characterized by the same extensive variables but with more
internal restrictions. (A restriction can be, for example, a wall dividing the system
and forcing molecules to stay on either one or the other side of it.) The energy
of a closed equilibrium system with given entropy, volume, and particle numbers,
is smaller than that of any similar system that is subjected to additional internal
restrictions. The most useful statements are however those concerning the free
energies. The Helmholtz free energy assumes a minimum value for an equilib-
rium system characterized by a given volume, given particle numbers, and a given
temperature, again compared to similar systems with more imposed restrictions.
Finally, the Gibbs free energy is minimal (in the same sense) for systems with given
temperature, pressure, and particle numbers.

The study of thermodynamics involves the need to navigate in a space of
many-variables, to transform between these variables, and to identify physically
meaningful subspaces. Some mathematical theorems are useful in this respect. The
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Euler theorem concerns the so-called homogeneous functions of order », defined
by the property

FOxy...axy) = A" (x1,...,xN) (1.135)
It states that such functions satisfy

N
ijw o Ger ) (1.136)
=

E)xj

‘We can use this theorem to address extensive functions of extensive variables, which
are obviously homogeneous functions of order 1 in these variables, for example,
the expression

E(AS, A, (AN})) = LE(S, 9, {N;}) (1.137)

just says that all quantities here are proportional to the system size. Using (1.136)
with n = 1 then yields

E=8—+Q— N— 1.138
35 T Yaq +; TN (1.138)

Using (1.128) then leads to
E=TS—PQ+ )Y Ny (1.139)

J
and, from (1.33)
G=> Nu (1.140)
J

Furthermore, since at constant 7 and P (from (1.134))
dG)rp =Y _ pdN; (1.141)
J
it follows, using (1.140) and (1.141) that
Y Nidpjrp =0 (1.142)
J

The result (1.142) is the Gibbs—Duhem equation, the starting point in the derivation
of the equations of chemical equilibria.
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1.4.2 Statistical mechanics

Statistical mechanics is the branch of physical science that studies properties of mac-
roscopic systems from the microscopic starting point. For definiteness we focus on
the dynamics of an N -particle system as our underlying microscopic description. In
classical mechanics the set of coordinates and momenta, (r", p/) represents a state
of the system, and the microscopic representation of observables is provided by the
dynamical variables, A(r", p", ¢). The equivalent quantum mechanical objects are
the quantum state |/) of the system and the associated expectation value 4; = (j |4 I7)

of the operator A that corresponds to the classical variable 4. The corresponding
observables can be thought of as time averages

t

(A), = 1 / dt' At (1.143)

im
t—o00 2t
—t
or as ensemble averages: if we consider an ensemble of N macroscopically identical
systems, the ensemble average is

1 N
(d)e = lim ZI:A]- (1.144)
j=
Obviously the time average (1.143) is useful only for stationary systems, that is,
systems that do not macroscopically evolve in time. The ergodic hypothesis (some-
times called ergodic theorem) assumes that for large stationary systems the two
averages, (1.143) and (1.144) are the same. In what follows we discuss equilibrium
systems, but still focus on ensemble averages that lead to more tractable theoret-
ical descriptions. Time averages are very useful in analyzing results of computer
simulations.

The formulation of statistical mechanics from ensemble averages can take dif-
ferent routes depending on the ensemble used. Our intuition tells us that if we focus
attention on a small (but still macroscopic) part of a large system, say a glass of
water from the Atlantic ocean, its thermodynamic properties will be the same when
open to the rest of the ocean, that is, exchanging energy and matter with the out-
side world, as when closed to it. Three theoretical constructs correspond to these
scenarios. The microcanonical ensemble is a collection of microscopically identical
closed systems characterized by energy, £, volume €2, and number of particles N.
The canonical ensemble is a collection of systems characterized by their volume and
number of particles, and by their temperature; the latter is determined by keeping
open the possibility to exchange energy with a thermal bath of temperature 7. The
grand canonical ensemble is a collection of systems that are in equilibrium and can
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exchange both energy and matter with a bath characterized by a given temperature
T and a chemical potential of the material system, p.

For each of these ensembles of N systems let f; (V) be the fraction of systems
occupying a given microscopic state j. The ensemble probability P; is defined
by P; = limy— o0 fj(N). The macroscopic observable that corresponds to the
dynamical variable A is then

(d)e = PrA; (1.145)
J

In the grand canonical formulation the sum over j should be taken to include also
a sum over number of particles.

1.4.2.1 Microcanonical ensemble

The probability that a system is found in a state of energy E; is given by

P = mS(E—Ej) (1.146)

where pg(E, 2, N) is the density of energy states, the same function that was
discussed at the end of Section 1.3. Its formal definition

pE(E,Q,N) =Y 8(E — Ej(Q,N)) (1.147)
j

insures that P; is normalized and makes it clear that the integral

/, E{E TAE g pE(E, 2, N) gives the number of energy states in the interval between £

and £ + AE. Equation (1.146) expresses a basic postulate of statistical mechanics,
that all microscopic states of the same energy have the same probability.

One thing that should be appreciated about the density of states of a macroscopic
system is how huge it is. For a system of N structureless (i.e. no internal states)
particles of mass m confined to a volume 2 but otherwise moving freely it is
given by’

1 3N/2
pp(E, Q,N) = ( mz) QVEGN/D-L (1.148)
T(N + DIGN/2) \2xr

where ' are gamma-functions (I'(N) = (N — 1)! for an integer N) that for large
N can be evaluated from the Stirling formula (1.18). For a system of linear size

" D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976), Chapter 1.
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I =1cm (Q = P)and energy E = 3NkgT/2 with m = 1072 g, N = 103,
and 7 = 300 K, the dimensionless parameter & = ml*E / (271h2) is ~10*! so that
PE = E—l(1041)3N/2/e(5/2)N1nN ~ 103NE_1.

In the present context pg (E, 2, N) is the microcanonical partition function—a
sum over the un-normalized probabilities. This function is in turn directly related
to the system entropy

S(E,Q2,N) =kpln pg(E,Q,N) (1.149)
where kg is the Boltzmann constant. From (1.125), written in the form
1 P
dS = —dE + —d2 — Zan (1.150)
T T T

it immediately follows that

L _(3nre (1.151)
P _ 811’1,0]_; (1 152)
no_ (e (1.153)

1.4.2.2 Canonical ensemble

For an ensemble of systems that are in equilibrium with an external heat bath of
temperature 7', the probability to find a system in state j of energy E; is given by

Pi=ePE/Q (1.154)
where
OT,QN)=> e PEEN. = (7)™ (1.155)
J
is the canonical partition function. For a macroscopic system the energy spectrum

is continuous and Eq. (1.155) can be rewritten as (setting the energy scale so that
the ground state energy is nonnegative)

0
O(T,Q,N) = / dEpg(E,Q, N)e PECEN) (1.156)
0
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The canonical partition function is found to be most simply related to the Helmholtz
free energy

F=—kgThQ (1.157)
Using (1.132) it follows that
91n 0
S=keT (Z22)  4+hzlnQ (1.158)
0T )y o
a1
p—iyr (2nQ (1.159)
02 )y r
91
M:—kgT( nQ) (1.160)
8N QT

In addition, it follows from Eqs (1.154) and (1.155) that the average energy in the
system is

dlnQ
E= EP =kgT? 1.161
; 7T < oT )N,Q ( )

It is easily verified that that the analog expression for the pressure

or

P:—Zg—épj (1.162)

J

is consistent with Eq. (1.159).

It is important to understand the conceptual difference between the quantities £
and S in Eqs (1.161) and (1.158), and the corresponding quantities in Eq. (1.149). In
the microcanonical case E, S, and the other derived quantities (P, T, i) are unique
numbers. In the canonical case these, except for T which is defined by the external
bath, are ensemble averages. Even T as defined by Eq. (1.151) is not the same as
T in the canonical ensemble. Equation (1.151) defines a temperature for a closed
equilibrium system of a given total energy while as just said, in the canonical
ensemble 7 is determined by the external bath. For macroscopic observations we
often disregard the difference between average quantities that characterize a system
open to its environment and the deterministic values of these parameters in the
equivalent closed system. Note however that fluctuations from the average are
themselves often related to physical observables and should be discussed within
their proper ensemble.
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An interesting microscopic view of the first law of thermodynamics is obtained
from using (1.161) to write

dE =d ) EP; = EdP;+ Y PdE (1.163)
J J J
reversible reversible
heat work

The use of the word “reversible” here is natural: any infinitesimal process is by
definition reversible. The change in the average energy of a system is seen to be
made of a contribution associated with the change in the occupation probability
of different energy states—which is what we associate with changing temperature,
that is, reversible heat exchange with the surrounding, and another contribution in
which these occupation probabilities are fixed but the energies of the state them-
selves change—as will be the case if the volume of the system changed as a result
of mechanical work.

1.4.2.3 Grand-canonical ensemble

For an ensemble of systems that are in contact equilibrium with both heat and
matter reservoirs characterized by a temperature 7 and a chemical potential wu,
respectively, the probability to find a system with N particles and in the energy
level Ejy (R2) is given by

o~ BEN @) —uN)
Py=——— (1.164)

=
=

where the grand-canonical partition function is

E=E(T,Qu = ZZ —BEN (Q) ,puN

(1.165)
— Z O, T,N)AY; 1 =ePr
N=0

Its connection to average thermodynamic observables can be obtained from the
fundamental relationship

PQ=1kgTn E (1.166)
and the identity

d(PQ) = SdT + Pd + Ndu (1.167)
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Together (1.166) and (1.167) imply

a(In E
S=k31na+kBT( (In )) (1.168)
T
_ 3In &
P = kT [ 22 (1.169)
02 )1,
and
) In&
N:kBT(an ) (1.170)
wm Jro

1.4.3 Quantum distributions

The quantum analogs of the phase space distribution function and the Liouville
equation discussed in Section 1.2.2 are the density operator and the quantum
Liouville equation discussed in Chapter 10. Here we mention for future refer-
ence the particularly simple results obtained for equilibrium systems of identical
noninteracting particles. If the particles are distinguishable, for example, atoms
attached to their lattice sites, then the canonical partitions function is, for a system
of N particles

oT.QN) =4"; g=) e’ (1.171)
i

where ¢; is the energy of the single particle state i and ¢ is the single particle
partition function. If the particles are non-distinguishable, we need to account for
the fact that interchanging between them does not produce a new state. In the
high-temperature limit, where the number of energetically accessible states greatly
exceeds the number of particles this leads to

N
q
O(T.Q.N) = 1 (1.172)

Using Eq. (1.161), both Egs (1.171) and (1.172) lead to the same expression for the
average system energy

E=N)> &f (1.173)

where f;, the probability that a molecule occupies the state i, is

fi=ePiq (1.174)
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At low temperature the situation is complicated by the fact that the difference
between distinguishable and indistinguishable particles enters only when they
occupy different states. This leads to different statistics between fermions and
bosons and to the generalization of (1.174) to

1

where u is the chemical potential and where the (4) sign is for fermions while the
(—) is for bosons. u is determined from the condition ), f; = 1. This condition
also implies that when T — oo individual occupation probabilities should approach

zero, which means that 4 — —o0 so that

£ 280 p=leimw) and u iy —kpT In (Z e_’%’) (1.176)

1

1.4.4 Coarse graining

Consider the local density, p(r, ), of particles distributed and moving in space.
We explicitly indicate the position and time dependence of this quantity in order
to express the fact the system may be non-homogeneous and out of equilibrium.
To define the local density we count the number of particles n(r, ¢) in a volume
A2 about position r at time # (for definiteness we may think of a spherical volume
centered about r). The density

28 (r, 1) = n(r, 1)/ AQ (1.177)

is obviously a fluctuating variable that depends on the size of AQ. To define a
meaningful local density A2 should be large relative to the interparticle spacing
and small relative to the scale of inhomogeneities in the local density that we
wish to describe. Alternatively, we can get a meaningful density by averaging the
instantaneous density over predefined time intervals.

We can make these statements more quantitative by defining the dynamical
density variable (see Section 1.2.1) according to

p(r, 1) = p(r, {ri() = Y 8(r —ri(1) (1.178)

where § is the three-dimensional Dirac delta function, r;(¢) is the position of
particle i at time ¢ and the sum is over all particles. This dynamical variable depends
on the positions of all particles in the system and does not depend on their momenta.
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The local density defined in Eq. (1.177) is then given by

1
AQ _ / / )
P (1‘,t)——AQ drp(r’, {ri(H)}) (1.179)
AQ

where the integral is over a volume A about the point r. Furthermore, for an
equilibrium system we could also perform a local time average

1+At)2

1
pAQ’At(r,t)=Kt / ar p2e(r, 1) (1.180)
t—At/2

The processes (1.179) and (1.180) by which we transformed the dynamical variable
p(r, 1) to its “smoother” counterpart p2(r, f) is an example of coarse graining.®

What was achieved by this coarse-graining process? Consider the spatial coarse
graining (1.179). As a function of r, p of Eq. (1.178) varies strongly on a length scale
of the order of a particle size—showing a spike at the position of each particle,’
however variations on these length scales are rarely of interest. Instead we are often
interested in more systematic inhomogeneities that are observed in hydrodynamics
or in electrochemistry, or those that can be probed by light scattering (with typical
length-scale determined by the radiation wavelength). Such variations, without
the irrelevant spiky structure, are fully contained in p¢ provided that the volume
elements AS2 are taken large relative to the inter-particle distance and small relative
to the inhomogeneous features of interest. Clearly, 028 (r) cannot describe the
system structure on a length scale smaller than / ~ (A)!/3, but it provides a
simpler description of those system properties that depend on longer length scales.

Coarse graining in time is similarly useful. It converts a function that is spiky (or
has other irregularities) in time to a function that is smooth on timescales shorter
than A¢, but reproduces the relevant slower variations of'this function. This serves to
achieve a mathematically simpler description of a physical system on the timescale
of interest. The attribute “of interest” may be determined by the experiment—it is

8 Another systematic way to coarse grain a function f (r) is to express it as a truncated version of
its Fourier transform

FC8(r) = / dkf(K)e®T  where (k) = (1/(27)°) / drf(r)e kT
k| <k

where k¢ is some cutoff that filters high k& components out of the coarse-grained function /8 (r).

% In fact, if we were interested on variations on such length scales, we should have replaced the
delta function in Eq. (1.178) by a function that reflects this size, for example, zero outside the volume
A2 occupied by the particle, and (AQ)~! inside this volume.
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often useless to describe a system on a timescale shorter than what is measurable.
Our brain performs such coarse graining when we watch motion pictures, so we
sense a continuously changing picture rather than jumping frames.

It should be noticed that coarse graining is a reduction process: We effectively
reduce the number of random variables used to describe a system. This statement
may appear contradictory at first glance. In (1.179) we convert the function p(r, 7),
Eq. (1.178), which is completely specified by 3N position variables (of N particles)
to the function p2¥(r, ¢) that appears to depend on any point in continuous space.
However, spatial variations in the latter exists only over length scales larger than
(A)!'/3, so the actual number of independent variables in the coarse-grained sys-
tem is of order 2/ A2 where 2 is the system volume. This number is much smaller
than N if (as we usually take) (A2)!/3 is much larger than both molecular size and
intermolecular spacing.

Finally, consider the eigenvalues {£;} of some Hamiltonian H of interest. We
can define the density of states function

p(E) = 8(E - E) (1.181)
J

that has the property that the integral |, 5{ "dEp(E) gives the number of energy

eigenvalues in the interval E,, ..., Ep. When the spectrum of H becomes very
dense it is useful to define a continuous coarse-grained analog of (1.181)

E+(1/2)AE

1
P(E) > / o(E)dE (1.182)
E—(1/2)AE

where AFE is large relative to the spacing between consecutive £js. This coarse-
grained density of states is useful in applications where the spectrum is dense
enough so that AE can be taken small relative to any experimentally meaning-
ful energy interval. In such applications p(£) in (1.181) and (1.182) can be used
interchangeably, and we will use the same notation for both.

The central limit theorem of probability theory (Section 1.1.1) finds its most
useful application in statistical mechanics through applications of the coarse-
graining idea. The coarse-graining procedure essentially amounts to generating
anew “coarse grained” random variable by summing up many random variables in
a certain interval. Indeed the reduction (1.179) amounts to replacing a group of ran-
dom variables (o (r) for all r in the interval A2) by their sum. If this interval is large
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relative to the correlation distance'? between these variables, and if the probability
distribution that governs these variables satisfies the required convergence condi-
tions, then the probability distribution for the coarse-grained variable is Gaussian.
An example is given in Chapter 7 by the derivation of Eq. (7.37).

1.5 Physical observables as random variables

1.5.1 Origin of randomness in physical systems

Classical mechanics is a deterministic theory, in which the time evolution is
uniquely determined for any given initial condition by the Newton equations (1.98).
In quantum mechanics, the physical information associated with a given wave-
function has an inherent probabilistic character, however the wavefunction itself is
uniquely determined, again from any given initial wavefunction, by the Schrédinger
equation (1.109). Nevertheless, many processes in nature appear to involve a ran-
dom component in addition to their systematic evolution. What is the origin of this
random character? There are two answers to this question, both related to the way
we observe physical systems:

1. The initial conditions are not well characterized. This is the usual starting
point of statistical mechanics. While it is true that given the time evolution of a
physical system is uniquely defined by the initial state, a full specification of this
state includes all positions and momenta of all N particles of a classical system or
the full N -particle wavefunction of the quantum system. Realistic initial conditions
are never specified in this way—only a few averaged system properties (e.g. tem-
perature, volume) are given. Even studies of microscopic phenomena start with a
specification of a few coordinates that are judged to be interesting, while the effect
of all others is again specified in terms of macroscopic averages. Repeating the
experiment (or the calculation) under such ill-defined initial conditions amounts
to working with an ensemble of systems characterized by these conditions. The
observables are now random variables that should be averaged over this ensemble.

2. We use a reduced description of the system (or process) of interest. In many
cases, we seek simplified descriptions of physical processes by focusing on a small
subsystem or on a few observables that characterize the process of interest. These
observables can be macroscopic, for example, the energy, pressure, temperature,
etc., or microscopic, for example, the center of mass position, a particular bond
length, or the internal energy of a single molecule. In the reduced space of these
“important” observables, the microscopic influence of the other ~10%3 degrees of

10" The correlation distance reor for p(r) is defined as the distance above which p (r) and p (r +frcer)
are statistically independent (fi is a unit vector in any direction).
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freedom appears as random fluctuations that give these observables an apparently
random character. For example, the energy of an individual molecule behaves as a
random function of time (i.e. a stochastic process) even in a closed system whose
total energy is strictly constant.

1.5.2 Joint probabilities, conditional probabilities, and reduced descriptions

Most readers of this text have been exposed to probability theory concepts
(Section 1.1.1) in an elementary course in statistical thermodynamics. As outlined
in Section 1.2.2, a state of a classical N-particle system is fully characterized by the
6N -dimensional vector (rN,pN) = (ry,r2,...,ry,p1,pP2,...pny) (a point in the
6N -dimensional phase space). A probability density function £ (", p"V) character-
izes the equilibrium state of the system, so that (¥, p™)drN dp" is the probability
to find the system in the neighborhood drN dp” = dry, ..., dpy of the correspond-
ing phase point. In a canonical ensemble of equilibrium systems characterized by
a temperature 7 the function £'(*V, p") is given by

o BHEY pN)

. — —1
fdl’Nfdee—ﬂH(VN,PN)’ B = (kgT) (1.183)

faN,pNy =

where kp is the Boltzmann constant and H is the system Hamiltonian

N

2
H(rN,pN):Z%—I—U(rN) (1.184)
i=1 =

Here pf = p?x + p?y + p?z and U is the potential associated with the inter-particle

interaction. The function £ (", p") is an example of a joint probability density
function (see below). The structure of the Hamiltonian (1.184) implies that / can
be factorized into a term that depends only on the particles’ positions and terms that
depend only on their momenta. This implies, as explained below, that at equilibrium
positions and momenta are statistically independent. In fact, Eqs (1.183) and (1.184)
imply that individual particle momenta are also statistically independent and so are
the different cartesian components of the momenta of each particle.

Let us consider these issues more explicitly. Consider two random variables x
and y. The joint probability density P(x,y) is defined so that P, (x, y)dxdy is the
probability of finding the variable x at x,...,x + dx and y aty,...,y + dy. We
refer by the name reduced description to a description of the system in terms of
partial specification of its state. For example, the probability that the variable x is
at the interval x, . . ., x 4 dx irrespective of the value of y is Pix) (x) = [dyP(x,).

Similarly, P}y) o) = f dxP>(x,y). Note that the functional forms of P {x) and P%y) are
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not necessarily the same. Also note that all these functions satisfy the normalization
conditions

/ dxdyP>(x,y) = / dePY (x) = / avPY () = 1 (1.185)

The two random variables x and y are called independent or uncorrelated if

Py(x,y) = P )Py (v) (1.186)
The conditional probability distribution P(x|y) is defined so that P(x|y)dx is the
probability that the value of x is in the interval x, . . ., x 4+ dx given that the variable
y takes the value y. From this definition it follows that
Pr(x,y) Py(x,y)
Paly) = =220 Poly = = (1.187)
Py () Py (x)
or rather
P(xly)dx - PY ()dy = P(x,y)dxdy (1.188)

The term P(x|y)dx is the probability that if y has a given value then x is in the

range x,...,x + dx. The term Pfy) (»)dy is the probability that y is in the range
V,...,¥ + dy. Their product is the joint probability that x and y have particular
values within their respective intervals.

Problem 1.2. Show that if x and y are independent random variables then P (x|y)
does not depend on y.

Reduced descriptions are not necessarily obtained in terms of the original ran-

dom variables. For example, given the probability density P(x, ) we may want the
probability of the random variable

z=x+4y (1.189)
This is given by
PP (z) = f dxP>(x,z — x) (1.190)

More generally, if z = f(x, ) then

PP (z) = /dx/dy(S(z — f (6, )P (x, ) (1.191)
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1.5.3 Random functions

Consider a set of random variables, x1,x>,...,xy and the associated probabil-
ity density Py (x1,...,xy). Here, the ordering indices » = 1,..., N are integers.
Alternatively, the ordering index may be continuous so that, for example, x(v) is
a random variable for each real v. We say that x(v) is a random function of v: a
random function assigns a random variable to each value of its argument(s). The
corresponding joint probability density P[x(v)] is a functional of this function.

The most common continuous ordering parameters in physics and chemistry
are position and time. For example, the water height in a lake on a windy day is
a random function /4(x, y,t) of the positions x and y in the two-dimensional lake
plane and of the time. For any particular choice, say x1,y1, #; of position and time
h(x1,y1, ) is a random variable in the usual sense that its repeated measurements
(over an ensemble of lakes or in different days with the same wind characteristics)
will yield different results, predictable only in a probabilistic sense.

1.5.4 Correlations

When Eq. (1.186) does not hold, the variables x and y are said to be correlated. In
this case the probability to realize a certain value of x depends on the value realized
by y, as expressed by the conditional probability density P(x|y). When x and y are

not correlated Eqs (1.186) and (1.187) imply that P(x|y) = ng) (x).
The moments of P> (x,y) are defined by integrals such as

(xk) = / dxdykaz(x, y) = / dxkaix)(x)
04 = [ dantpaen) = [ rP o) (1.192)
(yly = / dxdyx"y' P (x, )
Again, if x and y are uncorrelated then
Wity = [P [ el o) = w4 0h)
The difference

kYl — Ry oy (1.193)

therefore measures the correlation between the random variables x and y.
In particular, if x and y are random functions of some variable z, then
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Cyy(21,22) = (x(z1)y(22)) — (x(21))(y(22)) is referred to as the correlation function
of these variables.

Two types of correlation functions are particularly important in the description
of physical and chemical systems:

1. Spatial correlation functions. Consider, for example, the density of liquid
molecules as a function of position, p(r). In macroscopic thermodynamics p(r) is
an ensemble average. However, if we actually count the number of molecules n(r)
in a given volume AV about r, then

o2V (r) = n(x)/AV (1.194)

is arandom variable, and, taken as a function of r, is a random function of position.
It should be emphasized that the random variable defined in this way depends on
the coarse graining (see Section 1.4.3) volume AV, however for the rest of this
section we will suppress the superscript denoting this fact.

In a homogeneous equilibrium system the ensemble average (p(r)) = p is
independent of r, and the difference dp(r) = p(r) — p is a random function
of position that measures local fluctuations from the average density. Obviously
(86p(r)) = 0, while a measure of the magnitude of density fluctuations is given by
(8p%) = (p?) — (p)?. The density—density spatial correlation function measures the
correlation between the random variables 8p(r") and Sp(r”), that is, C(r',r") =
(8p(r")8p(r”)). In a homogeneous system it depends only on the distance r’ — r”,
that is,

Cr',r") = C(r) = (8p()3p(0)) = (5p(0)p(r));  r=1r'—1" (1.195)

and in an isotropic system—only on its absolute value » = |r|. Both (8p%) and C(r)
are measurable and contain important information on the equilibrium system.

Problem 1.3. Show that in a homogeneous system

(Bp)3p (")) = (px)p")) — p*

2. Time correlation functions. If we look at §p(r, ¢) at a given r as a function of
time, its time evolution is an example of a stochastic process (see Chapter 7). In a
given time ¢1 the variables p(r, #1) and §p(r, 1) = p(r, t1) — p are random variables
in the sense that repeated measurements done on different identical systems will
give different realizations for these variables about the average p. Again, for the
random variables x = 8p(r,#’) and y = §p(r,#”) we can look at the correlation
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function (xy). This function

C(r,t, 1"y = (8p(x,!)8p(x,1")) = (p(x, 1) p(r, (")) — p* (1.196)

is the time correlation function. In a stationary system, for example, at equilibrium,
this function depends only on the time difference

c,t,fy=Cw,t); t=1—1" (1.197)

Many time correlation functions are observables and contain important information
on dynamical system properties. We can also study time and space correlation
functions

Cr—r,i—t)=(p,p, i) — p (1.198)

that contain information on the time evolution of the system’s structure.

1.5.5 Diffusion

As a demonstration of the use of the concepts introduced above consider the well
known process of diffusion. Consider a system of diffusing particles and let P(r, ¢)
be the probability density to find a particle in position 7 at time ¢, that is, P(r, £)d>r
is the probability that a particle is in the neighborhood @37 of r at this time. P(r, ¢)
is related to the concentration c(r, t) by a change of normalization

c(r,t) = NP(r,1) (1.199)

where N is the total number of particles. The way by which c(r, t) and P(r, t) evolve
with time is known from experimental observation to be given by the diffusion
equation. In one dimension

2

% = D%P(x, t) (1.200)
This evolution equation demonstrates the way in which a reduced description (see
Section 1.5.1) yields dynamics that is qualitatively different than the fundamental
one: A complete description of the assumed classical system involves the solution of
a huge number of coupled Newton equations for all particles. Focusing on the posi-
tion of one particle and realizing that the ensuing description has to be probabilistic,
we find (in the present case experimentally) that the evolution is fundamentally dif-
ferent. For example, in the absence of external forces the particle position changes
linearly with time, x = vt, while (see below) Eq. (1.200) implies that the mean
square displacement (x?) changes linearly with time. Clearly the reason for this is
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that microscopically, the evolution of the particle position involves multiple colli-
sions with many other particles whose detailed motions do not appear in (1.200).
Consequently, Eq. (1.200) is valid only on timescales long relative to the time
between collisions and on length scales long relative to the mean free path, that is,
it is a coarse-grained description of the particle’s motion.

If the distribution depends on time, so do its moments. Suppose the particle
starts at the origin, x = 0. Its average position at time ¢ is given by

o

(x); = / dxxP(x,t) (1.201)
—00
Therefore,
9tx) —D/d i P(x, 1) (1.202)
ar oz '

Integrating on the right-hand side by parts, using the fact that P and its derivatives
have to vanish at |x| — 0o, leads to'!

o)

5 = 0, that is, (x) = 0 at all times (1.203)

Consider now the second moment
x?); = / dxx>P(x, 1) (1.204)

whose time evolution is given by

r 3%p
—Dfdxx — (1.205)

' To obtain Eqs (1.203) and (1.206) we need to assume that P vanishes as x — oo faster than x2,
Physically this must be so because a particle that starts at x = 0 cannot reach beyond some finite
distance at any finite time if only because its speed cannot exceed the speed of light. Of course, the
diffusion equation does not know the restrictions imposed by the Einstein relativity theory (similarly,
the Maxwell-Boltzmann distribution assigns finite probabilities to find particles with speeds that
exceed the speed of light). The real mathematical reason why P has to vanish faster than x~2 is that in
the equivalent three-dimensional formulation P(r) has to vanish faster than #~2 as r — oo in order
to be normalizable.
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Again, integration by parts of the right-hand side and using the boundary conditions
at infinity, that is,

[ P> i aP i
/dxxz—— |:x2 ] — / dx-2xa—=—2[xP]iooo+2fde:2
x
—00

ax2 g oo
—00 —00
(1.206)
leads to (x?)/dt = 2D, therefore, since (x*)o = 0,
(x*), = 2Dt (1.207)

For three-dimensional diffusion in an isotropic system the motions in the x, y, and z
directions are independent (the equation dP(r,1)/dt = D(3%/dx* + 3%/9y* +
32/9z%)P(r, 1) is separable), so

(), = () + 05+ (2%) = 6Dt (1.208)

This exact solution of the diffusion equation is valid only at long times because
the diffusion equation itself holds for such times. The diffusion coefficient may
therefore be calculated from

D= Jim £ ()~ r(0)?) (1.209)

1.6 Electrostatics

1.6.1 Fundamental equations of electrostatics

Unless otherwise stated, we follow here and elsewhere the electrostatic system of
units. The electric field at position r associated with a distribution of point charges
g; at positions r; in vacuum is given by the Coulomb law

n
(r—r;)
Er) = i 1.210
(r) ;q,|r_ri|3 (1.210)
For a continuous charge distribution p(r) the equivalent expression is
_
£(r) =/dr/p(r’) w-r) (1.211)
r—r/3

Note that taking p to be a distribution of point charges, p(r) = ) ; ¢:6(r — r;),
leads to Eq. (1.210).
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Another expression of the Coulomb law is the Gauss law, which states that the
electric field associated with a charge distribution p (r) satisfies the relationship

fdsé’-n=4n/dr,o(r) (1.212)

S Q

In (1.212) ©2 denotes a volume that is enclosed by the surface S, n is a unit vector ata
surface element ds of S in the outward direction and 9§S is an integral over the surface
S. The Gauss law (1.212) relates the surface-integrated field on the boundary of
a volume to the total net charge inside the volume. Using the divergence theorem
$¢B-nda = [, V- Bdr for any vector field B leads to the differential form of the
Gauss theorem

V.E=dnp (1.213)

The electrostatic potential @ is related to the electrostatic field by

E=-Vo (1.214)
This and Eq. (1.211) imply that
p(r')
®(r) = /dr/|r ] (1.215)

Equations (1.213) and (1.214) together yield
Vid = —4mp (1.216)

which is the Poisson equation. In regions of space in which p = 0 this becomes
the Laplace equation, V>® = 0.

The energy needed to bring a charge g from a position where ® = 0 to a position
with an electrostatic potential ® is ¢®. This can be used to obtain the energy needed
to assemble a charge distribution p(r):

/ /d PP _ 1/dr,0(r)d>(r) (1217)

r —r| 2

Using (1.216) we get

W= —i/dr O (r)V2d(r) (1.218)
8
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and, upon integrating by parts while assuming that & = 0 on the boundary of the
system (e.g. at infinity) this leads to

1 1
W = —/dr|V<I>|2 = —/dr|5(r)|2 (1.219)
8 8
we can thus identify the energy density w in an electrostatic field:
1 2
w(r) = —|E(r)| (1.220)
8

Consider now the electrostatic potential, Eq. (1.215), whose source is a charge
distribution p (r'). Assume that p (') is localized within some small volume whose

center is at rg, and that r is outside this volume and far from r. In this case we can
expand

1 1
~ = , = — (' =19V,
r—r'|  [r—ro— (@' —ro) [r—rol lr — 1ol
(1.221)
Disregarding the higher-order terms and inserting into (1.215) leads to
/ / 1 / / / 1
O(r) = dr p(r) —| | drp()(x —ro) |-V,
Ir — o] Ir — 1o
(1.222)

_ q(ro) d(ro) - (r —rp)
Ir — ro| Ir —ro|3

where g(rg) = [ dr’p(r’) is the net charge aboutrg and d(rg) = [ dr’p(r')(r' —r)
is the net dipole about that point. Higher-order terms will involve higher moments
(multipoles) of the charge distribution p(r), and the resulting expansion is referred
to as the multipole expansion. In the next section this expansion is used as a starting
point of a brief overview of dielectric continua.

1.6.2 Electrostatics in continuous dielectric media

The description of electrostatic phenomena in condensed molecular environments
rests on the observation that charges appear in two kinds. First, molecular electrons
are confined to the molecular volume so that molecules move as neutral polarizable
bodies. Second, free mobile charges (e.g. ions) may exist. In a continuum descrip-
tion the effect of the polarizable background is expressed by the dielectric response
of such environments.

Consider such an infinite environment (in real systems we assume that the effects
of the system boundary can be disregarded). Divide it into small nonoverlapping
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volumes A3r that are large relative to molecular size and consider the electrostatic
potential at point r, taken to be far from the center of all these volumes.'? Using
Eq. (1.222) we can write

/ / / 1
b (r) = fd s U ] p(r)) —r_,-)} Ay

_Z< 9(r;) @), !
Ir—r; Ir —

) (1.223)

l‘j|

where [d rj’. is an integral over the small volume j whose center is at r;, and where
the sum is over all such volumes. For what follows it is convenient to write g(r;) =
p(rj)A3r and d(rj) = P(ljj)A3r where p(r;) and P(r;) are coarse-grained charge
and dipole density. The later is also called polarization. In the continuum limit the
sum over j is replaced by an integral over the system volume.

o [ ) o (252
r | | —r/| Ir —r| Ir—r/|

(1.224)

To obtain the second equality we have integrated by parts using Eq. (1.30). Accord-
ing to (1.224) the electrostatic potential field is seen to arise from two charge
densities: the “regular” p(r) and an additional contribution associated with the
dipole density pp(r) = —V, - P(r). We will refer to p(r) as the external charge
density. This reflects a picture of a dielectric solvent with added ionic charges.

Equation (1.224) together with (1.214) imply that the Poisson equation (1.216)
now takes the form

V.- &E=4n(p+ pp) =4n(p—V - P) (1.225)
that is, the electric field originates not only from the external charges but also
from the polarization. It is convenient to define an additional field, the electric

displacement, which is associated with the external charges only:

V-D =4np, that is, D = € + 47 P (1.226)

12 We disregard the fact that there is at least one volume, that surrounding r, for which this assumption
cannot be made.
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The electric field £ and the electrostatic potential ® continue to have the mean-
ing taught in elementary courses: £ (r)dq is the force experienced by an infinitesimal
charge 5q added at position r, and ® (r)dq is the work to add this charge. (The reason
this statement is formulated with an infinitesimal charge é¢ is that in a dielectric
medium a finite charge g can cause a change in £ and ®.) £, however, has a contri-
bution that arises from the polarization P. The latter, an expression of microscopic
separation of bound positive and negative charges within the molecules, may be
considered as the response of the dielectric system to the external field D. A fun-
damental ingredient of /inear dielectric theory is the assumption that this response
P depends linearly on its cause A, that is,

P(r,t) = /dr//dt/oc(r,r/;t,t’)’D(r/,t’) (1.227)

a is the polarizability tensor. The tensor character of « expresses the fact that the
direction of P can be different from that of D. In an isotropic system the response
is the same in all directions, so P and D are parallel and « = «l where « is a
scalar and I is the unit tensor. In a homogeneous (all positions equivalent) and
stationary (all times equivalent) system, a(r,v’;¢,¢') = a(r — ¥’;¢t — ¢'). The time
dependence of «(r, ¢) reflects the fact that an external field at some position at some
time can cause a response at other positions and times (e.g. a sudden switch-on of
a field in position r can cause a molecular dipole at that position to rotate, thereby
affecting the field seen at a later time at a different place). In many experimental
situations we can approximate a(r — r’; ¢t — ') by a8 (r — r')8 (¢t — ), that is, take
P(r,7) = aD(r, ). This is the case when the time and length scales of interest are
large relative to those that characterize o (r — r’; ¢ — ¢’). We refer to the response in
such cases as local in time and place. A common approximation used for molecular
system is to take o to be local in space but not in time,

ar — vt —1) = a(t — )8 —r) (1.228)

Proceeding for simplicity with a homogeneous and isotropic system and with
local and isotropic response, P = oD, and defining the dielectric constant ¢ from
e =1 — 4, we get from (1.226)

1
E=-D (1.229)
g
From (1.226) it also follows that
e—1
P= E=yxE (1.230)

4
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The linear response coefficient x is called the dielectric susceptibility.

Equivalent expressions can be obtained when describing systems that are homo-
geneous and isotropic but whose response is not local in space and time. This is
done by taking the Fourier transform (r — k,# — w) of

P(r,t) = /dr//dﬂa(r —r';t—1)D,?t) (1.231)
to get
Pk, w) = ak, 0)DKk, w)
£k, ) = ¢ (k, 0)D(K, w) (1.232)
Pk, w) = x(k,w)E(Kk, w)
with

eIk, w) =1 —4drak,w)

x(k,0) = (e(k,w) — 1) /47 (1.233)

Problem 1.4. Show that if the response is local in space but not in time the
equivalent expressions for homogeneous stationary systems are

P(r,t) = / dt'a(r;t — )D(r,t) (1.234)

P(r,w) = a(w)D(r, w)
E(r,w) = ¢ N w)D(r,w) (1.235)
P(r,w) = x(w)&(r, w)

e l(w) =1 —4ra(w)

x (@) = (e(w) — 1) /47 (1.236)

Explain the equality a(w) = limg_. o o (k, w) (and similarly for &(w) and x (w)).

In molecular systems the polarization P results from the individual molecular
dipoles and has two main contributions. One is associated with the average orienta-
tion induced by an external field in the distribution of permanent molecular dipoles.
The other results from the dipoles induced in each individual molecule by the local
electrostatic field. The characteristic timescale associated with the first effect is
that of nuclear orientational relaxation, t,, typically 10~!! s for small molecule
fluids at room temperature. The other effect arises mostly from the distortion of
the molecular electronic charge distribution by the external field, and its typical
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response time 7 is of the order 10~16 s. Accordingly, we can define three dielectric
response constants:

P= (. +0a,)D = oD (1.237)

o, expresses the electronic response (induced dipoles), «;, is associated with the
average orientation induced in the distribution of permanent molecular dipoles, and
o denotes the total response. These contributions can in principle be monitored
experimentally: Immediately following a sudden switch-on of an external field
D, the instantaneous locally averaged induced dipole is zero, however after a time
large relative to 7, but small with respect to 7, the polarization becomes P, = «.D.
Equation (1.237) is satisfied only after a time long relative to t,. Similarly we can
define two dielectric constants, €, and &5 such that £ = ¢ I'Dand P, = [(e, —
1)/47 € are satisfied for t, < t < t, while £ = e, 'D and P = [(e5 — 1)/47]E
hold for ¢ > t,.

Problem 1.5. Show that for ¢ > #, the contribution to the polarization of a
dielectric solvent that arises from the orientation of permanent dipoles is given by

1 1 1
P,,:P—Pez—(———)'D (1.238)
4 \ &, &

Note: The factor Cpekar = (1/¢.) — (1/¢5) is often referred to as the Pekar factor.

1.6.2.1 Electrostatic energy

Equation (1.219) was an expression for the energy in an electrostatic field in
vacuum. How is it modified in a dielectric environment?

Starting from a system with given (position-dependent) electric, electric
displacement, and polarization fields, the change in energy upon adding an
infinitesimal charge distribution 8o (r) is

SW = /drap(r)op(r) (1.239)

The corresponding change in the electric displacement §D satisfies the Poisson
equation V - 8D = 4x8p. Therefore, §W = (4m)~! [ dr ®(r)V - §D. Integrating
by parts, assuming that §p is local so §D — 0 at infinity and using (1.214), yields

1 1
SW = —/dr£-8’1) = —/dr8(£-’D) (1.240)
47 8
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To obtain the second equality we have made the assumption that the dielec-
tric response is linear and local, that is, £r)éD(r) = e@®ET)IEX) =
(1/2)e(r)8(E(r) - £(r)). Now assume that all the buildup of the £ and D fields
in the system results from the added charge. This means that integrating over the
added charge will give the total energy

W = L/drﬁ(r) -D(r) (1.241)
8

Accordingly, the energy density is w(r) = (D(r))?/(8me(r)).

As an application of these results consider the work needed to charge a con-
ducting sphere of radius « in a dielectric environment characterized by a dielectric
constant ¢. Taking the center of the sphere to be at the origin and to carry a charge ¢,
the electric displacement outside the sphere is ¢ /7> and the electric field is ¢/(¢7?).
Equation (1.241) then yields

2 X 2 P 2
1 1
4| gr— = q—/dr— -1 (1.242)
8me r 2e r2  2ea

a a

The energy needed to move a charged sphere from vacuum (¢ = 1) to the interior
of a dielectric medium is therefore,

2
wy =L (1 — l) (1.243)

This is the Born expression for the dielectric solvation energy.

1.6.3 Screening by mobile charges

Next consider the implications of the existence of mobile charge carriers in the
system. These can be ions in an electrolyte solution or in molten salts, electrons in
metals and semiconductors, and electrons and ions in plasmas. For specificity we
consider an ionic solution characterized by bulk densities nﬁ and n2 of positive
and negative ions. The ionic charges are

g+ = zye and qg- = —z_e (1.244)

where e is the absolute value of the electron charge. On a coarse-grained level of
description in which we consider quantities averaged over length scales that contain
many such ions the system is locally electroneutral

pg=n8qs+nPq_=0 (1.245)
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Consider now such a semi-infinite system, confined on one side by an infinite
planar surface, and assume that a given potential ®g is imposed on this surface.
The interior bulk potential is denoted ® 5. Having &5 # @ p implies that the mobile
charges move under the resulting electric field until drift and diffusion balance each
other. The resulting equilibrium densities n and n_ are different from their bulk
values and may depend on the distance from the surface. At issue is the question
how do the electrostatic potential and these ionic densities approach their bulk
values as we go from the surface into the interior of this solution.

In what follows we take that the direction perpendicular to the surface and
pointing into the solution as the positive x direction. At any point the potential
3P (x) = ®(x) — ®p may be found as the solution of the Poisson equation (1.226),
written in the form

328D (x) A7
—a = _?5pq(x) (1.246)

where ¢ is the dielectric constant and where the excess charge p; is given by

8pg(x) = (n1:(x) = nf)qy + (=) = n)g- = ny (g4 +n-(g-  (1.247)

In the second equality we have used Eq. (1.245). The densities n,,_ (x) are related
to their bulk value by the Boltzmann equilibrium relations

ny =nBe Pard® ————5 uB (1 — Bg,8P)

1.248)
-8 kpT (
n_ = nBepa-s0 L0 B g, sy

We continue with the assumption that the conditions for expanding the exponential
Boltzmann factors to linear order as in (1.248) hold, and that the expansion to first
order is valid. Using this together with (1.245) in (1.247) leads to

8pg(x) = —B8Px)(nE 4 + nBq)
= —B8D(InT qy(qy —q-) = —BSP Nz (zy +2-)  (1.249)

We can improve the appearance of this result by symmetrizing it, using
(cf. Eqs (1.244) and (1.245)) nBz, = (1/2)(n8 z + nBz_). We finally get

1
80 (x) = —55(n§z+ + 1Bz )tz +2_)8®(x) (1.250)
Using this in (1.246) leads to

328D
= k25, (1.251)
9x?2
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where

2
5 2me

=T (z4 +z-)(zpnf +2_n%) (1.252)

The solution of (1.251) that satisfies the boundary condition §® (x = 0) = dg—dp
and 6P (x —> 00) = 0is §& = (dg — dp)~**, that is,

®(x) = O + (Pg — Pple™ “* (1.253)

We have found that in an electrolyte solution the potential on the surface approaches
its bulk value on a length scale « ~!, known as the Debye screening length.

The theory outlined above is a takeoff on the Debye Huckel theory of ionic
solvation. In the electrochemistry literature it is known as the Gouy—Chapman
theory. The Debye screening length is seen to depend linearly on +/7 and to decrease
as (Z+l’l§_ +z_n8)~1/2 with increasing ionic densities. For a solution of monovalent

salt, where zy =z_ =1 and nﬁ = nB = uB, this length is given by
_ ksTe \'/?

Typical screening lengths in aqueous ionic solutions are in the range of 10-100 A.
At T = 300 K, and using ¢ = 80 and salt concentration 0.01 M, that is, n ~
6 x 10'8 cm ™3, yields a length of the order ~30 A.

Appendix 1A Derivation of the classical Liouville equation
as a conservation law

Here we describe an alternative derivation of the Liouville equation (1.104) for the
time evolution of the phase space distribution function f ", pN ; ). The derivation
below is based on two observations: First, a change in f reflects only the change in
positions and momenta of particles in the system, that is, of motion of phase points
in phase space, and second, that phase points are conserved, neither created nor
destroyed.

Consider an ensemble of N/ macroscopically identical systems that are repres-
ented by AV points moving in phase space. Consider a given volume v in this space.
The number of systems (phase points) within this volume at time ¢ is

n(t) =N / dp"ar" £ eV (1), p" (1); 1) (1.255)
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and the rate at which it changes is given by

dn af
= = dp" arN == 1.256
di N/ Pty (1.256)

Since phase points are neither created nor destroyed, this rate should be equal to the
rate at which phase points flow into the volume v (negative rate means flowing out
of the volume). The velocity of a phase point, i.e., the rate at which its “position”
in the 6/N-dimensional phase space is changing, is represented by the 6N velocity
vector u = (¥, p"). The flux of phase points at phase-space “position” is Nfu.!3
Therefore,

dn
i —N/fu-dS (1.257)
S

where the integral is over the phase-space surface surrounding the volume v, and
where dS is a surface element vector whose direction is normal to the surface in
the outward direction. Using Gauss theorem to transform the surface integral into
a volume integral we get

dn

— = -N / V- (fwdrdpV (1.258)

(Note that Eq. (1.258)) is the multidimensional analog of Eq. (1.36)). Comparing
to (1.256) and noting that the volume v is arbitrary, we find that

3N

9 y . d .
. =1 . (1.259)
of . of . } {359' 31'7j}
,-; { o o ]; dx;  dpj /

Note that the first line of (1.259) and the way it was derived are analogous to the
derivation of the continuity equation in Section 1.1.4. Equation (1.259) expresses

13 «position” in phase space is the 6N-dimensional point g = (r",p"). Phase point velocity is
u=gq = @ ,[')N ). The flux of moving particles (number of particles going through a unit area
normal to the flux vector per unit time) is given by the product of particle velocity and particle
density, in the present case of u and Nf.
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the fact that the number of points in phase space, that is, systems in our ensemble,
is conserved. In the present case we obtain an additional simplification, noting that
the Hamilton equations (1.98) imply that dx;/0x; + dp;/dp; = 0. Equation (1.259)
then becomes

3N
o _ {af 9H  of aH} (1.260)

ot ax; dp;  dpy 0x;

which is again the Liouville equation. This additional step from (1.259) to (1.260)
expresses the incompressibility property of the “Liouville space fluid” discussed
at the end of Section 1.2.2.



2

QUANTUM DYNAMICS USING THE
TIME-DEPENDENT SCHRODINGER EQUATION

I have taught how everything begins,

The nature of those first particles, their shape,
Their differences, their voluntary course,
Their everlasting motion and the way

Things are created by them...

Lucretius (c.99—c.55 Bcg) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968.

This chapter focuses on the time-dependent Schrédinger equation and its solutions
for several prototype systems. It provides the basis for discussing and understanding
quantum dynamics in condensed phases, however, a full picture can be obtained
only by including also dynamical processes that destroy the quantum mechan-
ical phase. Such a full description of quantum dynamics cannot be handled by
the Schrodinger equation alone; a more general approach based on the quantum
Liouville equation is needed. This important part of the theory of quantum dynamics
is discussed in Chapter 10.

2.1 Formal solutions

Given a system characterized by a Hamiltonian /1, the time-dependent Schrédinger
equation is

A i A

o lhw @.1)

ot 7
For a closed, isolated system H is time independent; time dependence in the
Hamiltonian enters via effect of time-dependent external forces. Here we focus
on the earlier case. Equation (1) is a first-order linear differential equation that can
be solved as an initial value problem. If W (¢#y) is known, a formal solution to Eq. (1)
is given by

W) = U(t, 1)V (to) (2.2)
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where the time evolution operator U is!
(1, 19) = e~ @/MHE—10) 2.3)

A more useful solution for W(7) may be obtained by expanding it in the complete
orthonormal basis of eigenstates of H, {1, }, which satisfy

= Exn (2.4)
Writing
W(to) = ) cnlto)yn  With culto) = (¥ ¥ (10)) 2.5)
we get either from (2.1) or from (2.2) the result

W)=Y cal®)Pn  withe,(t) = e PEI0)¢, (1) (2.6)

Problem 2.1. Show how Eq. (2.6) is obtained from Eq. (2.1) and how it is obtained
from Eq. (2.2)

A solution of the time-dependent Schrodinger equation may be obtained also in
terms of any complete orthonormal basis {¢,}, not necessarily the one that diagon-
alizes the Hamiltonian 4. In this basis the Hamiltonian is represented as a matrix
H,,,, = (¢,|H|¢pn) and the wavefunction W (¢) is written as

V() =) bu()n 2.7)

Inserting (2.7) into (2.1) and using the orthonormality conditions (¢, |dm) = Sum
leads to a set of equations for the b coefficients

dbt" - —% ;Hnmbm 2.8)
or in obvious vector-matrix notation
Dy~ Ly (2.9)
dt h
VIfF x) is an analytical function of x in a given domain that contains the point x = 0, the

function £(4) of an operator A is defined in the same domain by the Taylor expansion FQ@) =
>, (/nHF ™ (x = 0)4" where F™ is the nth derivative of F.
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Problem 2.2.

1. Derive Egs (2.8) and (2.9)
2. Show that the time evolution defined by Eqs (2.2) and (2.3) corresponds
to solving Eqs (2.8) (or equivalently (2.9) with the initial conditions

bu(to) = (¢nl¥ (10)) (2.10)

Problem 2.3. Let W(r.t) be the solution of a 1-particle Schrodinger equation with
the Hamiltonian H = —(4%/2m)V? + V(r), and let p(r,?) = |¥(r,?)|? be the
corresponding probability density. Prove the identity

ap

fi /i
=-V.J = —(V'VV —WVU*) = —Im(P*VW¥) (2.11)
ot 2im m

The first equality in (2.11) has the form of a continuity equation (see
Section 1.1.4) that establishes J as a flux (henceforth referred to as a probability
flux).

2.2  An example: The two-level system

Consider a two-level system whose Hamiltonian is a sum of a “simple” part, Hy,
and a “perturbation” V.

H=Hy+V (2.12)

The eigenfunctions of Hy are |ba), |dp), With the corresponding eigenvalues E,,
Ep. We will interchangeably use the notation (i |f)[j) = (¢i|@|¢j) = O;; for any
operator O. Without loss of generality we may assume that V,, = Vpp = 0
(otherwise we may include the diagonal part of V' in Hyp). In the basis of the functions
|¢.) and |¢p) H is then represented by the matrix

P E Vab
H= <Vbi, Ea; )? Vap = Via = (¢alV1¢5) (2.13)
The coupling elements V;; are in principle complex, and we express them as

Vap = Ve ' Via = Ve (2.14)
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with V" taken real and positive. It should be emphasized that the two-level problem
represented by H is not more difficult to solve than that given by Hy, however, there
are situations where it helps to discuss the problem in terms of both Hamiltonians.
For example, the system may be represented by the Hamiltonian Hy and exists in
the stationary state ¢,, then at some time taken to be ¢t = 0 the perturbation Vs
switched on. A typical question is what is the probability Pp(¢) to find the system
in state b following this switch-on of the perturbation that couples between the two
eigenstates of H.

The simplest approach to solving this problem is to diagonalize the Hamiltonian
H , that is, to find its eigenstates, denoted 14 and 1/_, and eigenvalues £ and £_,
respectively.

Problem 2.4. Show that given P,(t =0) = 1; Pp(t =0) =1 — P,(t = 0) = 0,
then the probability to find the system in state b at time  is given in terms of the
eigenstates and eigenvalues of H by the form

; . 2
Pu(t) = [(dplrs) (Wi lpa) e FPEH L (dpir_) (Y |pa) e~ @/PE-1
2.15)

Diagonalization of H. The functions ¥+ and ¥ and eigenvalues £y and E_
are solutions of the time-independent Schrédinger equation Hy = Evr. They are
found by writing a general solution in the form

V) = calda) + b l9p) (2.16)

which in the basis of |¢,) and |¢p) is represented by the vector (EZ) The

Schrédinger equation in this representation is

E, Vb Cq Ca
() (@) -+() @
The requirement of existence of a nontrivial solution leads to the secular equation
(Ea — E) (Ep — E) = V? (2.18)

which yields two solutions for £, given by

_ Eq+Ep+/(Eq— Ep)2 + 4772
B 2

Ey (2.19)
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The following identities

Eq—E, V. _ V
Vv  E,—E, E,—E_

X (2.20)

where X is real and positive, are also easily verified. The coefficients ¢, and ¢
satisfy

E,—F .
cp = —aTe”?ca (2.21)
For the absolute values we have
c E,— FE
el _Vea Bl 4P =1 (222)
cal 4
Consider first £ = £
XZ
2 2
S — = 2.23
el =10 ol =g (2.23)

The phase factor €7 in (2.21) may be distributed at will between ¢, and ¢, and a
particular choice is expressed by

¥4} = cosfe™"1/2|gy) + sin 0e"/2 ) (2.24)
W) = —sinfe™ 2|y} + cos O/ ?|¢p) (2.24b)
or
Vi) [ cos@  sinf )\ (|pa) e—in/2
<|‘/’> ~ \—sinf cosé |pp) €/? (2.25)
where
0 = arctan X; 0<6<m/2 (2.26)
or
né = 0 1 (2.27)
Sinf = —————; 08 = ————> '
(1+x2)7 (1 +x2)7
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Figure 2.1 The components Cl> and <;2> of a vector expressed in the two systems of

1 2
coordinates 1 and 2 shown are related to each other by the transformation

x2\ [ cosf sin 6\ [x]
5] \—=sinf cosf)\y )
The inverse transformation is

lpa) = (cosO|ry) — sinB|y_))e™/?
lpp) = (sin O]y ) + cosO|yr_))e /2

(2.28a)
(2.28b)

Some readers may note that that Eqs (2.25) and (2.28) constitute a rotation in

two-dimensional space as seen in Fig. 2.1.

Calculating the time evolution. The required time evolution is now obtained

from Eq. (2.15). Using (cf. (2.24) and (2.28))
(@plvr4) = — (Y—|da) = sin(6)e™/?
(fpl¥r—) = (Yri|dpa) = cos(6)e™?
we get
Py(t) = [{p|W (1)) > = ‘sin@cos@(e_iE+’/h — e"'E—t/’i)‘2
and

. . 2
Pu(t) = [{gal ¥ (0))]* = \coszee—’E+f/h + sin? ee-lEff/h( =1-P,

Using Eqgs (2.19), (2.20), and (2.26), Eq. (2.30) can be recast in the form

41Vl [ 9r
5 5 S1In —t
(Ea _Eb) +4 |Vab| 2

Pp(t) =

(2.29)

(2.30)

(2.31)

(2.32)
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where

1
U = 2/ (B — Ep)? + 4V l? (2.33)

is known as the Rabi frequency.

2.3 Time-dependent Hamiltonians

Much of the formal discussion below, as well as the two-level example dis-
cussed above deal with systems and processes characterized by time-independent
Hamiltonians. Many processes of interest, however, are described using time-
dependent Hamiltonians; a familiar example is the semi-classical description of
a system interacting with the radiation field. In this latter case the system-field
interaction can be described by a time-dependent potential, for example,

H=Hy+i-E0 (2.34)

where fi is the dipole moment operator of the system and £ is the electric field
associated with the external time-dependent classical radiation field. The emphasis
here is on the word “external”: The electromagnetic field is taken as an entity outside
the system, affecting the system but not affected by it, and its physical character
is assumed to be described by the classical Maxwell theory. This is of course an
approximation, even if intuitively appealing and quite useful (see Sections 10.5.2
and 18.7). An exact description can be obtained (see Chapter 3) only by taking the
field to be part of the system.

We can formalize this type of approximation in the following way. Consider a
Hamiltonian that describes two interacting systems, 1 and 2. In what follows we
use M1, Ry and M>, R, as shorthand notations for the masses and coordinates of
systems 1 and 2, which are generally many-body systems

H=H+H+ 7R, R)
. 72 S (2.35)
Hy = ———Vi + Vi (Ry); k=1,2
3 AL i (Ric)

In writing (2.35) we have deviated from our standard loose notation that does not
usually mark the difference between a coordinate and the corresponding operator.
For reasons that become clear below we emphasize that Ry, R, are operators, on
equal footings with other operators such as H or V.

Next we assume that the solution of the time-dependent Schrodinger equation
can be written as a simple product of normalized wavefunctions that describe the
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individual systems, that is,

() = V()W (r) (2.36)
where each function W (¢);k = 1,2 satisfies the corresponding Schrodinger
equation

ow A
iha—tk — A0, (2.37)

The time-dependent Schrodinger equation for the overall system is

. ov 0w, 2 2 %
ik \1;2W + \111? = U H\ V) + Vi HoWs + VoW W) (2.38)

Multiplying (2.38) by W3 and integrating over the coordinates of system 2 yields

L [0V A% r 2 7
i = (W= :Hlxyl+lI/1(\D2|H2|\I/2>2+(\If2|V12|‘112>2‘1’1
2

ot
(2.39)

where the subscript & in { ); indicates that the integration is taken over the subspace
of system k (k = 1,2). Using (2.37) with £ = 2 this yields

N P, . s
lhw = _Z_le + V],eff(Rl) \I—’l (2403)

with an effective potential for system 1 given by
Mer(R1) = (R + <\112 ‘f/lz‘ ‘112>2 (2.41a)

similarly, for system 2 we get

W 7 .
iha—tz = (—Z—sz§ + Vz,eff(Rg)) W, (2.40b)

Vaet(R) = V2 (Ry) + <\IJ1 ‘f/lz‘ LIJ1>1 (2.41b)
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The result, Eq. (2.40) is known as the time-dependent mean field or time-dependent
Hartree approximation. In this approximation each system is moving in the average
field of the other system.

At this point the two systems are treated on the quantum level, however if
there is reason to believe that classical mechanics provides a good approximation
for the dynamics of system 2, say, we may replace Eq. (2.40b) by its classical
counterpart

. 1
Ry = ——V1.r(Ry) (2.42)
M,

and at the same time replace (W, |V12|W2); in Eq. (2.41a) by Vlz(ﬁl ; Ry (1)), that is,
the interaction potential is taken to be parametrically dependent on the instantaneous
configuration R; of the classical system. In Vi2(R1; R2(1) Ry is an operator while
R>(?) is a classical quantity. The equation describing the dynamics of system 1

v

h? b s
ih— = (——Vf + V1,eff(R1,R2(f))) v

o1 2M, (2.43)

Vietr (R, Ra(2)) = V1(R1) + Vi2(R1; Ra (1))

together with Eq. (2.42) now describe a set of coupled quantum and classical
equations of motion that can be solved self-consistently: The quantum system 1
moves in a potential that depends on the configuration of the classical system 2,
while the latter moves in an effective potential that is the expectation value of V1a
with the instantaneous wavefunction W1 (¢).

The validity of this mixed quantum-classical scheme is far from obvious, and
important questions regarding its applicability may be raised. For example, does
this coupled system of quantum and classical degrees of freedom conserve the total
energy as it should (the answer is a qualified yes: it may be shown that the sum
of the energy of the classical system and the instantaneous expectation value of
the Hamiltonian of the quantum system is a constant of motion of this dynamics).
Experience shows that in many cases this scheme provides a good approximation,
at least for the short-time dynamics.

A further approximation is possible: There are situations in which we may
have reason to believe that while system 1 is strongly affected by system 2, the
opposite is not so, and the classical dynamics of system 2 may be treated while
disregarding system 1. In this case, R, (¢) is a classical function of time obtained as
the solution of the independent equation Ry = —(1/M>)VV3(R») and Eq. (2.43) is
a Schrodinger equation for system 1 with a time-dependent Hamiltonian, similar
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in spirit to Eq. (2.34). System 2 now became “external” and the issue of energy
conservation is not relevant anymore: we are interested only in the energy of system
1 which is obviously not conserved.

We can intuitively identify possible conditions under which such an approxim-
ation may be useful. The interaction of a system with a radiation field is a familiar
example. If we are interested in the probability that a molecule absorbs a photon
from the radiation field, it feels “right” to assume that the field is not affected by the
loss of a photon, so its dynamics might be described with no regard to the molecule.
Similarly, when a heavy and a light particles exchange a given amount of energy
upon collision, the trajectory of the light particle is changed considerably while the
heavy particle is hardly affected, again a reason to disregard the light particle when
considering the motion of the heavy one. It should be kept in mind, however, that
the success of any approximation may depend on the observable under study. For
example, Eq. (2.34) can be useful for describing absorption or induced emission
by a molecule interacting with the radiation field, but it cannot describe the phe-
nomenon of spontaneous emission. Indeed, the latter process can add a photon to
an empty (no photons or “vacuum”) field, and an approximation that disregards
the effect of the molecule on the field can hardly be expected to describe such a
change in the field state. On the other hand, when favorable conditions exist, this
approximation is very successful in describing short-time phenomena such as the
outcome of single collision events.

2.4 A two-level system in a time-dependent field

As a specific example, consider again the two-level model, but now with a time-
dependent Hamiltonian affected by some external force. There are three frequently
encountered problems of this kind:

1. A two-level system, Eq. (2.13), where Visa periodic function of time, for
example,

V(t) = ji - Eg cos(wt) (2.44)

sothatin Eq. (2.13)is V4, = b, - Eo cos(wt). This is a standard semiclassical
model for describing atoms and molecules in a radiation field that will be
further discussed in Chapter 18.

2. A two-level system, Eq. (2.13), with a coupling that simulates a collision
process, that is, f/(t) = 170f (¢) where f(¢) is a function that has a maximum
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at (say) ¢t = 0 and satisfies f(¢) — 0 as [¢| — oco. Writing ¥ (¢) = c,(t)p, +
cp(D)¢p (see Eq. (2.16)), a typical concern is the values of |c,(f)|> and |c, (1) |?
att — oo given that, say, c,(t — —oo0) = 1 (hence ¢ (t > —00) = 0).2

3. The Landau Zener (LZ) problem:? The two-level Hamiltonian as well as the
basis used to describe it are taken to depend on a parameter R in the form

]:I = 1:10 + f/
Ho = E4(R) |$a) {Bal + Ep(R) |¢9) (¢l (2.45)

V = Vap |¢a) (d6] + Voa 1) (bl

and the parameter R is a known function of time, for example it may cor-
respond to the distance between two molecules colliding with each other. In
this respect this problem is similar to the previous one, however, the follow-
ing detail characterizes the LZ problem: The time dependence is such that at
t = 0(say), where R(t = 0) = R*, the zero order energies are equal, £, = Ep,
while at t — Fo00|E,; — Ep| is much larger than |V,|. In reality the basis
functions ¢,, ¢ as well as the coupling elements V,; can also depend on R,
but this dependence is assumed weak, and is disregarded in what follows.
The question posed is as before: given that at 1 — —oo the system starts at
state ¢,, what is the probability that it will cross into state ¢, at t — oo.

We dwell briefly on the last problem that will be relevant to later discussions. The
picture described above constitutes a semiclassical model for nonadiabatic trans-
itions between two electronic states. In this model R may represent the coordinate(s)
of the nuclear system, while a and b denote two electronic states obtained for each
nuclear configuration by disregarding the nuclear kinetic energy as well as other
residual interactions V' (e.g. spin—orbit coupling). The resulting electronic energies
E,(R) and Ep(R) constitute potential surfaces for the nuclear motions in these elec-
tronic states. (The reader may consult the following section for further discussion of
potential energy surfaces.) These surfaces cross as R = R*,* see Fig. 2.2. The time
dependence of R is depicted in this figure in a way that represents a collision pro-
cess. The motion starts at ¢ — —oo, R — —oo and proceeds to t — 00, R — 00
after going through a configuration R = R* (at time set to be ¢ = 0) in which

% For an example of using such an approach to model collisional transitions in the semiclassical
approximation see F. E. Heidrich, K. R. Wilson, and D. Rapp 1971, J. Chem. Phys., 54, 3885.

3L Landau, 1932, Phyz. Z. Sowjetunion 1, 89; 1932, 2, 46; C. Zener, 1933, Proc. Roy. Soc. A137,
696; 1933, A140, 660; E. C. G. Stueckelberg 1932, Hel. Phys. Acta 5, 369. For an update of recent
development of this subject see H. Nakamura, Nonadiabatic Transitions (World Scientific, Singapore,
2002).

* The subspace defined by R = R* is not necessarily a point, but a lower dimensionality surface.
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E

Fic. 2.2 A schematic description of the LZ problem: Two quantum states and the coupling between
them depend parametrically on a classical variable R. The energies of the zero-order states @ and b
cross at R = R*. The energies obtained by diagonalizing the Hamiltonian at any point R (adiabatic
states) are £1(R) and E> (R).

interaction between the two colliding particles has caused £, and £} to become
equal. The corresponding states ¢, and ¢ are sometime referred to as diabatic.
The exact adiabatic energies £1(R), E2(R) and wavefunctions ¢, ¢, are obtained
by diagonalizing the Hamiltonian at each nuclear configuration R. In the case of a
one-dimensional motion the diagonalized surfaces do not cross (the non-crossing
rule); instead, the approach of the surfaces £1(R) and E3(R) into close proximity
is the avoided crossing seen in Fig. 2.2. In a higher dimensional system crossing
may occur, but only on a lower dimensionality surface.

We already know that when |V,;,| < |E, — Ejp| the transition between states a
and b can be disregarded (see Eq. (2.32)). Thus, the transition probability effect-
ively vanishes at t — Zo00. In particular, if the slopes [(dE,(R)/dR)g+| and
|(dEp(R)/dR)g+| are sufficiently different from each other and if |V,;| is small
enough the transition will be limited to a small neighborhood of R*. (This is an
argument for disregarding the R dependence of V,;(R), ¢, (R), and ¢ (R) by setting
R = R* in these functions.) Outside this neighborhood the effect of the coupling
V.» 1s negligible; the adiabatic and diabatic representations are essentially identical.
Thus, a system that starts at t — —o0 in state a (or equivalently state 1) moves
initially on the potential surface £,(R) (equivalently £ (R)).

The description (not the actual physics) of the subsequent time evolution depends
on the representation used. Because of the coupling V,,;, and/or the time dependence
of R, transitions between states can take place, so that at each point R (or equivalently



A TWO-LEVEL SYSTEM IN A TIME-DEPENDENT FIELD 69

time ¢) the state of the system is a linear combination
YR = Ci®Y1(R) + C2(R)Y2(R) = Ca(R)Pa(R) + Cp(R)pp(R)  (2.46)

with [CI(R)|> + |C2(R)* = 1, |[Ca®)* + |Cp(R)|* = 1, and [C1 (R — —00)|* =
|C4(R = —00)|? = 1. Att — oo (R — o0) the two states are again effectively
noninteracting, the transition process has ended and the transition probabilities
can be determined. As seen in Fig. 2.2, the diabatic state a is in this limit the
same as the adiabatic state 2, so that |C,(R — 00)|*> = |C2(R — oo)|2 represents
the probability P,., to stay in the same diabatic state a but also the probabil-
ity P> to cross into the other adiabatic state. (We sometimes say that hopping
between the two adiabatic potential surfaces occurred with probability P>« 1.) Sim-
ilarly |Cp(R — oo)l2 =|Ci(R — c><>)|2 is the probability Pp., to change diabatic
state but also the probability P;. | to stay on the original adiabatic surface. The
LZ approximate solution to this problem is

27 | Vap |2 }
R=R*

- (2.47)
h|(d/dt)(Eq(R) — Ep(R))]

Pic1 =Ppey=1 —exp{
where the time dependence of the energy spacing between states a and b stems
from their dependence on R. Consequently,

d .
7 Ea(R) = Ep(R)) = R|Fy — Fal (2.48)

where R is the nuclear velocity and F; = —3E; /R is the force on the system when
it moves on the potential surface E;. All quantities are to be evaluated at the crossing
point R = R*.

Two limits of the result (2.47) are particularly simple. In the weak coupling/high
speed limit, 27 | Vab|2 < hR|Fb — F,| we get5

27 | Vab|2 }
R=R*

Plai=Ppeg={—+—"—
1«1 b<«a {hR|Fb—Fa|

(2.49)
The probability to remain on the adiabatic surface 1 is very small in this limit,
and it is more appealing to think of the process as a low probability non-adiabatic
transition between the diabatic states a and b. This case is often referred to as
the non-adiabatic limit of the LZ problem. In the opposite limit (large coupling,
slow motion—adiabatic limit) we get P11 = Pp, = 1, namely, the system
moves adiabatically on a single potential surface.

> In many dimensions R|F, » — Fq| stands for a scalar product of the vectors R and |Fp — Fq4l.
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Diabatic Adiabatic

Fic. 2.3 Motion through the potential-crossing region depicted in the adiabatic representation (right)
and in the diabatic representation (left).

Even though the above discussion of curve crossing dynamics was presented
in terms of a collision process, the same phenomenology applies in other situ-
ations encountered in molecular physics. Figure 2.3 depicts the potential energy
surfaces for the nuclear motion associated with two stable electronic states.
Such states are usually obtained from a level of description (e.g. the Born—
Oppenheimer approximation) that neglects some small coupling terms in the
molecular Hamiltonian. The smallness of the terms neglected is gauged against
the interstate energy spacing, and when this spacing vanishes (at R = R*) the
coupling becomes important. The left and right panels show respectively the dia-
batic and adiabatic picture of this situation. Both pictures show potential energy
surfaces that are obtained from a Born—Oppenheimer approximation—neglecting
the effect of nuclear motion (not to be confused with nuclear position) on the elec-
tronic states and energies, however, the “diabatic” picture is obtained by further
neglecting terms in the electronic Hamiltonian that couple the states on the left and
the right (for a more detailed discussion of this point see Section 2.5). The arrow
indicates the reaction under discussion. When the interaction is small, the diabatic
picture is more convenient; the reaction is regarded as a non-adiabatic transition
a — b. In the opposite limit the adiabatic picture may be more convenient. Indeed,
if the interaction is large enough the splitting between the adiabatic surfaces 1 and
2 is large and transitions between them may be disregarded. At low temperature the
presence of state 2 may be disregarded altogether, and the reaction may be regarded
as a barrier crossing process taking place on the adiabatic potential surface 1.

Reaction rates. Instudying processes of this kind it is often the case that the relevant
observable is not the transition probability (2.47) but the reaction rate. How are
the two connected?
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In the non-adiabatic limit, where the a — b transition probability is small, the
system may oscillate in the reactant well a for a relatively long time, occasionally
passing through the transition point (or lower dimensionality subspace) R*, that is,
through a configuration in which the a — b transition probability may be signific-
ant. We refer to such as passage as an “attempt” to cross over to the product state b.
If we assume that successive crossing attempts are independent of each other, and
if the number of such attempts per unit time is v, then the rate is roughly given by

kpea =VPpey

This is a crude description. As we have seen, the probability Pp., depends on the
crossing speed, and a proper thermal averaging must be taken. We will come back
to these issues in Sections 14.3.5 and 16.2.

2.5 A digression on nuclear potential surfaces

The basis for separating the electronic and nuclear dynamics of, say, a molecular
system is the Born—Oppenheimer (BO) approximation. A system of electrons and
nuclei is described by the Hamiltonian

H = He(r) + AN(R) 4 Ve (1, R)

R . R R R . (2.50)

Hep = Ter + Ve (r); Hy = Tn + I'N(R)
Here ]:Iel is the Hamiltonian of the electronic subsystem, Hn—that of the nuc-
lear subsystem (each a sum of kinetic energy and potential energy operators)
and Ve—n(r, R) is the electrons—nuclei (electrostatic) interaction that depends on
the electronic coordinates r and the nuclear coordinates R. The BO approxima-
tion relies on the large mass difference between electron and nuclei that in turn
implies that electrons move on a much faster timescale than nuclei. Exploring
this viewpoint leads one to look for solutions for eigenstates of H of the form
Yuy(r,R) = ¢,(r,R) X‘Sn) (R), or a linear combination of such products. Here
¢ (r, R) are solutions of the electronic Schrodinger equation in which the nuclear
configuration Ris taken constant

(Het + VN (r, R)$(r, R) = EJ (R)$y(r, R) (2.51)

while XIE") (R) are solutions of the nuclear Schrodinger equation with Eg’) (R)asa
potential

(Tn + W) + ELPR)) XV (R) = Epux ™ (R) (2.52)
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The function £,(R) = 'n(R) + E g') (R) is the adiabatic potential surface for the
nuclear motion when the system is in electronic state n. The wavefunctions ¢, (r, R)
are referred to as the adiabatic electronic wavefunctions and the electronic-nuclear
wavefunctions v, , (r,R) = ¢,(r,R) Xu(") (R) represent vibronic states in the adia-
batic representation. The non-adiabatic coupling between vibronic states stems
from the parametric dependence of the electronic wavefunctions on R. Specifying

for simplicity to a single nuclear coordinate it is given by (for n # n’)

(2 e R)| 1 [, RO) = (0 | @t RO i (v, RO 1RO
__" dRx ™ R x ™ (R) <¢ (r,R) )8—2 b (1 R>>
2M v V! PR T L
" dR W*(R)i (”')(R)< ( R)‘i ( R)> 2.53
Xv 8RXV/ ¢n r, IR ¢n/ r, . ( . )

where the subscripts R and r denote integrations in the nuclear or electronic spaces,
respectively.

Diabatic states are obtained from a similar approach, except that additional term
(or terms) in the Hamiltonian are disregarded in order to adopt a specific physical
picture. For example, suppose we want to describe a process where an electron e
is transferred between two centers of attraction, A and B, of a molecular systems.
We may choose to work in a basis of vibronic states obtained for the e-A system
in the absence of e-B attraction, and for the e-B system in the absence of the e-A
attraction. To get these vibronic states we again use a Born—Oppenheimer pro-
cedure as described above. The potential surfaces for the nuclear motion obtained
in this approximation are the corresponding diabatic potentials. By the nature of
the approximation made, these potentials will correspond to electronic states that
describe an electron localized on A or on B, and electron transfer between centers
A and B implies that the system has crossed from one diabatic potential surface to
the other.

To clarify these general statements lets consider a simple example (Fig. 2.4). A
single electron can move between two identical atoms X, fixed in space. A single
nuclear coordinate is exemplified by the angle 6 of the orientation of a dipole that
represents a solvent molecule.

Consider first the two-center system without the “solvent” dipole. Denote the
ground state of the electron about the isolated left center by ¢r (r) and the equi-
valent ground state about the isolated right center by ¢r(r). ¢ (r) is the electronic
ground state of a Hamiltonian in which the interaction of the electron with the
right center was neglected. Similarly, ¢r (r) corresponds to the Hamiltonian that
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FiG. 2.4 An example that demonstrates the origin of diabatic potential surfaces and the difference

between them and the corresponding adiabatic surfaces. The process is an electron transfer between
the two centers X, witnessed by a nuclear coordinates represented by the orientation 6 of a “solvent
dipole”.

does not contain the electron interaction with the left center. These functions
describe an electron localized about the left center and the right center, respectively.
Suppose also that other electronic states are far higher in energy and can be disreg-
arded. When both centers are present the true ground state is a linear combination
2712 (¢ (r) + ¢r (r)) which describes an electron with equal amplitudes on these
centers.

Next consider the two-center system together with the “solvent.” Let us construct
a Born—Oppenheimer description of the electronic ground state. When only the right
center is present the electronic function ¢r (r, 0) still represents an electron localized
about the right center. The corresponding ground state energy ERr(6) constitutes
a potential surface for the orientational motion of the dipole in the presence of
this center. This surface has a single minimum, attained when the angle 6 is such
that the dipole is oriented toward the negative charge, as shown in the figure.
Similarly ¢y (r, 6) and £ () are the ground electronic state and the corresponding
orientational potential surface when the electron is localized about the left center.
ER(0) and E1 (0) are the two diabatic potential surfaces. In contrast the adiabatic
ground electronic state is the exact ground state of the full Hamiltonian, that is,
2= 12(pp(r,0) + ¢r(r,0)). The corresponding ground state adiabatic potential,
E(0), will have two symmetric minima as a function of 8, reflecting the fact that
the dipole equally prefers to be oriented toward either one of the partial charges on
the two centers.

The first picture above yields two diabatic potential surfaces, each with a min-
imum reflecting the tendency of the dipole to point toward the localized electron.
The second yields the lower adiabatic potential surface—a double minimum poten-
tial. The relationship between these surfaces can be understood by noting that the
most important effect of the residual interaction (i.e. the originally neglected inter-
action of the electron on the left center with the right center and vice versa) on the
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electronic energy is to split the degeneracy at the point 8* when the two diabatic
surfaces cross. This leads to the picture seen in Figs 2.2 and 2.3.

Which representation is “better”? The answer depends on our objective. If this
objective is to find accurate energy levels of a molecular system in order to predicta
molecular spectrum, say, then the adiabatic representation gives us a starting point
closer to our ultimate goal. On the other end, it often happens that a system is initially
prepared in a state which is more closely represented by a diabatic basis as in the
example discussed above, and the ensuing transfer process is investigated. In this
case the diabatic picture provides a more physical description of the transfer process,
though the adiabatic representation remains useful in the strong coupling limit.

2.6 Expressing the time evolution in terms of the Green’s operator

We now return to time-independent Hamiltonians and describe another method for
solving the time-dependent Schrodinger equation. Linear initial value problems
described by time-independent operators are conveniently solved using Laplace
transforms (Section 1.1.7). In Section 1.1.7 we have seen an example where the
equation

% = —af; « real and positive (2.54)
was solved by such a procedure. The solution could be expressed as the inverse
Laplace transform, Eq. (1.78), which could be evaluated for « real and positive by
closing a counter-clockwise contour on the negative-real half plane of z, leading to
the result (1.79). To make the procedure more similar to that used below we repeat
that development in a slightly different form: Define z = —iw, so that dz = —idw.
In terms of the new integration variable w, Eq. (1.78) becomes

| oo+ie |
f = f dwe=' —1(0) (2.55)
Tl w+ i
—00+ie

Closing a clockwise contour in the lower half complex plane along Im(z) — —o0,
leads again to the result (1.79).

Consider now the initial value problem represented by Eq. (2.1) with a given
W (ty = 0). The Laplace transform of Eq. (2.1) is

U (z) — W(0) = %iﬁlxif(z) (2.56)
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which leads to®
- 1

V(z) = ——=W(0 2.57
@) T i (0) (2.57)

The time-dependent solution W (¢) of Eq. (2.1) is obtained from the inverse Laplace
transform of (2.57)

1 00i+-¢ 1
V() = — / dze” ————— W (0) 2.58
2mi z+ (i/hH (29
—o0i+-¢€

with ¢ > 0. Here ¢ may be taken as small as we wish because the eigenvalues
of A are all real and consequently all singularities of the integrand in (2.58) are
on the imaginary z axis. It is again convenient to use the substitution z = —iw,
dz = —idw, which transforms Eq. (2.58) to

1 oo+ie |
V() = —— dwe ™' — W (0)
2
T”fooJris @ H/h

or, changing integration variable according to £ = /i(w — i¢)

o0
PRI
2mi

—00

1
— Y (0); e—0 (2.59)
E—H +i¢e

where ¢ was redefined with an additional factor 4. The ie term in the exponent
can be disregarded in the ¢ —0 limit, however, the corresponding term in the
denominator has to be handled more carefully since the spectrum of A is real.
The time-dependent wavefunction is seen to be essentially a Fourier transform of
the function G(E)¥ (t = 0), where G(E) = (E — H + ie)~ ! is the retarded Green'’s
function (or, rather, Green’s operator). In particular, the probability amplitude for
the system to remain in state W(0) at time 7 is given by the Fourier transform of a

® Throughout this text we use operator expressions such as (z — H)~1 with a scalar z to denote
(zI — B)~! where ] is the unit operator.
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diagonal matrix element of this operator

o0

(W)W (1)) = —ﬁ / dEe  ENGH () (2.60)
Gy (E) = <\p(0)‘+ \p(0)>; e—>0 (2.61)
E—H+ie

Equations (2.59)—(2.61) constitute a formal solution of the time-dependent
Schrodinger equation, expressed in terms of the Green operator. We will later see
how this formal solution can be applied.

2.7 Representations

2.7.1 The Schrodinger and Heisenberg representations

Consider again the time evolution equations (2.1)—(2.3). If Aisan operator repres-
enting a physical observable, the expectation value of this observable at time ¢ is
(A)r = (W(2)]|A|W(¢)). We can express this same quantity differently. Define

vy =0T ()w @) (2.62a)
Au() = UY (AU () (2.62b)

where
U(r) = U(t,0) = e~ @/DA (2.63)

Obviously, Wy is simply W(r = 0) and is by definition time independent.
Equation (2.62) is a unitary transformation on the wavefunctions and the oper-
ators at time . The original representation in which the wavefunctions are time
dependent while the operators are not, is transformed to another representation in
which the operators depend on time while the wavefunctions do not. The original
formulation is referred to as the Schrddinger representation, while the one obtained
using (2.62) is called the Heisenberg representation. We sometimes use the sub-
script S to emphasize the Schrodinger representation nature of a wavefunction or
an operator, that is,

Us() = W(r);  As(t) = Ayt =0) =4 (2.64)

Either representation can be used to describe the time evolution of any observable
quantity. Indeed

A

(A) = (¥(OIA1V (1)) = (Yuldu ()| Yh) (2.65)
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Problem 2.5. Prove this identity.

Note that the invariance of quantum observables under unitary transformations
has enabled us to represent quantum time evolutions either as an evolution of
the wavefunction with the operator fixed, or as an evolution of the operator with
constant wavefunctions. Equation (2.1) describes the time evolution of wavefunc-
tions in the Schrodinger picture. In the Heisenberg picture the wavefunctions do
not evolve in time. Instead we have a time evolution equation for the Heisenberg
operators:

d ~ i
—Ay(t) =

M HEHE) (2.66)

Problem 2.6. Use Egs (2.62)—(2.63) to prove Eq. (2.66)

Equation (2.66) is referred to as the Heisenberg equation of motion. Note that
it should be solved as an initial value problem, given that IaH (t=0) = A.Tn fact,
Eq. (2.62b) can be regarded as the formal solution of the Heisenberg equation (2.66)
in the same way that the expression W (¢) = e~ /PH!y (¢ = 0) is a formal solution
to the Schrédinger equation (2.1).

To end this section we note that the entire time evolution referred to in the above
discussion arises from the Schrodinger equation. In general the operator?l may have
an explicit dependence on time, in which case the transformation to the Heisenberg
representation may again be carried out, however, the resulting Heisenberg equation
is

94w (1)

d ~ i
—An(t) = ”

dt i

[ﬁ,AH(t)] n (2.67)

Problem 2.7. Use the definition ;{H(t) = exp(iI:I t/h);is(t) exp(—iﬁ t/h) to
verify (2.67).

2.7.2 The interaction representation

Obviously, any unitary transformation can be applied to the wavefunctions and
operators and used to our advantage. In particular, for any Hamiltonian that is
written as

H=Hy+V (2.68)
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the interaction representation is defined by the transformation

A1(t) = /DA o= (/M Hot (2.69)

Wi (1) = /WAt gg (1) = /Mt o= (/ALY () (2.70)

Problem 2.8. Show that

(Ws()]4s|Ws (1)) = (Wnldu(0)|Wh) = (V1)) ¥1(1)) (2.71)

The time evolution equations in the interaction representation are easily derived
from these definitions
d4
= = = [, 4] 2.72
il [ 0,41 (2.72)

and
Y _ T it g, — frye—mitng o)
it h
__ %e(i/h)ﬁof e /Mt i/ Mot o~y (o)

- —%%(z)%(z) 2.73)

Equations (2.72) and (2.73) indicate that in the interaction representation the time
evolution of the operators is carried by Hy, while that of the wavefunctions is
determined by the interaction V, or rather by its interaction representation that is
itself a time-dependent operator.

2.7.3 Time-dependent perturbation theory

Equation (2.73) is particularly useful in cases where the time evolution carried by
Hy can be easily evaluated, and the effect of Vis to be determined perturbatively.
Equation (2.73) is a direct route to such a perturbation expansion. We start by
integrating it to get

t

W) = WO - f di ()W) (2.74)
0



REPRESENTATIONS 79

and continue by substituting the same expression (2.74) for Wi(¢1) on the right.
This yields

t

Wi(1) = Wi(0) + (—%) / dn 1 (11) W (0)

0

2 t 1
+ (—%) / dty / diy Vi(t) Vi(t2) Wi (12) (2.75)
0 0

00 N7 t 151 In—1
Wi(1) = 1+Z(—%) fdnfdrz---fdzn%(nﬂ?l(tz)---%(zn) W1 (0)
0 0

(2.76)

Note that the order of the operators V(¢) inside the integrand is important: These
operators do not in general commute with each other because they are associated
with different times. It is seen from Eq. (2.76) that the order is such that operators
associated with later times appear more to the left.

Problem 2.9. Show that Eq. (2.74) is equivalent to the operator identity

t
oA _ i/t _ % / g e~ IE(—1') jr o=/ AT o
0
Problem 2.10. Confirm the following operator identity

p
explBS + R)] = exp(BS) | 1 + / dre S RelHS+R)] (2.78)
0

by multiplying both sides by exp(— BS) and taking derivative with respect to S.
Verity that Eqs (2.78) and (2.77) are equivalent.
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2.8 Quantum dynamics of the free particles

2.8.1 Free particle eigenfunctions

The Hamiltonian of a free particle of mass m is

R n?
H=-—V? (2.79)
2m
and the corresponding time-independent Schrodinger equation is
2mE
V2 = —k2y; K2 = ;"—2 (2.80)

It is convenient to use the set of eigenfunctions normalized in a box of dimensions
(Lx, Ly, L;) with periodic boundary conditions

V(x,y,z) =W +nly,y+nyLy,z+n.L.); n=0,%£1,+2,... (2.81)

A set of such functions is

1 .
IK) =Yg (r) = ﬁe’“; k = (ke, ky, k2)
2
b="Tms m=0El.; j=xys (252)
J
Q=LLL,

with the eigenvalues

K2 k2
Ex = —— (2.83)
2m

These functions constitute an orthonormal set

(k') = / dPrif (0P (r) = S (2.84)
Q
and can be used to express the time evolution of any function W (r,# = 0) that

satisfies the periodic boundary conditions (2.81). Following Egs (2.5) and (2.6)
we get

W) =Y (Yl Wr, 0))e MR/ @y, (2.85)
k
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where

(Vx| ¥(r,0) = % S[ re ® Ty (r, 0) (2.86)

We have seen that the normalization condition fQ a’x|1ﬁ(x)|2 = 1 implies that
free particle wavefunctions vanish everywhere like ¥ (x) ~ Q72 as @ — oo. The
probability |y (x) |2dx to find the particle at position x . . . x+dx vanishes like Q!
in this limit. As such, these functions are by themselves meaningless. We will see
that meaningful physics can be obtained in two scenarios: First, if we think of the
process as undergone by a distribution of NV identical independent particles where
the number N is proportional to the volume £ so that the density p(x) = N|y (x)|?
is finite. We may thus work with the single particle wavefunctions, keeping in mind
that (1) such functions are normalized by ~!/? and (2) that physically meaningful
quantities are obtained by multiplying observables by the total number of particles
to get the single particle density factored in.

Second, several observables are obtained as products of matrix elements that
scale like v (x)? (therefore like 2~!) and the density of states that scales like Q
(Eq. (2.95) or (2.97) below). A well-known example is the golden rule formula
(9.25) for the inverse lifetime of a local state interacting with a continuum. Such
products remain finite and physically meaningful even when Q2 — oo.

Anticipating such scenarios, we use in many applications periodic boundary con-
ditions as a trick to represent infinite systems by taking the periodic box dimensions
to infinity at the end of the calculation. We will see several examples below.

Problem 2.11. Show that if the wavefunction W (r, ¢ = 0) is square-integrable
(i.e. f d3r|\lf(r,t = O)|2 (integral over all space) is finite, so is W (r,?) at any
later time.

Problem 2.12. For the function

1 x?
Consider the expansion in terms of the one-dimensional free particle eigenstates
V) = ) (2.88)
k

Ur(x) = L7V2e%, k= Qn/Lyn; n=0,%£l,... (2.89)
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Explain why this expansion is meaningful only in the limit L >> D. Show that
in this limit

8 D2 /4
ck=< il ) e D (2.90)

2.8.2 Free particle density of states

The density of states concept was introduced in Section 1.3. For any operator
A characterized by the eigenvalue spectrum {a;} we can define a density function
p4(a) such that the number of eigenvalues that satisfy a < a; < a+ Aais py(a)Aa.
Such a density can be introduced for a discrete spectrum

pala) = Z(S(a — a;) (2.91)
J

but it is most useful when the spectrum becomes so dense that either our meas-
urement cannot resolve the individual eigenvalues or we are not interested in
these high resolution details. This is obviously the case for the momentum oper-
ator whose eigenfunctions are the free particle wavefunctions (2.82), in the limit
Ly,Ly,L; — oo.

In what follows we describe one possible way to obtain the density of momentum
states for this problem. Consider Eqgs (2.87)—(2.90). Obviously the identity

P! (2.92)
k

has to be satisfied. Using (2.90) in (2.92) we get

o0
V87D V87D
ZT Zexp[—2D2k2]=¥ / dkexpl—2D** =1 (2.93)
k -0

where the conversion to an integral is suggested by the fact that when Q — oo the
allowed values of the wavevectors k constitute a dense set (cf. Eq. (2.82)). p is the
desired density of states in this set, defined such that p Ak is the number of allowed
states, (k; = 2w/L)n;n = 0,%£1,...) in the interval k... k + Ak. In principle p
could depend on k, but it does not in the present case: this is seen from the fact that
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the spacing 27 /L between allowed values of & is a constant independent of k. On
evaluating the Gaussian integral in (2.93) we can find the explicit expression for p,

L
o =-— (2.94)
2
The same reasoning in three dimensions will yield
LyL,L Q
=—X= = (2.95)

P= "y = @y

This number, multiplied by d3k = dkydk,dk;, is the number of quantum states in the
k-space volume between ky and k, + dk, k, and k,, + dk,, and k, and k, + dk,. The
fact that this result does not depend on k = (ky, k,, k,) implies that the distribution
of free particle eigenstates in k-space is homogeneous.

It is useful also to cast the density of states in other representations, most notably
the energy. We may thus seek a density pg so that the number of states with energy
between E and E+ AFE is pg AE. In one dimension the indicated energy interval cor-
responds to the k-axis interval 26 Y (2m(E + dE) — 2mE) = h~! (2m/E)\/?dE
(the factor 2 comes from the fact that a given interval in £ corresponds to two
intervals in k, for positive and negative values) so that

L 2m‘

=57 @=D (2.96)

PE
We can get the same result from the formal connection prdk = pgdE, which
implies that pr = pi(dE/dk)~". In three dimensions the interval between E
and £ 4+ AE corresponds in k-space to a spherical shell whose surface area is
47k? and width is Ak, where k2 = 2mE/h* and Ak = (dE/dk)"'AE =
7Y (m/(2E))Y/2 AE. This yields

5 2mE; (d=3) (2.97)

Q 2mE 1 ym\1/2 Q m
PE ( >

_ 4 - _ e m
2m)3 XA B2 % A 22 i3

Note that pg is a function of the energy E.

2.8.3 Time evolution of a one-dimensional free particle wavepacket

Consider now the time evolution of a free particle moving in one dimension that
starts at = 0 in the normalized state

Y(x,t =0)

—e)? i
(x — x0) +lpox} (2.98)

= Qrp2)/a P {_ 4D2 7
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We refer to the wavefunction (2.98) in the present context as a wavepacket: It is
a local function in position space that can obviously be expanded in the complete
set of free particle waves (2.82).” Below we see that this function is also localized
in momentum space.

Problem 2.15. Show that for the wavefunction (2.98) the expectation values of
the position and momentum are

o0
(X)1=0 = / dxW* (x,t = 0)xW(x,t = 0) = xp (2.99)
—oo
and
i ad
(P)i=0 = / dxW*(x,t = 0) (—iha—) W(x,t =0) =po (2.100)
x
—0o0
Also show that the position variance associated with this wavefunction is
(@ — ) P)imo = (&) — x5 =D’ 2.101)

and that the momentum variance is

2 hz

(@ — PN )i=0 = (p?) — P} = pios (2.102)

Note that Axg = [((x — (x))?);=0]"/? and Apy = [((p — (p))?)i=0]"/? satisfy
the Heisenberg uncertainty rule as an equality: AxgApo = #i/2. For this reason
we refer to (2.98) as a minimum uncertainty wavepacket.

The expansion of (2.98) in the set of eigenstates 1/ (x) = L~ (/2 ¥ yields

W(x,t=0) = 1 cpe’™ (2.103)
N

7 The periodic boundary conditions are inconsequential here provided that the range in which this
wavefunction is significantly different from zero is far smaller than L.
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where
LT (x — x0)’
X — X _
ck = (Vi | V(x,0)) = W f dx exp [—W —i(k— ko)xj|
—00
(2.104)
where ko = po/A. Evaluating the Fourier transform in (2.104) we get
87 D2\ /4
ck = ( 722 ) exp[—D?(k — ko)? — ixo(k — ko)] (2.105)

This implies that for a particle whose quantum state is (2.98), the probability to
find it with momentum 7k is

8w D
el = = expl—2D%(k — ko)’] (2.106)

Note that Eqs (2.87)—(2.90) represent a special case of these results.
The time evolution that follows from Eq. (2.98) may now be found by using
Eq. (2.85). In one dimension it becomes

1 o
o = 3 gk Qe (2.107)
k

The probability that the system described initially by W (x, ¢ = 0) stays in this initial
state is given by

P(t) = [(W(x,t = 0) | W(x, ) (2.108)
Using Egs (2.103) and (2.107) as well as the one-dimensional version of (2.84)
yields
2

P(t) = (2.109)

Z lex |2 o~ U/DIFK /@m))t
k

Inserting Eq. (2.106) and converting the sum over k to an integral, ) , —
(L/(27)) [ dk finally leads to

2

o0
2 7
Pt = |,/ ZD / dk exp [—’—tkz 2D (k — ko)Z] (2.110)
b4 2m
—o0
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Note that the dependence on L does not appear in any observable calculated
above.

We can also find the time-dependent wavefunction explicitly. Combining
Eqs (2.107), (2.105), and (2.94), and converting again the sum over & to an integral
leads to

l)2 174 . ~hk2
\II(X, t) =\ —= €lk0x0 / dk eXp lk(x —xO) — Dz(k — k0)2 — l_t
271'3 2m
(2.111)

This Gaussian integral can be evaluated in a straightforward way. To get some
physical insight consider the result obtained from the initial wavepacket with xg =
po = ko = 0. In this case (2.111) yields

14 int \ V2 X2
van=(—) (b S 2.112
(> 2) (27r> < +2mD> exp [ 4D2+2iht/m] @112)

that leads to

1/2
W =27 | D? + e / ¢ [ x }
x, = s —_— X _—
4m2D? P 2[D? + B2/ (4m2D?)]

(2.113)

This wavepacket remains at the peak position x = 0, with its width increases
with time according to

9 =00 hit
H [

21/2 112 L 12,2 212\11/
((Ax)“) '/ = [D” 4+ m°t* /(4m“D")] 7mD

(2.114)

2.8.4 The quantum mechanical flux

In a classical system of moving particles the magnitude of the flux vector is the
number of particles going per unit time through a unit area perpendicular to that
vector. If p(r) and v(r) are the density and average speed of particles at point r,
the flux is given by

J(r) = v(r)p(r) (2.115a)

It can be written as a classical dynamical variable, that is, a function of positions
and momenta of all particles in the system, in the form

Iy =" (pj/mj)8(xr — 1)) (2.115b)

J

where the sum is over all particles.
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The quantum analog of this observable should be an operator. To find it we
start for simplicity in one dimension and consider the time-dependent Schrodinger
equation and its complex conjugate

oW i| K 92
R W4TV 2.116
Y h[ a2 TV } (2.116)
ow* i | K 92

= |-V V()W 2.117
ot h|: mo T ) } ( )

Multiply (2.116) by W* and (2.117) by W and add the resulting equations to get

I ih [ 0° 32
Vv — W
a  2m 0x2 0x2

(2.118)

We next integrate this equation between two points, x1 and x,. V*(x, )W (x, t)dx
is the probability at time # to find the particle in x . ..x + dx, hence the integral on
the left yields the rate of change of the probability P1— to find the particle in the
range between x| and x,. We therefore get

X2 X2
dPi - (¢t i 92w RV i 9 oW qw*
LO:’—fd eV Y =l—/dx— vl g

dt 2m ax? 9x2 2m ox ox ox

X1 X1
o oW (v, 1
— ——/dx— Im | W* (x, ) 22 1) (2.119)
m ox 0x
X
This can be integrated to give
dP1— (1)
—Q = J (x1,t) —J (x2,1) (2.120)

where

h [* B‘P(x,t)} h( I g
J(x’t)EZIm W (x,t) —————— =7

wr— — @
ox

- . ) (2.121)

mi
is defined as the probability flux at point x. Note that while J in Eq. (2.115) is a
particle flux, Eq. (2.121) is the probability flux, and should be multiplied by N (in
a system of N noninteracting particles) to give the particle flux.

Equation (2.120) may be recognized as a conservation law: NP1 is the number
of particles in the (x1,x) interval and NJ(x) is the number of particles moving per
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unit time through point x. Equation (2.120) tells us that a change in number of
particles in the x1, ..., x> interval is caused by particles entering or leaving at the
boundaries x1 and x, that is, particles cannot be created or destroyed.

Problem 2.14. Use the results above to prove that at steady state of a one-
dimensional system the flux has to be independent of both position and time.

Note that in our one-dimensional formulation the dimensionality of W is
[length]~!/2 and the flux J has dimensionality of 7~!. The generalization of (2.121)
to more than one dimension is found by repeating the procedure of Eqs (2.116)—
(2.121), with the gradient operator V replacing d/dx everywhere. Equations (2.119)
and (2.120) become

dpzt(t) — ——/d3 (Im [¥* (r, 1) VW (r,1)])

= ——/dsns- [W* (r,0) VW (r,1)] (2.122)

where Q2 here denotes a finite volume whose boundary is the surface S, and
where ny is a unit vector normal to the surface element ds in the outward direction.
In getting the second line of Eq. (2.122) we have used the divergence theorem
(Eq. (1.36)). In fact, the mathematical structure of Eq. (2.122) reflects the fact that
in a closed system the quantum mechanical probability is a globally conserved
quantity (See Section 1.1.4). It also enables us to identify the probability flux: The
second line of (2.122) is the analog of the right-hand side of Eq. (2.120), where the
flux is now defined by the analog of Eq. (2.121).

Jr, 1) = i [tp (r, 1) (VU (r,0) — W(r,0) (VI*(r,0)] (2.123)

In three dimensions W has the dimensionality [length] ~3/2 and the dimension of
flux is [#/2]~!. When multiplied by the total number of particles N, the flux vector
gives the number of particles that cross a unit area normal to its direction per unit
time.

As an example consider the free particle wavefunctions 1 (r) = 4 exp(ik - r)
and Y (r) = A cos(k - r). From Eq. (2.123) it is clear that the flux associated with
Yo is zero. This is true for any wavefunction that is real or can be made real by
multiplication by a position independent phase factor. On the other hand, using
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W=y in (2.123) yields
Ak
J(r) = —|4)? = v|4)? (2.124)
m

The flux is defined up to the constant 4. Taking |4|> = Q~! (a single particle
wavefunction normalized in the volume €2) implies that the relevant observable
is NJ(r), that is, is the particle flux for a system with a total of N particles with
N ~ Q. Sometimes it is convenient to normalize the wavefunction to unit flux,

J = 1 by choosing 4 = \/m/(hik).

2.9 Quantum dynamics of the harmonic oscillator

2.9.1 Elementary considerations

The classical Hamiltonian for a one-dimensional harmonic oscillator of mass m
centered about x = 0,

H=%" + -k (2.125)
implies the classical equations of motion

[k
x=p/m; p=—mwx withw =,/ — (2.126)
m

It is convenient for future reference to define the dimensionless position & and
momentum ¢

E=oax where o = % (2.127)
¢ =p/vhmow (2.128)

In terms of these variables the Hamiltonian (2.125) takes the form
ho 5 2
H = 7(5 + ¢°) (2.129)

and the classical equations of motion become

E=wp; ¢=—wk (2.130)
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In quantum mechanics the momentum corresponds to the operator p = —i#id/dx, or
¢ = —id/dE (2.131)

the position and momentum operator satisfy the familiar commutation relationship
Rpl=ih— [E, ¢l =i (2.132)

and the quantum Hamiltonian is

H=——" 4 —mo’} (2.133)

or in dimensionless form
H 1 2 .
— == (—— +52) (2.134)

The solutions of the time-independent Schrodinger equation A Y = Ev are the
(orthonormal) eigenfunctions and the corresponding eigenvalues

Un(6) = NuH, (ax) e~ V2@ g — (4 1 1/2) ho (2.135)
where H,,(&) are the Hermit polynomials that can be obtained from

Hyy1(8) = 26H,(§) — 2nH,—1(8) (2.136)
Ho(§) =1,  Hi(§) =2§ (2.137)

and N, is the normalization factor

/ o
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o0
chosen so that [ dxwf (x) = 1. In particular the ground state wavefunction and

—0
energy are
Vo) = e (/2% B (1 2)hw (2.139)
VT
The Hermite polynomials also satisfy the identity
d
£Hn (&) = 2nH,—1(§) (2.140)

and the eigenfunctions satisfy

o0 a '\ in+1/2; m=n+1
Vnl¥1m) = / () = a1 /T2 m=n_1 (141)
—00 0 otherwise

Consider now solutions of the time-dependent Schrédinger equation

j 1
__ (_ﬂﬁ + Ema)zx2> W(x,1) (2.142)

Knowing the eigenfunctions and eigenvalues implies that any solution to this
equation can be written in the form (2.6), with the coefficients determined from
the initial condition according to ¢, (f) = (Y, (x)| W (x, fo). The following problem
demonstrates an important property of properly chosen wavepackets of harmonic
oscillator wavefunctions.

Problem 2.15.

1. Show by direct substitution that the solution of (2.142) with the initial

condition
Wix.t=0) = |2 o=1/a?x—x0)" _
(x,t=0) = ﬁe = Yo (x — x9) (2.143)
is given by

W(x,1) = /%e—(1/2>iwte—(1/2)a2[x—fc(t)]2+(i/h)ﬁ(r>[x—(1/2)sc<t)] (2.144)
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where
x(t) = xgp cos (wt) ; p(t) = —mwxg sin (wt) (2.145)

satisfy the classical equation of motions (2.126), that is, X = p/m
and p = —m_w25c. (Note that in terms of the reduced position £(¢) and
momentum ¢ (¢), Eq. (2.144) takes the form

W(x, 1) = /%641/2)iwze—(1/2>[s—§<r>]2+i¢3<z>[s—(1/2>§<r>] (2.146)

where £ () = & cos(wt) and ¢(t) = —&g sin(wt) (with & = axg) satisfy
Eq. (2.130).)

2. Show that the + = 0 wavepacket (2.143) is just the ground state wave-
function of the harmonic oscillator (Eq. (2.135) with n = 0) with the
equilibrium position shifted from 0 to x.

3. Show that at time ¢ the average position and momentum associated with
the wavefunction (2.144) satisfy

(x)(») = f dxW* (x, )XW (x, 1) = X(t) (2.147)

—00

o0

p)() = / dxW*(x, )pW (x, 1) = p(t) (2.148)

—0o0

while the variances

(Ax(1)? = f dxW* (x, )& — ()2 (x, 1) (2.149)

—0o0

(Ap(1))? = / dxW*(x, 1) (p — (p))* W (x, 1) (2.150)

do not depend on time and satisfy Eqs (2.101) and (2.102), respectively,
with «? = (2D?)~!. (Note that consequently, the uncertainty Ax - Ap =
(1/2)h is also time independent.)
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Thus, the solution (2.144) oscillates with frequency w in a way that resembles the
classical motion: First, the expectation values of the position and momentum oscil-
late, as implied by Eqgs (2.145), according to the corresponding classical equations
of motion. Second, the wavepacket as a whole executes such oscillations, as can
be most clearly seen from the probability distribution

—o[—3(] 2.151)

Q

WP = —=
N

that is, the wavepacket oscillates just by shifting the position of its center in a way
that satisfies the classical Newton equations. In particular, unlike in the free particle
case (see Eq. (2.114)), the width of this wavepacket does not change with time.

2.9.2 The raising/lowering operators formalism

Focusing again on Eqs (2.125)—(2.134) it is convenient to define a pair of operators,
linear combinations of the position and momentum, according to

~ mw . l ~
a=

1.
Y it = BT

b [mo P N
a'= |—x — =—(&—i 2.152
V 2% 2hmw ﬁ(s ?) ( )

A~ h A ~ A . mha) At R
X = (a"+a); p=i (a" —a) (2.153)
2mw 2

Using Eq. (2.132) we find that & and a7 satisfy

so that

[a,a"1 =1 (2.154)

and can be used to rewrite the Hamiltonian in the form

. 1 ~o 1
H = ho (&T& + 5) = fiw (N + E) (2.155)

Here N = afa is called the “number operator” for reasons given below. This
operator satisfies the commutation relations

[N,a]l = —a
V,a"] = af (2.156)
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To see the significance of these operators we use Eqgs (2.131), (2.135), (2.136)
and (2.140) to derive the following identities:

~ 1

EYy = ﬁ(ﬁ‘ﬂn—l +vVn+ 1Y,41)

~ 1
oYy = i_z(\/ﬁWn—l —~n+ 1yu41) (2-157)

Using Eqgs (2.152) this implies
aln) =/nln—1); a'lny=vn+1in+1) (2.158)

where we have used |n) to denote v,. The operators a' and & are seen to have
the property that when operating on an eigenfunction of the Harmonic oscillator
Hamiltonian they yield the eigenfunction just above or below it, respectively. a' and
a will therefore be referred to as the harmonic oscillator raising (or creation) and
lowering (or annihilation) operators, respectively.®

Equation (2.152) also leads to

Nn) =n|n) (2.159)

(hence the name “number operator”) and to the representation of the nth eigenstate
in the form
1

_ = at\n
|n) = m(a )" 10) (2.160)

Furthermore it is easy to derive the following useful relations:
(na=~n+1{n+1|

2.161
(nla" = nn—1| (2160

<I’l/|2l|l’l> = \/ﬁan’,n—l

(2.162)
<n/|2ﬂ|n> S/ W

8 The terms “creation” and “annihilation” arise in applications where the system of interest is a
group of harmonic oscillators with a given distribution of frequencies. Photons in the radiation field
and phonons in an elastic field (see Chapters 3 and 4 respectively) correspond to excitations of such
oscillators. &Z) is then said to create a phonon (or a photon) of frequency w and a,, destroys such a
“particle.”
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Problem 2.16. Use Eqgs (2.153), (2.154), and (2.161) to prove that

hi
(nlxlt') = || 5= (V1 F Torsr + Viidyr) (2.163)

2.9.3 The Heisenberg equations of motion

An important advantage of formulating harmonic oscillators problems in terms of
raising and lowering operators is that these operators evolve very simply in time.
Using the Heisenberg equations of motion (2.66), the expression (2.155) and the
commutation relations for & and &' leads to

a(t) = —iwoa(t);  a' () = iwpa’ () (2.164)

where now a(t) and a (¢) are in the Heisenberg representation. To simplify notation
we will often omit the subscript A that denotes this representation (see Eq. (2.66))
when the identity of operators as Heisenberg representation operators is clear from
the text. Eq. (2.164) yields the explicit time dependence for these operators

ar)y = ae ;. At =afe (2.165)

Consequently, the Heisenberg representations of the position and momentum
operators are

7 . . 7 . .
2(0) =\ —— (@@ +ae;  pt) = iy e (@@ — aeTi®l) (2.166)
2mw 2

As an example for the use of this formulation let us calculate the (in-principle
time-dependent) variance, (Ax(t)z), defined by Eq. (2.149) for a Harmonic oscil-
lator in its ground state. Using the expression for position operator in the Heisenberg
representation from Eq. (2.166) and the fact that (0] Ax(¢)%|0) = (0]x(¢)?]0) for an
oscillator centered at the origin, this can be written in the from

i , , i
(0| Ax(£)2 |0) = 0] @' + ae™H? 10y = —— (0] ata + aa’ o)
2 2mw

maw

hi hi
= —0| 264 +1]0) = — (2.167)
2mow 2mw

where we have also used the commutation relation (2.154). A reader that evalu-
ates Eq. (2.149) using the explicit wavefunction (2.139) can appreciate the great
simplification offered by this formulation.
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2.9.4 The shifted harmonic oscillator

Problems involving harmonic oscillators that are shifted in their equilibrium pos-
itions relative to some preset origin are ubiquitous in simple models of quantum
dynamical processes. We consider a few examples in this section.

2.9.4.1 Harmonic oscillator under an additional constant force

Consider a particle of charge ¢ moving in one dimension (along the x-axis, say) in
a harmonic potential. The Hamiltonian describing its motion is

o pr o1
H="— 4 —mo’s* (2.168)
2m 2
Let us switch on an external uniform electrostatic field £ along the same direction.
The Hamiltonian becomes
2
A 1

32— &% (2.169)
2m

It is easy to find the eigenfunctions and eigenvalues of the Hamiltonian (2.169)
given the corresponding eigenfunctions and eigenvalues of (2.168). Making the
transformation

£
P (2.170)
mw
the Hamiltonian (2.169) becomes
a2 202
g P I 22 q°€
Hy=—+ - — 2.171
T 2m + me * 2mw? ( )

In Egs (2.169) and (2.171) p = —ihd/dx = —ihd/dx. The Hamiltonian (2.169)
is thus shown to represent a harmonic oscillator in the absence of external field
with an energy spectrum that is shifted uniformly by the last term on the right of
(2.171), and whose equilibrium position is shifted according to Eq. (2.170). The
new eigenstates are therefore shifted harmonic oscillator wavefunctions:

Ys(x;e) =y ( - q—gz;O) (2.172)
ma

The position shift operator. Consider the operator

U = e H0/0) (2.173)
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Since the operator d/0dx is anti-hermitian (i.e. (3/ ax)t = —8/0x) U is unitary
(UT = U™ for real A. The identity

7 a 1,092 (=" "

A(9/03x) — N4 2 n___ ... — —

e w(x)—(l ’\ax+2)\ 3t o A oo T )w(x)—t/f(x 9]
(2.174)

identifies this unitary operator as the position shift operator. In terms of the operators
a and a' this operator takes the form

@) = @0 (2.175)

=2t (2.176)
o 24 '

Under the unitary transformation defined by U the position and momentum oper-
ators transform in a simple way. For example, since U is unitary, the following
identity must hold for all functions v (x) and ¢ (x)

(Y@ Rl ) = (Uy)IT:0T1U(x)) = ( (x = VTR0 (x — 1))

with

(2.177)
For this identity to be true we must have
U0t () =% -2 (2.178a)
Also, since p and U commute it follows that
UnpUT ) =p (2.178b)
Using Eqs (2.178) and (2.152) it is easy to show also that
Unattoy =a—a
(2.179)

Unatotoy =at —a

Appendix 2A (see entry 6) presents a more direct proof of these equalities using
operator algebra relationships obtained there.

Franck—Condon factors. As an application of the raising and lowering operator
formalism we next calculate the Franck—Condon factor in a model of shifted har-
monic potential surfaces. Franck—Condon factors are absolute square overlap integ-
rals between nuclear wavefunctions associated with different electronic potential
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surfaces. Such overlap integrals appear in calculations of transition rates between
molecular electronic states, for example they determine the relative intensities of
vibrational transitions that dress electronic spectral lineshapes: such intensities
are determined by matrix elements of the dipole moment operator between two
molecular vibronic states fi, v = (¢n(r,R) Xﬁ’“ R)| ()|, (r,R) Xy/)(R))r,R
where ¢,(r,R) and X,S") (R) are electronic and nuclear wavefunctions, respect-
ively, obtained in the Born—Oppenheimer approximation (see Section 2.5), r and
R are electronic and nuclear coordinates, respectively, and ( ), r indicates that
integration is both in the nuclear and the electronic subspaces. In the so called
Condon approximation one assumes that the dependence of the electronic integral
nw (R) = (¢,(xr,R)|1(¥)|¢y (r,R)), on the nuclear coordinate R is small and
removes this term from the integral over R, leading to

Mnv v = Mnn (Xlgn) (R)lxy )(R)>R = |an,n/v’ |2 = |/‘Ln,n/ |2(Fc)ff;r/l)

We will calculate the Franck—Condon factor in a model where the nuclear poten-
tial surfaces are identical one-dimensional harmonic potentials that are horizontally
shifted with respect to each other, that is,

Vi(x) = (1/2)ma’x?%; Va(x) = (1/2)me” (x — 1)2 (2.180)

The FC factors arising from the overlap integral between vth excited state on the
harmonic potential 1, say, and v’th excited state on the harmonic potential 2 is

00 2

(FO)L, = / xSV 0 x P ) (2.181)

o0

For simplicity we will consider the case where v/ = 0, that is, where X‘E?) (x) is
the ground vibrational state on the harmonic surface 2. Now, from Eq. (2.180) it

follows that x 5/2) x)=x 5/1 ) (x — A). The desired FC factor is therefore

00 2

(FO)\5 = (FC), 0 () = / dx () xo(x — A) (2.182)

o0

where both wavefunctions are defined on the same potential surface 1 whose explicit
designation is now omitted. Note that the only relevant information concerning the
electronic states 1 and 2 is the relative shift of their corresponding potential surfaces.
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Now, from Eqs (2.174)—(2.175) we have xo(x — 1) = ei(&ta) Xx0(x), therefore

o0

= / dex () xox — A) = (] @ =D |0) (2.183)

—0

Note |v) and |0) are states defined on the same harmonic potential and are not
shifted with respect to each other. Using Eq. (2.225) to replace exp(A(a’ — @)) by
exp(—(1/2)A%) exp(ra’) exp(—Aa), and using the Taylor expansion to verify that
exp(—Aa)|0) = |0) this leads to

[ = e~ W/23 14" g (2.184)

Again making a Taylor expansion, now of the operator exp(ra’), itis easily seen
that the only term that contributes is (1" /v!)(a")". Using also Eq. (2.160) leads to

_ iv
[=e W22 L (2.185)

ol
Using also Eq. (2.176) finally yields the result

mwh? ) (mwk2/2h) Y

— P2 = _
(FC)yo (W) = |I]” = exp ( 7

(2.186)

v!

Time evolution of a shifted oscillator. We have already considered (see Problem
2.15) the time evolution of a state obtained by shifting the equilibrium position of
the ground state |0) of a harmonic oscillator, that is,

W(x, 1 =0) = /%e—“/”“z@—”z — Yo (x— 1) (2.187)
T

Let us repeat it using the shift operator (2.175). The initial shifted state takes the
form

W(r=0) =M@= |0) =

A) (2.188)

which can be rewritten, using Eq. (2.225), in the form

7y = e W2RRAG g 5 /”24_;" (2.189)

Such a state is sometimes referred to as a coherent state of the Harmonic oscillator.
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Problem 2.17.

1. Show that a coherent state (2.189) is an eigenstate of the lowering operator.
Specifically

alr)=xrla) (2.190)
2. Show that the coherent state (2.189) is normalized

(Ar)=1 (2.191)

The time evolution of this state can be now calculated in a straightforward way
() = e—(i/h)me—(l/z)mzew 10) e—(1/2)|X|2e—(i/h)ﬁteiéfe(i/h)flte—(i/h)ﬁlt|0)
(2.192)

Using e UML) = o= /21|y and o= (/WAL T (/WAL _ g™ thig [eads to
W(t) = e~ /Diwt = (/D[ Fe=lal ) _ =(1/2)ier 5 oty (2.193)

Except for a phase factor, the time evolution is given by an oscillating position
shift, A — Ae ', Using this and (2.176) in (2.187) yields the result

W, =0) = e (1/Diotg=(1/D2 =207, 54y = s (2.194)

N

Problem 2.18. Show that (2.194) is identical to (2.144)—(2.145).

2.9.5 Harmonic oscillator at thermal equilibrium

Harmonic oscillators are often used as approximate models for realistic systems.
A common application is their use as convenient models for the thermal environ-
ments of systems of interest (see Section 6.5). Such models are mathematically
simple, yet able to account for the important physical attributes of a thermal bath:
temperature, coupling distribution over the bath normal modes, and characteristic
timescales. Their prominence in such applications is one reason why we study them
in such detail in this chapter.

The treatment of quantum systems in thermal equilibrium, and of systems inter-
acting with their thermal environments is expanded on in Chapter 10. For now
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it is enough to recall the statistical mechanics result for the average energy of a
harmonic oscillator of frequency w at thermal equilibrium

E = ho ((n)T + %) (2.195)

where (n)r is the average excitation, that is, the average number of quanta /w in
the oscillator, given by

e P (y1aT aln) 1
(b = (aa)y = 22 S e = g ] (2.196)
n
In addition we may write
(@yr = @"yr = (@ayr = (@'ayr =0 (2.197)

because the diagonal elements of the operators involved are zero.

Problem 2.19.

1. Show that (aa®)7 = 1/(1 — e Ph®).
2. Use these results to find the thermal averages (x%)7 and (p?)7, of the
squared position and momentum operators.

2.10 Tunneling

In classical mechanics a particle with total energy £ cannot penetrate a spatial
regions r with potential energy V' (r) > E. Such a region therefore constitutes an
impenetrable barrier for this particle. In quantum mechanics this is not so, and
the possibility of the quantum wavefunction to penetrate into classically forbidden
regions leads to the phenomenon of tunneling, whereupon a particle located at one
side of a classically impenetrable barrier may, with a finite probability, appear on
the other side.

2.10.1 Tunneling through a square barrier

Figure 2.5 depicts a simple example. A particle with energy E collides with a
rectangular potential barrier of height Ug > E. In classical mechanics it will be
simply reflected back. In reality there is a finite probability that it will tunnel to the
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a
-

Ug

I I I

XL, XR

Fic. 2.5 Tunneling through a rectangular potential barrier characterized by a width a and a height
Ug. E is the energy of the tunneling particle relative to the bottom of the potential shown.

other side of the barrier. This probability is expressed in terms of a transmission
coefficient, a property of the barrier/particle system that is defined below.
Our problem is defined by the Hamiltonian

N 0 N
H=—-"—" 47 (2.198)
X

with

0; x <xp; X > XR (region I)

Vi) = {UB; XL <x<xp=xL+a (regions 11, III) (2.199)

Consider the solution of the time-independent Schrédinger equation Ay = Evr
for a given energy E. In regions I and III, where Ug = 0, it is the free particle
equations whose solutions are

Yi(x) = 4™ + Be ™, (x <xp) (2.200)
Ym@) = Ce™ + De™™; (x> xp) (2.201)

In both regions, & corresponds to the given energy

1
k = 7 2mE (2.202)
In the barrier region II the wavefunction is a solution of the equation
n* 9
—— ¥ =(E—-UpY; (xL > x < xr) (2.203)
2m 9x?

Denoting (since we are interested primarily in the case £ < Up)

K = %sz (Us — E) (2.204)
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this becomes d?vy/dx> = k>, which yields
Y(x) = Fe'™ + Ge™* (2.205)

In Egs (2.200), (2.201), and (2.205), the coefficients 4, B, C, D, F, and G are
constants that should be determined from the boundary conditions. Such condi-
tions stem from the requirement that the wavefunction and its derivative should be
continuous everywhere, in particular at the boundaries x = x; and x = xp, that is,

Y1(xL) = Y(xL); [dyn1(x)/dx]—y, = [d¥n(x)/dx]—,, (2.206)
and the same with xg and 7 replacing xp and 1. This leads to the four equations
Ae™L 4 Bem L = FfL 4 GeL
ikAe™t — jkBe T = g el —  GeT<L
CePR 4 De™PR = FlR | Ge™ R

ikCe™R — jkDe™ R — e FeR _ 1 Ge™F*R

(2.207)

Note that we have only four conditions but six coefficients. The other two coeffi-
cients should be determined from the physical nature of the problem, for example,
the boundary conditions at =00.? In the present case we may choose, for example,
D = 0 to describe a process in which an incident particle comes from the left. The
wavefunction then has an incident (exp(ikx)) and reflected (exp(—ikx)) compon-
ents in region I, and a transmitted component (exp(ikx)) in region III. Dividing the
four equations (2.207) by A4, we see that we have just enough equations to determine
the four quantities B/A4, C/A, F /A, and G/A. As discussed below, the first two are
physically significant. We obtain for this case

B B (kZ + K2) (1 _ e—ZKa) eZika ' C B 4l-kKe—ika—Ka
A (k4 i) — (k — iK)te2xa’ A (k+iK)? — (k — ix)? e—2xa
(2.208)
whence
R(E) = ‘B c_ ! (2.209)
|4l 14 (4E (Ug — E)/ U2 sinh? (ka)) ’

® For example, the free particle wavefunction (2.200), a solution of a differential equation of the
second-order, is also characterized by two coefficients, and we may choose B = 0 to describe a particle
going in the positive x direction or 4 = 0 to describe a particle going in the opposite direction. The
other coefficient can be chosen to express normalization as was done in Eq. (2.82).
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and
2
TE) = ‘E _ — (2.210)
A 1 4+ (Ug sinh” (ka) /4E (Ug — E))
so that
R(E) +T(E) =1 (2.211)

Obviously, another solution of the same Schrodinger equation with 4 = 0
corresponds to a similar process, where the incident particle comes onto the barrier
from the right, and would yield results similar to (2.209) and (2.210) for |D/C|?
and |B/C|?, respectively.

The ratios R and 7 are called reflection and transmission coefficients,
respectively. In the deep tunneling limit, xa >> 1, these coefficients take the forms

16E (U —E) s,

T =
U

R=1-T (2.212)

Tunneling, a classically forbidden process, is seen to be a very low probability
process when the barrier is substantial, that is, wide and high, and when the particle
is more classical-like, that is, heavier. For a typical molecular distance, a = 3 A,
and barrier height Ug — E = 0.1eV we find for the exponential factor exp(—2«a) =
exp[—(2a/h)~/2m(Ug — E)] the values ~0.38 foran electron (m = 9.11x 10728 g),
~8.4 x 10717 for a hydrogen atom (m = 1.67 - 107>* g) and ~2.4 x 10753 for
a carbon atom (m = 2 - 10723 g). Tunneling is seen to be potentially important
for electron dynamics and sometimes (for shorter distances and/or lower barriers)
also for proton or hydrogen atom dynamics, but it rarely appears as a factor of
importance in processes involving other atomic species.

Very few potential barrier models, including the rectangular barrier model dis-
cussed above, yield exact results for the tunneling problem. In general one needs to
resort to numerical calculations or approximations. A very useful approximation is
the WKB formula,'® which generalizes the solution exp(=-ikx) of the free particle
Schrédinger equation to the form

—1 .
Y(x) ~ ;eiifd’d‘(x)- k(x) = h 2m[E - U] E>U)

Vk(x) ’ —ihn  \2m[U®) —E]; E <U®)
(2.213)

10 Named after G. Wentzel [Zeits. f. Phys, 38, 518 (1926)], H. A. Kramers [Zeits. f. Phys, 39, 828
(1926)] and L. Brillouin [Comptes Rendus /83, 24 (1926)] who independently applied this method
to problems involving the Schrodinger equation in the early days of quantum mechanics.
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in the presence of a potential U (x), provided that the potential varies smoothly
so that dk(x)/dx <« k% (x). These WKB wavefunctions, constructed for parts I, II,
and III of the one-dimensional space as in Eqs (2.200)—(2.205) can be used again
to construct the full tunneling wavefunction. The resulting transmission coefficient
in the WKB approximation is

Xy
T ~ exp —2fdx Ik ()] (2.214)

—XL,

2.10.2 Some observations

2.10.2.1 Normalization

The problem solved above is an example of a scattering process, treated here within a
one-dimensional model. Unlike bound state systems such as the harmonic oscillator
of Section 2.9, in a scattering process all energies are possible and we seek a
solution at a given energy E, so we do not solve an eigenvalue problem. The
wavefunction does not vanish at infinity, therefore normalization as a requirement
that [ dx|y(x)|*> = 1 is meaningless.

Still, as discussed in Section 2.8.1, normalization is in some sense still a useful
concept even for such processes. As we saw in Section 2.8.1, we may think of an
infinite system as a 2 — oo limit of a finite system of volume 2. Intuition suggests
that a scattering process characterized by a short range potential should not depend
on system size. On the other hand the normalization condition fQ x|y (x)|>? = 1
implies that scattering wavefunctions will vanish everywhere like v (x) ~ Q~1/2
as Q — oo. We have noted (Section 2.8) that physically meaningful results are
associated either with products such as N[y (x)|? or p|¥ (x)|?, where N, the total
number of particles, and p, the density of states, are both proportional to 2. Thus,
for physical observables the volume factor cancels.

2.10.2.2 Steady states

The process discussed above has an intuitively clear history: A particle incident
on the barrier from the left emerges later as a reflected particle on the left or a
transmitted particle on the right. This sounds as a problem that should be (and
indeed can be) described in a time-dependent framework. However, the theoretical
treatment above does not explicitly depend on time. How can a time-independent
wavefunction ¥ = [y (in region I), ¥ (in II), Y1 (in 11I)] describe a process that
appears to have a past and a future as described above?

The answer lies in the realization that the time-independent Schrédinger equation
can describe stationary states of two kinds. The first are states characterized by
zero flux, where not only the wavefunction is constant except for a phase factor
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exp(—iEt/h), but also all currents are zero. (See Section 2.8.4 for a discussion
of quantum currents.) The Eigenfunctions of a system Hamiltonian that describe
bound states are always of this kind. States of the other kind are also constant in
time, but they describe systems with constant finite fluxes. Such states are desig-
nated as steady states. Time-independent scattering theory, including the procedure
described by Eqs (2.198)—(2.210), is in fact a theory for steady-state processes (see
also Section 9.5).

To be specific, Eq. (2.208) may be understood as the answer to the following
question: What is the steady state in a system in which a constant flux of particles,
described by the incident wavefunction yy(x) = Ae®™, impinges on the barrier
from the left in region I? This solution is given not by specifying quantum states
and their energies (which is what is usually required for zero flux problems), but
rather by finding the way in which the incident flux is distributed between different
channels, in the present case the transmission and reflection channels.

Consider now the steady-state solution of our tunneling problem. For the solution
Y1(x) = Ae’™ + Be ™ and Y (x) = Ce™ associated with the case of a particle
incident from the left, we find from Eq. (2.121) the fluxes in regions I and III to be

hk
J= = <|A|2 — |B|2> (2.215)
m
and
hk
Jn = — |CJ? (2.216)
m

At steady state the current has to be the same everywhere (See Problem 2.15),
implying the identity

41> — B> = |C|? (2.217)

which is indeed satisfied by our solution (2.208). In the form |4|*> = |B|? 4 |C|? this
identity implies that the incident flux, whose intensity is proportional to |4|?, is split
during the scattering process into two components: The reflected flux, proportional
to |B|? and the transmitted flux given by |C|>. The designation of the ratios R =
|B|?/|A|> and T = |C|*/|4|? as the corresponding reflection and transmission
coefficients, respectively, thus become clear as ratios between fluxes. The identity
(2.217) is again an expression of particle (or probability) conservation.

2.10.2.3 Tunneling observables

Consider the tunneling problems represented by the three potentials depicted in
Figure 2.6. Figure 2.6a represents a scattering problem similar to that solved above.
For a general potential surface it can be solved numerically or, for a smooth barrier
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(a)

(b)

©

Up

[1> [2>

Fic. 2.6 Three different tunneling processes. (a) Tunneling through a simple barrier in a scattering
event. (b) Tunneling induced escape from a single well (c) Tunneling in a double well structure.

in the WKB approximation, to give the transmission probability 7 (E) that depends
on the mass of the tunneling particle and on the barrier height and width as discussed
above.

Figure 2.6b corresponds to a problem of a different kind. Here a particle is
initially in the well on the left, and can tunnel outside through the potential barrier.
Such a problem is encountered, for example, in autoionization of excited atoms and
inradioactive decay of unstable nuclei. The relevant observable is not a transmission
coefficient but the decay rate, that is, the rate at which the probability to find the
particle in the well decreases.

Figure 2.6¢ describes yet a another problem, where a particle initially localized in
the left well can appear on the right due to tunneling through the separating barrier.
This is a bound state problem and the dynamics can be evaluated by solving for the
eigenstates of the corresponding Hamiltonian (such eigenstates have amplitudes in
both wells), expanding the initial states in these eigenstates and employing Eq. (5).
In particular, in the symmetric double well problem, if the wells are deep (i.e. the
barrier between them is high) and if the particle starts in the lowest energy state
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|1) supported by the left well, it is reasonable to expect that the only relevant state
in the right well is the lowest energy state |2). These local states are conveniently
described by the ground states of the corresponding wells when they decouple from
each other, for example, when the barrier width becomes infinite. In the actual finite
barrier case these two zero order states are coupled to each other and the problem
becomes identical to the two-state problem of Section 2.2. The resulting dynamics
shows the particle oscillating between the two wells (cf. Eq. (2.32)) with a frequency
proportional to the coupling (cf. Eq. (2.33) with £, = Ep). The explicit magnitude
of this coupling is not immediately obvious, however, as shown in Section 2.2, this
oscillation frequency corresponds to the energy splitting between the two exact
eigenstates of the double-barrier problem. Experimentally this tunneling splitting
frequency can be measured either by monitoring the dynamics, or spectroscopically
if the two states can be resolved energetically. An important observation is that this
frequency is essentially a measure of the tunneling coupling between states localized
in the individual wells.

It should be appreciated that the three phenomena described above correspond
to very different physical processes: scattering, decay of an initially localized state
and dynamics in a bound state system that can be often approximated as a two state
system. The relevant observables are different as well: Transmission coefficient,
lifetime, or decay rate and tunnel-splitting. Common to these processes is the fact
that they are all associated with tunneling through a potential barrier and will
therefore show a characteristic dependence on the mass of the tunneling particle
(an attribute usually explored experimentally in processes involving tunneling by
hydrogen and its isotopes) and on the barrier height and width.

An interesting observation can be made without further computation. Assuming
that the same “tunneling coupling” Vi controls the three processes described
above, we already saw (cf. Eq. (2.19) with £, = E}) that the tunnel splitting
between the eigenstates in Fig. 2.6¢ is proportional to V. On the other hand the
decay rate of a particle tunneling out of a well, Fig. 2.6b, is a problem of a discrete
state interacting with a continuum of states (see Section 9.1) where the “golden
rule formula”, (Eq. 9.25), implies that the decay rate should be proportional to
V2 . The same holds for the transmission coefficient of Fig. 2.6a (see Section 9.5).

tun*

From the WKB theory we expect that

X2

Vin (E) ~ exp —% / dx/2m[U(x) — E] (2.218)

x|

so the tunneling splitting in Fig. 2.6¢ is proportional to this factor while the trans-
mission coefficient in Fig. 2.6a and the decay rate in Fig. 2.6b are proportional to
its square.
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Appendix 2A: Some operator identities

Here we derive some operator identities involving the raising and lowering oper-
ators of the harmonic oscillators, which are used in Section 2.9 and in many
applications discussed in this book.

1.
(@, @"H" = [a,a"n@"H" " = n@hHr! (2.219a)
af,a" = [af,ama" ' = —na"! (2.219b)

(note that (2.219b) is the Hermitian conjugate of (2.219a)). The proof can be
carried by induction. Assume that Eq. (2.219a) holds and show that

4, @)1 =+ D@ (2.220)
follows. The left-hand side of (2.220) can be manipulated as follows:

[&, (&T)n-[—l] — &(&T)n-i-l _(a’[‘)n-i-l&

1
a@hH™ = a@hra = 1@"ra+ n@h"hat
= @H" aa' +n@"" = @H*a+ m+na@h”
a"a+1

————
@hHla+ @b

which yields the right-hand side of (2.219a).

2. A corollary follows after observing that (2.219a) (say) can be written as
[a,(@"H)" = [(d /dx)x"],_;+. Since a function f (a") is defined by its Taylor
series, we have, for every analytic function f°

d
a,f@h] = [d—foc)] (2.221a)
X =

=at

and similarly

d
[af,f @) = [—d—fm[ (2.221b)
X x=a

3. The identities (2.221) are special cases of the followmg theorem: If the oper-
ators_ A and B commute with their commutator [A B] that is, [A [A B]] =
[B,[A, B]] = 0, then

[4,F(B)] = [4, BIF'(B) (2.222)
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To prove this identity we note that since F(B) can be expanded in powers
of B it suffices, as in proving (2.221), to show that [Izl,f?”] = [I?I,ZA?]nlAS"*l.
This is shown by repeated use of the commutation relation to get AB" =
BAB"™' 4 [4,B1B" ' = ... = B"A 4 n[4,B1B"".

. We can use induction as above to prove the following identity

@'aat =at@fa+ 1) (2.223)
and consequently also for an analytical function f (x)

ra@toat =a'r@ta+ 1

(2.224)
af@'ay =f@ta+ a

. The following important identity holds for any two operators A and B under

the condition that, as in 3 above, both commute with their commutator:
. A e
ATE = B2l (2.225)

In particular 4 and B can be any linear combination of %, p, &, and a7

To prove (2. 225) consider the operator F(r) = eAtebt defined in terms of
two operators Aand B,and a parameter ¢. Take its derivative with respect to ¢

'“11)

d ~ A . A
o= — JeMePt 4 MR — (A 4 M BN E(1) (2.226)
Next, use the identity [B, et ] = [B,Ql](—t)e_;“ that follows from (2.222).
From this anfl the fact that [f?,;l] commutes with A it follows that Be™ =
e~ 4B — te=4[B, A]. Using the last identity in (2.226) leads to

= (A + B+ 1[4, B)F ) (2.227)

The two operators, A+ Band [21, f?] commute with each other, and can be
viewed as scalars when integrating this equation. We get

ﬁv(t) — ﬁv(o)e(;l‘l’é)l*k%[;‘i,g]tz — e(2+é)le%[;l,é]lz (2228)

It remains to substitute £ = 1 in Eq. (2.228) to obtain (2.225).
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6. The identities (2.179) can now be verified directly. For example

A~ A At AN _Feat_a
Tnalt () = eHH@=0e—1@ -0
b gthG@t-a) g 4ha —at (/204N (/2R A6 -a) +hag, R

_2) e(l/z)I\2€+X(2ﬁ—a)e+iae—xa* G -7 _3> e+X(&T—&)e—X(a*—a) G—1)

—A (2.229)

D>

where, in the steps marked 1 and 3 we used (2.228) and in the step marked 2
we used (2.221a).
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AN OVERVIEW OF QUANTUM ELECTRODYNAMICS
AND MATTER-RADIATION FIELD INTERACTION

For light is much more mobile, is composed
Of finer particles, yet has more power,

And once it clears the roadways of the eyes,
Removing the dark barriers and blocks,

At once the images of things begin

To move in our direction, driving on

Out of the light to help us see. From light
We can not see into darkness, for that air

Is slower moving, thicker, bound to fill

All opening, so no image can move

Across the solid massiveness of dark. . .

Lucretius (c.99—c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

Many dynamical processes of interest are either initiated or probed by light,
and their understanding requires some knowledge of this subject. This chapter
is included in order to make this text self contained by providing an overview
of subjects that are used in various applications later in the text. In particular,
it aims to supplement the elementary view of radiation—matter interaction as a
time-dependent perturbation in the Hamiltonian, by describing some aspects of the
quantum nature of the radiation field. This is done on two levels: The main body
of this chapter is an essentially qualitative overview that ends with a treatment of
spontaneous emission as an example. The Appendix gives some more details on
the mathematical structure of the theory.

3.1 Introduction

In elementary treatments of the interaction of atoms and molecules with light, the
radiation field is taken as a classical phenomenon. Its interaction with a molecule
is often expressed by

Hyr = —it - E(0), (3.1
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where f is the molecular dipole operator while £ (¢) is the time-dependent electric
field associated with the local electromagnetic field at the position of the molecule.
In fact, much can be accomplished with this approach including most applica-
tions discussed in this text. One reason to go beyond this simple description of
radiation-field—matter interaction is that, as will be seen, the formalism of quantum
electrodynamics is sometimes simpler to handle. However, more important is the
fact that the quantum description provides a picture of the radiation—matter interac-
tion which is conceptually different from the classical one, including the possibility
to describe the state of the field in terms of particles (photons).

An important conceptual issue already appears in the classical description.
According to Eq. (3.1) the interaction between a material system and the elec-
tromagnetic field vanishes when the field £ is zero. We know that this is not so, or
else spontaneous emission of radiation from an excited atom, or from a classical
oscillating dipole, would not occur. The fact that it does occur implies not only that
the presence of a field can change the state of the system but also that the presence
of a system can change the state of the radiation field, creating radiation where
it did not exist before. One needs to reconcile Eq. (3.1) with this observation. In
fact, all we need is to realize that one should distinguish between the presence of a
field and the state of this field in much the same way that this is done for material
systems, and that the magnitude of £ is a designation of the state, not existence, of
the field.

As an example consider two particles, 1 and 2 with coordinates x; and x;, and
suppose that the interaction between them has the form axx;. The statement x; = 0
refers not to the existence of particle 2, only to its state in position space. When
particle 1 has a finite energy it can transfer some of it to particle 2 even if initially
the state of the latter is x, = 0. In a similar way, the entity called “electromagnetic
field” always exists and € in Eq. (3.1) plays the role of a coordinate that may be
zero in some state. In the lowest energy (ground) state of this entity the amplitudes
of both the electric field £ and the magnetic field 7 are zero, while excited states
correspond to nonzero values of these amplitudes. Indeed, classical electromagnetic
theory yields the following expression for the energy associated with the electro-
magnetic field in homogeneous space with local dielectric constant & and magnetic
permeability !

1
E= / dr(el €M + WHOP) (3.2)

! While we usually attempt not to use overlapping notations, because magnetic susceptibility does
not appear in this text beyond this chapter we denote it by i, the same symbol used for the dipole
moment. The distinction between these variables should be clear from the text.
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This picture is developed to a high level of sophistication within the classical
theory of the electromagnetic field, where dynamics is described by the Maxwell
equations. Some basics of this theory are described in Appendix 3A. Here we briefly
outline some of the important results of this theory that are needed to understand
the nature of the interaction between a radiation field and a molecular system.

3.2 The quantum radiation field

3.2.1 Classical electrodynamics

When we study processes that involve interaction between two systems, it is almost
always a prerequisite to understand each system separately. For definiteness we
consider one molecule in the radiation field, and assume that the molecular problem
has been solved in the sense that we know the eigenfunctions and eigenvalues of
the molecular Hamiltonian. We require similar knowledge of the radiation field,
that is, we need to solve the Maxwell equations, Eqgs (3.32(a—d)) of Appendix 3A,
for some given boundary conditions. The way this solution is obtained is described
in Appendix 3A. There are many representations (“gauges”) in which this can be
done and in a particular one, the Coulomb gauge, one can represent the solutions of
the Maxwell equations in terms of one transverse (see Appendix) vector function
A(r, 1), called the vector potential. A(r, ¢), itself a solution of a vector differential
equation (Appendix 3A, Eq. (3.46)), yields the physical electric and magnetic fields
via the relationships (in gaussian units; cf. Appendix 3A, Eq. (3.47))

B=VxA; E=—— (3.3)

where c is the speed of light. For linear (paramagnetic or diamagnetic) media the
magnetic induction B is related to the magnetic field H by B = uH. Furthermore,
A is found to be conveniently represented as a superposition of contributions from
independent degrees of freedom (modes) in the form

A0 =) Agg, (r,1) (3.4)

k,ox

where k and o'k are wave vectors and polarization vectors, respectively (see below).
The functional form of terms Ak ¢, (1, #) depends on the boundary conditions. For an
infinite homogeneous system it is convenient to use periodic boundary conditions
within a rectangular box of volume Q = LL,L., and to set £ — oo at the end of
a calculation. In this case we find

2mh k. _ik.
Ao, (r,1) =c /Ekaak(ak,qk(t)e’kr +af 4, (e (3.5)
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where

ko (1) = axg e ay o (D) = daf 5 e (3.6)
with w; = ke/./pe and k = |Kk|. Here the amplitudes ay o are scalar constants
whose magnitudes reflect the degree of excitation of the corresponding modes.
The components k;(j = x,y,z) of the vector k have to be integer multiples of the
corresponding factors 25t /L; in order to satisfy the periodic boundary conditions.

Equation (3.5) implies that different modes are distinguished by their time and
space dependence, characterized by two vectors: A wave vector k that points to
the direction of spatial modulation of Ay 4, (r,?) and a polarization unit-vector o,
that specifies the direction of A itself. The transversality of A expresses the fact
that k and A are perpendicular to each other, that is,

ok k=0 (3.7)

Thus, for every wave vector there are two possible polarization directions
perpendicular to it.

Given A, that is given ax 4, for every (k, o), the electric and magnetic fields
can be found as sums over modes using Eqgs (3.4) and (3.3). For example, this
leads to

8([', t) — ZZ Z Zgwko,k(ak’ake—la)kt-i-lk-r _ ai’akelwkl—lkr) (38)
k ok

Using (3.8), and the similar equation derived from (3.3) for H = B/u, in Eq. (3.2)
leads to

1
E =Y holake|* = 3 > how(af 5, Ak + Ao o) (3.9)

k,ox k,ox

The second form of this result is written in anticipation of the analogous quantum
result.

3.2.2 Quantum electrodynamics

A crucial step motivated by experimental observations and theoretical considera-
tions is the quantization of the radiation field, whereupon the electric and magnetic
fields assume operator character. We first notice that the functions ¢(¢) and p(¢)
defined for each (k, o) by

ho o,
q(t) =/ 2—(0 @) + a(@)); pt) =i/ (@ () —a(?)) (3.10)
w 2
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satisfy (as seen from (3.6)) the time evolution equations

g=p; p=-0'q (3.11)

These equations have the form of harmonic oscillator equations of motion for a
“coordinate” ¢ and “momentum” p. Indeed, Eqs (3.11) can be derived from the
Hamiltonian

h=(1/2)(p* + o*¢?) (3.12)

using the Hamilton equations ¢ = 0h/dp; p = —dh/dq. It turns out that the
correct quantization of the radiation field is achieved by replacing these coordinates
and momenta by the corresponding quantum operators that obey the commutation
relations

[é\lk,dkaﬁk,(rk] =ih (313)

with operators associated with different modes taken to commute with each other.
The classical functions a(f) and a*(f) also become operators, a(f) and a'(¢)
(see Eqs (3.62)) that satisfy equations similar to (2.154)

[ak’ak’&l,(/,a;(,] = Sk,k’gak,a;(/ (314)
lakor, b o 1=t L4, ,1=0 (3.15)
k,ok> Yk ,o'k, ko’ k’,(f{(/ .

This identifies @ and &' as lowering and raising operators of the corresponding
harmonic modes. Equation (3.6) is recognized as the Heisenberg representation of
these operators

—iwyt.

al, (=, e (3.16)

ak,()'k (t) = ak,ake k0

and the energy in the radiation field, Eq. (3.9) becomes the Hamiltonian

R =Y how(@y, g, ke, +1/2) (3.17)

k,ox

which describes a system of independent harmonic modes. A mode (k, ox) of fre-
quency wy can therefore be in any one of an infinite number of discrete states of
energies fiwkhk g, . The degree of excitation, ny 4, , 1s referred to as the occupation
number or number of photons in the corresponding mode. Note that (k, o) is col-
lection of five numbers characterizing the wavevector and polarization associated
with the particular mode. The vector potential A and the fields derived from it by
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Eq. (3.3) become operators whose Schrodinger representations are

N 2mh N k. N —ik-
A=Y M sgwkak(ak,akel“ +ay, ek (3.18)
k o0k

and

A 27 hwy, N k. _ik-
£ = ZZ Z,/ s ak(akﬁke’kr — a;;ake ikery (3.19)
k ok

In many applications we encounter such sums of contributions from different
modes, and because in the limit Q2 — oo the spectrum of modes is continuous,
such sums are converted to integrals where the density of modes enters as a weight
function. An important attribute of the radiation field is therefore the density of
modes per unit volume in k-space, pk, per unit frequency range, p,,, or per unit
energy, pr (E = Aiw). We find (see Appendix 3A)

(k) =2 (3.20a)

(27)?

32 2
pol@) = hop () = g (3.200)
Note that expression (3.20a) is the same result as Eq. (2.95), obtained for the
density of states of a free quantum particle except for the additional factor 2 in
(3.20a) that reflects the existence of two polarization modes for a given k vector.
Eq (3.20b) is obtained from (3.20a) by using w = |k|c where ¢ = ¢/ /e to get
Po(®) = [Ark2dk x prdK]j—y /e (compare to the derivation of Eq (2.97)).

To see the physical significance of these results consider the Hamiltonian that
describes the radiation field, a single two-level molecule located at the origin,
and the interaction between them, using for the latter the fully quantum analog of
Eq. (3.1) in the Schrodinger representation

H = Ay + Hr + Aur (3.21)

Ay = E1|1)(1] + E2[2)(2| (3.22)

R =Y hogdl , e, (3.23)
K,0x

Hyr = —ft - Er = 0) (3.24)

Taking r = 0 in (3.24) implies that the variation of E(r = 0) over the molecule is
neglected. This approximation is valid if the mode wavelength A = 27 /k is much
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larger than the molecular size for all relevant modes. This holds for most cases
encountered in molecular spectroscopy, and for this reason the factors exp(ik - r)
can be approximated by unities.? In the basis of molecular eigenstates the interaction
(3.24) is

2 2
Hyir = —£(0) > > Glalnli | (3.25)
j=1I=1
In this approximation we get using (3.19)
A A . 27Tha)k ~ AT
EO) - Il =)y == Wi 01 @koy — By, (3.26)
k ok

Next, assuming that the molecule has no permanent dipole in either of its two
states, the dipole operator ji can have only non-diagonal matrix elements in the
molecular basis representation. Equation (3.25) then becomes

N 2w, A n
Ay = =i )3 0\ = 2 - 00121+ (a1 - 01012) (11, — i g,)
k ox

(3.27)

The molecule-radiation-field interaction is seen to be a sum, over all the field
modes, of products of two terms, one that changes the molecular state and another
that changes the photon number in different modes.

Problem 3.1. Write, under the same approximation, the interaction equivalent to
(3.27) for the case of a multilevel molecule.

The interaction (3.27) couples between eigenstates of I:IO = fIM + I:IR. Such
states are direct products of eigenstates of Hyr and of Hg and may be written as
7, {n}) where the index j (in our model j = 1, 2) denotes the molecular state and {#}
is the set of photon occupation numbers. From (3.27) we see that I7MR is a sum of
terms that couple between states of this kind that differ both in their molecular-state
character and in the occupation number of one mode.

Supposenow thatin (3.22) £, > E;.Equation (3.27) displays two kinds of terms:

12)(1]ak ¢, and | 1)(2|&Tk, ox describe physical processes that are “acceptable” in the

% Note that this approximation does not hold when the states j and / belong to different molecules
unless the distance between these molecules is much smaller than the radiation wavelength.
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sense that they may conserve energy: They describe a molecule going up while
absorbing a photon or down while emitting one. The other two terms |2)(1|ak ¢,

and |1) (2|&]t7ak are in this sense “unphysical”: They describe the molecule going
up while emitting a photon or down while absorbing one. It should be emphasized
that these designations are much too simplistic. In terms of perturbation theory the
apparently unphysical interaction terms can contribute to physical processes when
considered in higher than first-order. On the other hand, if we expect a process to be
well described within low-order perturbation theory, we may disregard terms in the
interaction that cannot conserve energy on this low-order level. This approximation
is known as the rotating wave approximation (RWA). It leads to an approximate
interaction operator of the form (for £, > E7)

27rhwk
AR ==Yy (121 - 01012) (Uénoy, — (12 - 01 1)(20a] . ]
k ok

(3.28)

3.2.3 Spontaneous emission

As an application to the results obtained above we consider the spontaneous emis-
sion rate from our molecule after it is prepared in the excited state |2). In terms of
zero-order states of the Hamiltonian Ho = HM + HR the initial state is |2, {0})
and it is coupled by the interaction (3.28) to a continuum of 1-photon states
[1,{0...0,1,0,...,0}). The decay rate is given by the golden rule formula

2
kr = —|V| 0 (3.29)

where V is the coupling matrix elements calculated for final states with photon fre-
quency wy1 = En1 /i = (E; — E1) /A and where p = p(£71) is the density (number
per unit energy) of such 1-photon states. More details on the origin of the golden
rule formula in the present context are given in Chapter 9 and in Section 9.2.3.
From Eq. (3.28) we find?

2nhiwi)

V* =
eQ

o I? (3.30)

3 Care need to be taken in order to accommodate the vector nature of x and of the incident field. For
spherically symmetric molecules, each of the two directions perpendicular to the wavevector k of a
given mode contributes equally: We can use for [t any component, say (i, of the transition dipole,
and the density of states used below takes an extra factor of 2 for the two possible directions of the
polarization.
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Now consider the density p of 1-photon states. Because each of these states is
characterized by one mode being in the first excited state while all others are in
the ground state, the number of states is the same as the number of modes and the
required density of states per unit energy is given by pg of Eq. (3.20). Using this,
together with (3.30) in (3.29) leads to

26121312 /a3
= () wal? (3.31)
c
As an order of magnitude estimate, take typical values for electronic transitions,
for example, wy; = 20000 cm™!' &~ 4 x 101 s7! |uy,| = 107!7 esucm and

e=p=1tofindkg ~4 x 108571

Several observations should be made regarding this result. First, while regular
chemical solvents are characterized by u >~ 1, different solvents can differ consid-
erably in their dielectric constants €, and Eq. (3.31) predicts the way in which the
radiative lifetime changes with ¢. Note that a dependence on ¢ may appear also in
w12 because different molecular states may respond differently to solvation, so a
test of this prediction should be made by monitoring both kr and w; as functions
of the dielectric constant in different embedding solvents.

Second, the dependence on w® is a very significant property of the radiative
decay rates. Assuming similar transition dipoles for allowed transitions, Eq. (3.31)
predicts that lifetimes of electronically excited states (wy1 of order 10*cm™!) are
shorter by a factor of ~103 than those of vibrational excitations (w1 of order
103cm™"), while the latter are ~10° shorter than those of rotational excitations
(wy1 of order lozcmfl), as indeed observed.

Finally, we have obtained the result (3.31) by using expression (3.1) for the
molecule—radiation field interaction. This form, written as an extension of an elec-
trostatic energy term to the case of time varying field, is an approximation, that is
discussed further in the appendix.

Appendix 3A: The radiation field and its interaction with matter

We start with the Maxwell equations, themselves a concise summary of many
experimental observations. In gaussian units these are

V-D =4np (3.32a)

V-B=0 (3.32b)
198

VxE+- =0 (3.32¢)
c ot
19D 4

VxH--2=-""g (3.32d)
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where p and J are the charge density and current density associated with free
charges in the system and where the electric fields £ and displacement D, and the
magnetic field H and induction B are related through the polarization P (electric
dipole density) and the magnetization M (magnetic dipole density) in the medium
according to

£ = D—4nP (3.33a)
H = B—47M (3.33b)

Equation (3.32a) is a differential form of Coulomb’s law. Equation (3.32b) is an
equivalent equation for the magnetic case, except that, since magnetic monopoles
do not exist, the “magnetic charge” density is zero. Equation (3.32¢) expresses
Faraday’s law (varying magnetic flux induces a circular electric field) in a differ-
ential form and, finally, Eq. (3.32d) is Maxwell’s generalization of Ampere’s law
(induction of a magnetic field by a current). We usually assume a linear relationship
between the dipole densities and the corresponding local fields. For example, for
simple homogeneous systems we take

P = x.E; M=, ’H (3.34)

so that
D = &€, B=uH (3.35)

where
e=1+4my,.; n=1+4mx, (3.36)

are constants. The energy in the field may be shown to be given by

1
E= / dr(el €M + pIHOP) (3.37)

It is important to realize that Eqs (3.32) are macroscopic equations, where bound
atomic and molecular charges have been coarse grained to yield the macroscopic
electric and magnetic dipole densities P and M.* Such coarse-graining operation
(see Section 1.4.4) involves averaging over a length scale / that is assumed to be
(1) small relative to distances encountered in the applications of the resulting mac-
roscopic equations and (2) large relative to atomic dimensions over which these

4 See I. D. Jackson, Classical Electrodynamics, 2nd Edition (Wiley, New York, 1975, section 6.7),
for details of this averaging procedure.
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bound charges are moving. This implies that / should be larger than, say, 10 A,
which makes questionable the use of such equations for applications involving
individual molecules. The same question arises with respect to the use of mac-
roscopic electrostatic models to describe molecular phenomena and constitutes a
continuing enigma in many models constructed to treat chemical energetics and
dynamics in dielectric media. We will confront this issue again in later chapters.
In what follows we use some results from the calculus of vector fields that are
summarized in Section 1.1.3. The solution of Eqs (3.32) is facilitated by introducing
the so called scalar potential ®(r, ) and vector potential A(r, ), in terms of which

B=VxA (3.38)

E=-VD— 1A (3.39)
c ot
The forms (3.38) and (3.39) automatically satisfy Eqs (3.32b) and (3.32c¢). It is
important to remember that the physical fields are £ and B, while A and ® are
mathematical constructs defined for convenience. In fact, infinitely many choices
of these fields give the same B and £: Any scalar function of space and time S(r, ¢)
can be used to transform between these choices as follows:

A(r,t) — A(r,t) + VS(r, 1) (3.40a)
b(r.1) - d(r, 1) — LD
c 0t

The transformation (3.40) is called gauge transformation, and a solution obtained
with a particular choice of § is referred to as the solution in the corresponding

gauge.

(3.40b)

Problem 3.2. Show, using the identity (1.32), that Eqs (3.38) and (3.39) are
indeed invariant to this transformation.

For the discussion of free radiation fields and their quantization a particular
choice of gauge, called the Coulomb (or transverse) gauge, is useful. It is defined
by the requirement (which can always be satisfied with a proper choice of §) that

V-A=0 (3.41)

Note that Eq. (3.38) than implies (using Eqs (1.31)—(1.34)) that in this gauge B =
B~ isatransversal field, while the two contributions to € in (3.39) are its transversal
and longitudinal components

19A

Et=—-—;, €El=—vo (3.42)
c ot
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Limiting ourselves to homogeneous systems, for which Eqgs (3.35) are valid with
constant € and p, Eqs (3.32a) and (3.39) then imply

4mp

V2 = — (3.43)

&

This is the Poisson equation, known from electrostatics as the differential form of
Coulomb’s law. Also, Eqgs (3.32d), (3.38), (3.41), and (1.29) lead to

ep d%A 4 e _od

VA—- S =2y 4 22v— 3.44

c? o2 c + c ot (349
Equation (3.43) identifies the scalar potential in this gauge as the (instantaneous)
Coulomb potential associated with free charges in the system. Its solution is the
familiar Coulomb-law expression

/
O(r,1) = / P 2D (3.45)
Ir —r'|
In (3.44), the terms on the right-hand side can be viewed as the sources of the
radiation field. Two sources are seen: A current (moving charge) and a time variation
in the magnitude of the charge. If A = 0 (ground state of the radiation field) and
such sources are absent, the field will remain in this ground state. Obviously there
exist other states of the free radiation field, solutions of Eq. (3.44) in the absence
of sources,

VA = ———; c=c/Jem (3.46)

Before considering the solutions of this equation we note that given these solutions,
the physical fields are obtained from (3.38) and (3.39). In particular, in the absence
of free charges (o = 0, hence ® = constant)

B=VxA; E=—— (3.47)
c ot

and the energy in the field, Eq. (3.37), is given by

E—L d i(%z V x A)? 3.48
8w "\2 8t)+(x) (348)

Consider now the solutions of (3.46), which is a wave equation. In order to get
a feeling for its properties lets consider a one-dimensional version,

%4 1 0%4

W2 (3.49)
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The obvious existence of solutions of the form A(x,#) = A(x £ ct) shows that ¢
plays the role of a propagation speed. Explicit solutions may be found by separ-
ating variables. Assuming solutions of the form 4(x, ) = ab(x)q(t), @ being any
constant, we get after inserting into (3.49)

L d%e) _ 1 1 0
b(x) dx?  ¢2q(t) dr?

(3.50)

This implies that each side of this equation is a constant. A negative constant, to
be denoted —k? with real k, will yield wave-like solutions. 4 is in general a linear
combination of such solutions, that is,

A, =a Y qObx) (3.51)
/
&2 )
dZ’ v =0  w =ik (3.52)
42b
- kb =0 (3.53)

Equation (3.51) expresses the general solution for A(x,#) as a sum over inde-
pendent “normal modes.” g;(¢), obtained from Eq. (3.52), determines the time
evolution of a mode, while b;(x), the solution to Eq. (3.53), determines its spa-
tial structure in much the same way as the time-independent Schrédinger equation
determine the intrinsic eigenfunctions of a given system. In fact, Eq. (3.53) has the
same structure as the time-independent Schrédinger equation for a free particle,
Eq. (2.80). It admits similar solutions that depend on the imposed boundary con-
ditions. If we use periodic boundary conditions with period L we find, in analogy
to (2.82),

b _ L g, k—z—nz- [ =0,4+1,42 3.54
1(x)—ﬁ€, l—L,(—, ,E2..0) (3.54)

Furthermore, as in the free particle case, Eq. (3.54) implies that the density of modes
(i.e. the number, per unit interval along the k-axis, of possible values of k) is L/27.
Obviously, different solution are orthogonal to each other, f I b}k )by (x)dx = 8,
and the choice of normalization can be arbitrary because the amplitude of the mode
is determined by the solution of Eq. (3.52).
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In the general case, where A is a vector and (3.49) is a three-dimensional vector
equation, a generalization of (3.51)°

4
A(r,1) = 1/?’% > giOby(r) (3.55)
l

yields again Eq. (3.52) and a generalization of Eq. (3.53)

dz‘]l 2 -
W +wiq =0 w; = cky (3.56)
2
2 @)
C

If b;(r) was a scalar function b;(r), (3.57) would be equivalent to the Schrodinger
equation for a three-dimensional free particle, yielding, for periodic boundary
conditions, solutions of the form

bi(r) = Q712N (@=L, (3.58)

characterized by a wavevector k that satisfies |k;| = w;c with components of the
form (3.54). This remains true also when b is a vector, however, in addition to the
three numbers comprising the wavevector k;, the mode is also characterized by
the direction of b;. This extra information, called polarization, can be conveyed
by a unit vector, o, in the direction of by, that is, b; = Q~1/2g;e™T This form,
together with the Coulomb gauge property (3.41), implies that a; has to satisfy the
transversality condition a; - k; = 0. (This results from Eq. (1.22) and the identity
Velkr — ikeik'r.)

Additional important insight is obtained by using Eqs (3.55), (3.47),and (3.37) to
find the energy contained in the field. Because different b;(r) functions constitute
an orthogonal set, different modes contribute independently. This calculation is
rather technical even if conceptually straightforward. The result is

E=YE;  E=1/2 +ovq) (3.59)
1

We recall that ¢g(¢) is just the time-dependent amplitude of the vector potential,
and by (3.47) q(¢) is related to the electric field. On the other hand, Eq. (3.56) has

> In (3.55) we chose a particular value for the constant « in order to simplify the form of subsequent
expressions. This choice is in effect a scaling of ¢ that yields the simple form of Eq. (3.59).
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the form of the Newton equation for a harmonic oscillator of frequency w; with
coordinate g; and momentum p; = g; derived from the Hamiltonian

h = (1/2)@] + w7q)) (3.60)

in which ¢; plays the role of coordinate while p; is the conjugated momentum. Note
that these coordinate and momentum are related to the standard quantities by mass
renormalization so that their dimensionalities are m'/2] and m'/?1/t, respectively.

If we take this seriously, the radiation field appears to have the character of a
harmonic medium described by a set of normal modes {g;} and by the (still classical)
Hamiltonian

H= 2(1/2)(,9, + wiq?) (3.61)

When such a mode is excited a time-dependent oscillation is set up in the system as
determined by Eq. (3.56). The oscillating object is an electromagnetic field whose
spatial variation is determined by Eq. (3.57). This spatial dependence is character-
ized by a wavevector k; and a polarization oy that satisfy the conditions w; = ¢|k|
and o7 - k; = 0. The mode index / represents the five numbers that determine k;
and o;7. The energy associated with the mode is determined by Eq. (3.59).

Should we take it seriously? Experiments such as studies of blackbody radiation
not only answer in the affirmative, but tell us that we should go one step further
and assign a quantum character to the field, where each normal mode is taken to
represent a quantum oscillator characterized by operator analog of Eq. (3.60) in
which g and p become operators, g and p, that satisfy [g, p] = i#. This follows from
the observation that the thermal properties of blackbody radiation can be understood
only if we assume that a mode of frequency w can be only in states of energies n#iw,
with interger n, above the ground state. We refer to a mode in such state as being
occupied by n photons. The state of the overall field is then characterized by the
set {n;} of occupation numbers of all modes, where the ground state corresponds
to n; = 0 for all /. Note that the vector potential A then becomes an operator (since
q:(t) in (3.55) are now operators; the time dependence should be interpreted as
the corresponding Heisenberg representation), and the derived fields £ and B in
Eq. (3.47) are operators as well.

It is convenient to use raising and lowering operators in this context. Define

A

a] =

(@@ +ip); & = (@11 — ipr) (3.62)

2hw; 2hw;
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that obey the commutation relation [a, Zz;] = 1, with the inverse transformation

. N N Jhop ¢
q) = 2—0)1(01 +ap); D=1 T(al —a) (3.63)

The Hamiltonian (3.61) than becomes

A=Y ho@la; + (1/2)) (3.64)
)

the corresponding time-dependent (Heisenberg) operators are
a(t) = ae A () =a e (3.65)

and the vector potential operator takes the form (cf. Eq. (3.55))

. 4
A, =c/ 7” le &by (1) (1)

_ CZGI l b[(l’)(AT it +&lefiwlt)

When periodic boundary conditions are used, the spatial functions b;(r) are given
by Eq. (3.58). Because we look for real solutions of the Maxwell equation A takes
the form analogous to the corresponding real classical solution

A(r, t) = CZ
l

(The assignment of —ik; to +iwy is arbitrary because the sum over / implies sum-
mation over all positive and negative k components). Since / encompasses the five
numbers (k, o) we can write (3.67) in the alternative form

(3.66)

f o (@e~iertr 4 gf gert=ikir (3.67)

2 h . . , ‘
A(r t) — ¢ Z Z T ak(&k,ake—lwkt+lk~r + &Lo’kelwkt—lk-r) (368)

with wy = k¢ and £k = |k|. Consequently the electric field operator is, from
Eq. (3.47)

/2 h ‘ .
g(r t) - Z Z T wk ak(ak la)kl‘-Hk r &lt,okela)kt—lkr) (369)

k ok
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As noted above this is the Heisenberg representation. The corresponding
Schrodinger form is

. 2w he . kr —ik-
Em =i) )\ ookl iy, e ) (3.70)

k ok

Finally consider the interaction between a molecule (or any system of particles)
and the radiation field. A simple expression for this interaction is provided by
Eq. (3.1) or, when applied to a single molecule, by the simpler version (3.24). From
(3.24) and (3.70) we finally get Eq. (3.26) for the desired interaction operator.

We will be using this form of the molecule—field interaction repeatedly in this
text, however, it should be kept in mind that it is an approximation on several counts.
Already Eq. (3.1), an electrostatic energy expression used with a time varying field,
is an approximation. Even in this electrostatic limit, Eq. (3.1) is just the first term in
an infinite multipole expansion in which the higher-order terms depend on higher
spatial derivatives of the electric field.

N 1 o&;
Hyr =q® —p-EO) =23} 0y —(0) + (3.71)
i J

were Qj; is the molecular quadrupole tensor and (0) denotes the molecular center.
Other contributions to the interaction are associated with the motion of charged
particles in a magnetic field. Another approximation is associated with the fact that
the radiation field equations and the field operators were constructed from the mac-
roscopic forms of the Maxwell equations, where the phenomenological constants
& and p already contain elements of field—matter interaction. This corresponds to
a picture in which both the atomic system of interest and the radiation field exist
in an ambient medium characterized by these dielectric and magnetic response
constants. A fully microscopic theory would start with the microscopic Maxwell
equations and from a fundamental form for matter—radiation field interaction, and
derive these results in a systematic way.

Such a general theory of interaction of radiation with matter has been formulated.
It yields the following expression for the Hamiltonian of a system that comprises
matter (say a molecule) and radiation

Aoy o (g;/0)A®)

> + Om(r) + Hr (3.72)
m;

J

Here UM({rj}) is the molecular potential operator that depend on all electronic
and nuclear coordinates, and p;, ¥;, and g, are respectively the momentum and
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coordinate operators and the charge associated with molecular particle j. Nothing
reminiscent of the form (3.1) appears in Eq. (3.72), still it may be shown that the
interaction — ) i/ m;c)p; -A(rj) implied by Eq. (3.72) yields the same interaction
matrix elements needed in the calculation of optical transitions, provided that the
conditions that lead to Eq. (3.26) are satisfied, that is, A = 2w /k > molecular
dimension.®

More generally, it can be shown that if magnetic interactions are disregarded
then, in a semiclassical approximation in which the electromagnetic field is treated
classically while the material degrees of freedom retain their quantum nature,
Eq. (3.72) yields the following Hamiltonian for the material system

H=Hy- / drP(r) - EX(r,1) (3.73)

where E1(r, 1) is the transverse part of the electric field and ls(r) is the dipole
density operator. In the limit of molecular point dipoles (i.e. when (3.24) applies
for any molecule taken at the origin), this operator is given by

P(r) = jtyd(rm —1) (3.74)

where the sum is over all molecules. For a single molecule Eqs (3.73) and (3.74)
yield Eq. (3.24). In the many molecules case the molecular part, Hyi, must include
also the dipole—dipole interaction operators between the molecules.

The Hamiltonian (3.73) is a time-dependent operator for the molecular sys-
tem, where the electromagnetic field appears through the time-dependent electric
field. A useful starting point for analyzing nonlinear optical processes in molecu-
lar systems is obtained by supplementing (3.73) by an equation of motion for this
time-dependent electric field. Such an equation can be derived from the Maxwell
equations (3.32) and (3.33). Limiting ourselves to systems without free charges, so
that p and J are zero, and to non-magnetic materials so that M = 0 and H = B,
Eq. (3.32d) with (3.33a) and (3.32c) yield

1 92E(r,n) 4w 3*(P(r,1))
2 a2 2 ot?

Note that if £ is transverse, thatis, V- € = 0,then V x V x E(r, 1) = —yzg(r, 1).
Equations (3.73) and (3.75) together with the definition (P(r, #)) = Tr[pP] where p

V x V x E,1) + (3.75)

® Aninteresting difference is that while in Eq. (3.27) we find the photon frequency wj, as a multiply-
ing factor, in the calculation based on the interaction — ) j (qj/mjc)p; - A(rj) we get instead a factor
of wgy—the transition frequency between the molecular states involved. For physical processes that
conserve energy the two are equal.
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is the density operator (see Chapter 10) constitute the desired closed set of equation
for the molecular system and for the classical radiation field, which should now be
solved self consistently.
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W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
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INTRODUCTION TO SOLIDS AND THEIR
INTERFACES

Tight-knit, must have more barbs and hooks to hold them,
Must be more interwoven, like thorny branches

In a closed hedgerows; in this class of things

We find, say, adamant, flint, iron, bronze

That shrieks in protest if you try to force

The stout oak door against the holding bars...

Lucretius (c.99—c.55 Bc) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The study of dynamics of molecular processes in condensed phases necessarily
involves properties of the condensed environment that surrounds the system under
consideration. This chapter provides some essential background on the properties
of solids while the next chapter does the same for liquids. No attempt is made to
provide a comprehensive discussion of these subjects. Rather, this chapter only
aims to provide enough background as needed in later chapters in order to take
into consideration two essential attributes of the solid environment: Its interaction
with the molecular system of interest and the relevant timescales associated with
this interaction. This would entail the need to have some familiarity with the rel-
evant degrees of freedom, the nature of their interaction with a guest molecule,
the corresponding densities of states or modes, and the associated characteristic
timescales. Focusing on the solid crystal environment we thus need to have some
understanding of its electronic and nuclear dynamics.

4.1 Lattice periodicity

The geometry of a crystal is defined with respect to a given lattice by picturing
the crystal as made of periodically repeating unit cells. The atomic structure within
the cell is a property of the particular structure (e.g. each cell can contain one or
more molecules, or several atoms arranged within the cell volume in some given
way), however, the cells themselves are assigned to lattice points that determine the
periodicity. This periodicity is characterized by three lattice vectors, a;,i = 1,2, 3,
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that determine the primitive lattice cell—a parallelepiped defined by these three
vectors. The lattice itselfis then the collection of all points (or all vectors) defined by

R =nia; + myap + n3aj “4.1)

where (here and below) n1, ny, n3 are all integers. It will prove useful to define also
the reciprocal lattice: The collection of all vectors G that satisfy

R-G =2mm, m integer “4.2)
It can be shown that these vectors G are of the form
G =n1b; + nyby + n3bs 4.3)

with the primitive vectors of the reciprocal lattice given by

ay X a3 a3z X aj a; X az
. . =27

b =27 b, =27

a; (ap x a3)’ a;-ap x az’ a;-ap x a3

For example, in one-dimension the direct lattice is na and the reciprocal lattice is
Q2m/a)yn (n = 0, =1, £2,...). The First Brillouin zone is a cell in the reciprocal
lattice that encloses points closer to the origin (ny, 73,73 = 0) than to any other
lattice point.! Obviously, for a one-dimensional lattice the first Brilloin zone is

—(/a)...(7/a).

4.2 Lattice vibrations

Periodicity is an important attribute of crystals with significant implications for
their properties. Another important property of these systems is the fact that the
amplitudes of atomic motions about their equilibrium positions are small enough to
allow a harmonic approximation of the interatomic potential. The resulting theory of
atomic motion in harmonic crystals constitutes the simplest example for many-body
dynamics, which is discussed in this section.

4.2.1 Normal modes of harmonic systems

As in molecules, the starting point of a study of atomic motions in solid is the
potential surface on which the atoms move. This potential is obtained in principle
from the Born—Oppenheimer approximation (see Section 2.5). Once given, the

' Such a cell is also called a Wigner—Seitz cell.
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many-body atomic motion in a system of N atoms is described by a Hamiltonian
of the form

N 2
ZZL VxX1,X2, ...y Xjy .oy XN) 4.5)

A harmonic approximation is obtained by expanding the potential about the
minimum energy configuration and neglecting terms above second order. This
leads to

1
Vet =veg) + 5 Z ki j (xi — xi0) (5 — Xj0) (4.6)
iy
where we use the notation x¥ = (x1,x3, . ..,xy) and where kij = (92 V/8x,~8xj)x6v.

The resulting Hamiltonian corresponds to a set of particles of mass m;, attached to
each other by harmonic springs characterized by a force constants &; ;. The classical
equations of motion are

. 1
¥ = T Xl: kj 1 (xr — x1,0) (4.7)

In (4.6) and (4.7) x¢ are the equilibrium positions. For simplicity we will redefine
Xj = X;j — Xj0. SO

1
Xi=——) kix (4.8)
1= T
In terms of the renormalized positions and force constants
T . (4.9)
Y jiXj s il ] :
we getj; = — >, Kj v or
y = —Ky (4.10)

K is a real symmetric matrix, hence its eigenvalues are real. Stability requires that
these eigenvalues are positive; otherwise small deviations from equilibrium will
spontaneously grow in time. We will denote these eigenvalues by a) , that is,

2
] 0

TKT ! = | u=1y 4.11)
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where T is the unitary transformation that diagonalizes K. The components of u
are the amplitudes of the normal modes of the system defined by Eqgs. (4.5) and
(4.6). Their equations of motion are those of independent harmonic oscillators

The individual atomic motions are now obtained from the inverse transformation

vi=y (T s =)~y (4.13)
k

This linear problem is thus exactly soluble. On the practical level, however, one can-
not carry out the diagonalization (4.11) for macroscopic systems without additional
considerations, for example, by invoking the lattice periodicity as shown below.
The important physical message at this point is that atomic motions in solids can
be described, in the harmonic approximation, as motion of independent harmonic
oscillators. It is important to note that even though we used a classical mechan-
ics language above, what was actually done is to replace the interatomic potential
by its expansion to quadratic order. Therefore, an identical independent harmonic
oscillator picture holds also in the quantum regime.

4.2.2 Simple harmonic crystal in one dimension

As asimple example we consider a monatomic one-dimensional solid with identical
atoms, one per unit cell, characterized by the Hamiltonian

N N
m ., 1
H = n§—1: Exﬁ + n§_1 Ex(x,, —xn1)? (4.14)

where x, is the deviation of the nth atom from its equilibrium position. It is

convenient to use periodic boundary conditions by imposing

Xp+N = Xp (4.15)

and to take the limit N — oo at the end of the calculation. This makes our system
aring of N elastically bound atoms. The equations of motion for x,,

mxy = kK (Xpr1 + Xn—1 — 2x); n=1,...,N (4.16)
are solved by using the ansatz

Xn(t) = up(t) e (4.17)
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in (4.16). This leads to
. i} —i¢ _ ) (]
miiy = Kug(e'? +e 'Y —2) = — | 4k sin 5 Ugp (4.18)

which is an equation of motion for a harmonic oscillator, ity = —w2(¢)u¢,
characterized by the frequency

w(P) = 2wy sin % (4.19)
where
K
wy= .| — (4.20)
m

It is convenient to define a wave-vector Kk in the direction of the particle’s motion,
whose magnitude is ¢ /a, where a is the lattice spacing

ein¢ — ei(qb/a)na — eikna; k= ? (4‘21)
a

na is the characteristic position of an atom in the chain. Thus, for each value of
k we got an independent equation of motion

e = —w> (k)uy (4.22)
whose solution can be written in terms of initial conditions for # and

1w (1) = 1. (0) cos(wyt) + (0)

sin(wyt) (4.23)

These are the normal modes of this harmonic system. A motion of this type is a
collective motion of all atoms according to (from (4.17))

X (1) = ug (1) € (4.24)

Each such oscillation constitutes a wave of wavelength A = 2x/|k| and a
corresponding frequency?

wi = 2wop|sin[ka/2]| (4.25)

These modes of motion with wavelengths and frequencies determined by & are
called phonons. A relationship such as (4.25) between k and w is called a dispersion

2 From Eq. (4.23) we see that it is enough to consider positive frequencies.
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relation. The allowed values of k are determined from the periodicity of the model
and the imposed boundary conditions. First note that ¢’ remains the same if & is
shifted accordingto k — k+(2m/a)j, wherej is any integer. Therefore, independent
solutions are obtained only for values of £ within an interval ko ... ko + 27 /a. If
we choose kg = —m/a, then
b4 g
——<k<-— (4.26)
a a
namely, all physically different values of k are represented within the first Brillouin
zone of the reciprocal lattice. Second, Eq. (4.15) implies that eV = 1. To satisfy
this £ must be of the form (277 /Na)l, with integer /. Together with (4.26) this implies

k=—I [=0,%1,+2 :i:N—l (+ —)N— (427)
; e or .
Na’ ’ ’ ’ ’ 2 7 2

When the lattice becomes infinitely long, N — o0, k& becomes a continuous
parameter. In the long wavelength (small k) limit these phonons should become the
familiar sound waves. In this limit, ¥ — 0, we can expand Eq. (4.25)

k
wy = 2w sin % — woalk| (4.28)

This is indeed a dispersion relation for a sound wave of speed
c = woa (4.29)

Typically wg = 10'3 s7! and ¢ = 1078 cm, therefore ¢ ~ 10°cm/s~!. This is
indeed the order of magnitude of sound velocity in solids. When & increases w (k)
becomes nonlinear in k, that is, the “velocity”? dw/dk depends on k.

What was achieved above is an implementation of the general solution of
Section 4.2.1 for a system of harmonically connected atoms whose equilibrium
positions lie on a one-dimensional periodic lattice. Indeed, Eq. (4.24) connects (up
to a normalization constant) between the amplitude of each atomic motion and that
of'each normal mode. Consequently, the transformation (4.11) has the explicit form

1 1 ,
T = =™ (T = e (4.30)

VN

The normalization constant (+v/N)~! is needed to satisfy the unitarity requirement
(TT)un = 8,m (see also Problem 4.1 below).

3 3w/ 0k is known as the group velocity of the wave motion.
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Problem 4.1. Consider the transformation (cf. Eq. (4.24)), written for the dis-
placement x, of the atom at site # when many phonon modes are excited in a
one-dimensional lattice of N sites

S = Z ug e (4.31)
k

Prove the identity ), ekna — N 8k.,0 (the sum is over all lattice points) and use it
to show that (4.31) implies uy = N~'>" xpe~ @ (Note that k takes only the
values (4.27)). It is convenient to redefine the normal-mode coordinates accord-
ing to VNuy — uy so that the transformation takes the more symmetric form
Xp = (v/N)~! D ure™ and uy, = (V/N)~! > xpe~*% a5 implied by (4.30).

4.2.3 Density of modes

In problems addressed in this text, solids appear not as the system of principal
interest but as an environment, a host, of our system. We therefore focus on those
properties of solids that are associated with their effect on a molecular guest. One
such property is the density of modes, a function g(w) defined such that the number
of modes in any frequency interval w; < o < w; is [ 51 >dw g(w). As a formal
definition we may write

g) =) 8- w) (4.32)
J

In fact, this function dominates also thermal and optical properties of the solids
themselves because experimental probes do not address individual normal modes
but rather collective mode motions that manifest themselves through the mode
density. For example, the vibrational energy of a harmonic solid is given by

E =Y hawn+ %) = /dwg(a))hw <(n(a))) + %) (4.33)
J

where n; is the occupation of the mode ;. Note that the density of modes g(w)
is an analog of the density of states, Eq. (1.181), and its use in (4.83) results
from a coarse-graining process equivalent to (1.182). The second equality in (4.33)
becomes exact in the infinite system limit where the spectrum of normal mode
frequencies is continuous.

At thermal equilibrium

(n(w)) = o | (4.34)
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The heat capacity is the derivative of £ with respect to 7. We get

oE fiw \? ePhe
Cv == —kn | d 435
v (M)VW B/ g (@) (kBT) (ePho _ 1)2 (4.35)

The density of modes is seen to be the only solid property needed for a complete
evaluation of these thermodynamic quantities. In what follows we consider this
function within the one-dimensional model of Section 4.2.2.

Consider the one-dimensional solid analyzed in Section 4.2.2. From the expres-
sion for the allowed value of k = (2 /Na)l,l = 0,+£1, ... we find that the number
of possible £ values in the interval &, . .., k + Ak is (Na/2m) Ak, so the density of
modes per unit interval in £ is

N N
gh) = 2 thatis g(Jk|) = — (4.36)
2 T

The difference between these two forms stems from the fact that in one dimension
there are two values of k for a given |k|. The density of modes in frequency space
is obtained from the requirement that the number of modes in a given interval of
|k| is the same as in the corresponding interval of w,

g(kDd|k| = g(w)dw (4.37)
so that

()_Na do \ ™! 438

=3 (i) 0

and using the dispersion relation, Eq (4.28)
N N

) = o cosTRIaD) — mendT —(@)200?

In the long wavelength limit w = ck; ¢ = woa, g(w) = N/mwy. For larger &,
that is, larger w, g(w) depends on w and becomes singular at the Brillouin zone
boundary £ = +7/a, || = 2wy.

While a one-dimensional model is not very realistic, the analytical result (4.39)
shows an important feature of a general nature—the fact that the phonon spectrum is
bound: There are no modes of frequency larger than 2wy. Note that this upper bound
is associated with wavevectors at the Brillouin zone boundary, that is, wavelengths
comparable to the interatomic distance.

Next, consider the three-dimensional case, focusing on a simple cubic lattice.
Rewriting Eq. (4.36) in the form g(k) = L/(2m) where L = Na is the lattice length,
the three-dimensional analog is clearly L.L,L,/ Qr)} =Q / (27)3 where Q is the

(4.39)
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volume. In terms of the absolute value of the wavevector k the number of modes
in the interval between |k| and |k| + d|k]| is

Q
k)d|k| = 4 k> d|k 4.40
g(lkDd|k| = 4n ) k| (4.40)
Using again Eq. (4.37) we now get
Q do \ ™!
= 4 k? — 4.41
glw) =dr @ﬂﬁ(ﬂﬂ) (34D

To proceed, we need the dispersion relation w = w(|k|) in three dimensions. At
this point one can either resort to numerical evaluation of this function, or to a
simple model constructed according to available data and physical insight. In the
next section we take the second route.

4.2.4 Phonons in higher dimensions and the heat capacity of solids

The analysis that leads to Eq. (4.39) can be repeated for three-dimensional systems
and for solids with more than one atom per unit cell, however analytical results can
be obtained only for simple models. Here we discuss two such models and their
implications with regard to thermal properties of solids. We will focus on the heat
capacity, Eq. (4.35), keeping in mind that the integral in this expression is actu-
ally bound by the maximum frequency. Additional information on this maximum
frequency is available via the obvious sum rule

/ dwg(w) = 3N — 6 ~ 3N (4.42)
0

where 3N-6 is the number of vibrational degrees of freedom atoms in the N-
atom crystal. In what follows we consider two simple models for g(w) and their
implications for the heat capacity.

4.2.4.1 The Einstein model

This model assumes that all the normal mode frequencies are the same. Taking
Eq. (4.42) into account the density of modes then takes the form

g(w) =3Né(w — w,) (4.43)
Using this in (4.35) yields

2 Bhiwe
hwe) © (4.44)

Cy = 3Nk,
Y B(@T (ePhoc — 1)
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For T — oo this gives Cy = 3Nkp. This result is known as the Dulong—Petit law
that is approximately obeyed for many solids at high temperature. This law reflects
the thermodynamic result that in a system of classical oscillators, each vibrational
degree of freedom contributes an amount kp ((1/2)kp for each kinetic and each
positional mode of motion) to the overall heat capacity.
In the low temperature limit Eq. (4.44) predicts that the heat capacity van-
ishes like
Cy 2 g—heo/ksT (4.45)

This is in qualitative agreement with experimental results. The heat capacity indeed
goes to zero at low T—reflecting the fact that a quantum oscillator of frequency w
cannot accept energy from its thermal environment if kg7 < Aw. However, the
observed low temperature behavior of the heat capacity of nonconducting solids is
Cy ~T°.

4.2.4.2 The Debye model

The fact that a quantum oscillator of frequency w does not interact effectively with a
bath of temperature smaller than /iw/kp implies that if the low temperature behavior
of the solid heat capacity is associated with vibrational motions, it must be related
to the low frequency phonon modes. The Debye model combines this observation
with two additional physical ideas: One is the fact that the low frequency (long
wavelength) limit of the dispersion relation must be

w = clk| (4.46)

with ¢ being the speed of sound, and the other is the existence of the sum rule (4.42).
Using (4.41) with (4.46) leads to

2

1

Qg(w)ala) =
More rigorously, there are three branches of modes associated with each |k|: Two
transverse, with polarization perpendicular to k, and one longitudinal, with polar-
ization along the k direction. The speed associated with the transverse modes, ¢;
is somewhat different from that of the longitudinal mode, ¢;. For our purpose this
distinction is immaterial, and we take

1 2 1)\ o? 3w?
—o(wdw = | = + — do = d 4.48
Qg(a)) @ (ct3 + cﬁ) 272 @ 2123 @ ( )

The last equality defines the average speed of sound c.
We know that Eq. (4.48) describes correctly the low frequency limit. We also
know that the total number of modes is 3N and that there is an upper bound to
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the frequency spectrum. The Debye model determines this upper bound by fitting
Eq. (4.48) to the sum rule (4.42). Denoting the maximum frequency wp (Debye
frequency) this implies

3 7 3N
2 _
0
whence
67N 173
wp = < ) > c (4.50)
and ,
1 N w
—g(w) = —— (4.51)
Q Q a%

To reiterate the statements made above, this model shares two important features
with reality: First g (w) ~ w? as w — 0, and second, the existence of a charac-
teristic cutoff associated with the total number of normal modes. The fact that the
model accounts for the low-frequency spectrum of lattice vibrations enables it to
describe correctly the low-temperature behavior of the phonon contribution to the
heat capacity. Indeed, using (4.51) in (4.35) leads to

WD

9ksN ho \* e/t
Cy = 2B /da)a)2< ‘“) c (4.52)

a)I3) kBT (ehw/(kBT) _ 1)2

Denoting /iw/(kpT) = x and defining the Debye temperature

@p = % (4.53)
(4.52) becomes
3 (®p/T) e
Cy = 9%kzN <®—D> / abcx“m (4.54)
0

Note that all the properties of the particular crystal enter only through ®p and that
Cvy in this model is a universal function of 7/ ®p. In the high T limit, ®p /T — 0,
the relevant x in the integrand of (4.54) is small

xtet 2 (4.55)
— ~X .
(e —1)2
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5 10 x105"

Fic. 4.1 Density of modes in lead. Full line — numerical calculation based on lattice geometry and
interatomic potential of lead. Dashed line: The Debye model fitted to the density and speed of sound of
lead. (From the Cornell Solid State Simulation site, R.H. Silbee, http://www.physics.cornell.edu/sss/.)

leading to the Dulong—Petit law
5 ©p/7)

T
Cy = 9kzN (—) f dxx? = 3kgN (4.56)
Op

In the opposite limit the integral in (4.54) becomes

o0
e* 4yt
4 —
/dxx @12 15 (4.57)
0

and does not depend on T, so that Eq. (4.56) shows the expected 7> dependence
of Cy, in agreement with experiment.

It should be emphasized that although this success of the Debye model has made
it a standard starting point for qualitative discussions of solid properties associated
with lattice vibrations, it is only a qualitative model with little resemblance to real
normal-mode spectra of solids. Figure 4.1 shows the numerically calculated density
of modes of lead in comparison with the Debye model for this metal as obtained
from the experimental speed of sound. Table 4.1 list the Debye temperature for a
few selected solids.


http://www.physics.cornell.edu/sss/
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TasLe 4.1 Debye temperatures of several solids.

Solid Debye temperature (K)
Na 158
Ag 215
Cu 315
Al 398

Ar (solid) 82

4.3 Electronic structure of solids

In addition to the thermal bath of nuclear motions, important groups of solids—
metals and semiconductors provide continua of electronic states that can dominate
the dynamical behavior of adsorbed molecules. For example, the primary relaxa-
tion route of an electronically excited molecule positioned near a metal surface is
electron and/or energy transfer involving the electronic degrees of freedom in the
metal. In this section we briefly outline some concepts from the electronic struc-
ture of solids that are needed to understand the interactions of molecules with such
environments.

4.3.1 The free electron theory of metals: Energetics

The simplest electronic theory of metals regards a metallic object as a box filled with
noninteracting electrons. (A slightly more elaborate picture is the jellium model in
which the free electrons are moving on the background of a continuous positive
uniform charge distribution that represents the nuclei.) The Drude model, built on
this picture, is characterized by two parameters: The density of electrons » (number
per unit volume) and the relaxation time t. The density # is sometimes expressed
in terms of the radius 7 of a sphere whose volume is the volume per electron in the

metal
3 \1/3
rs = <—> (4.58)
4mn

The density of states of a free particle as a function of its energy £ was obtained
in Section 2.8.2. It is given by

pE) = 2 famE =3 (4.59)
72 h

where Q is the volume and m is the particle mass. The additional multiplicative
factor of 2 added to the result (2.97) accounts for the electronic spin states.

Let N be the total number of free electrons and » their density, so that N = nQ.
Being Fermions, we can have at most one electron per state. This implies that at
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T = 0 the highest occupied energy, the Fermi energy EF, has to satisfy

Ef
/dEp(E) =N (4.60)
0
which implies
97_[4 1/3 hZ
Ep = (—) —n?3 (4.61)
8 m

Problem 4.2. Show that the ground state energy of this NV electron system is
given by

3
Ey = _NEy (4.62)

At finite temperature the picture described above changes slightly. The probab-
ility that a single electron level of energy E is occupied is given by the Fermi—Dirac
distribution

fE) = m; B = kgT)™! (4.63)

where p is the chemical potential of the free electron system, which is in principle
obtained from the equation

e}

N=) )= / dEp(E)f (E) (4.64)
J

0

It is important to get a notion of the energy scales involved. Taking sodium metal
as an example, using the mass density 0.97 g cm~3 and assuming that each sodium
atom contributes one free electron to the system, we get using Eq. (4.61) Ef =
3.1 eV. For T = 300 K we find that Er/(kgT) ~ 118.6. Noting that according
to Eq. (4.63) f(E) falls from 1 to 0 in an energy interval of the order k3T, it
follows that at room temperature the Fermi—Dirac distribution still carries many
characteristics of the zero-temperature step function. In particular, the electronic
chemical potential u is approximated well by the Fermi energy. It may indeed be

shown that ,
kgT
1 = Ep (1 ~0 <B—) ) (4.65)
Ex

The quantum distribution of electrons in metals has a profound effect on many of
their properties. As an example consider their contribution to a metal heat capacity.
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The molar heat capacity of a gas of classical structureless noninteracting particles,
that is, a classical ideal gas, is (3/2)R where R is the gas constant, R = kp.A, where
A is the Avogadro’s number. This is because each degree of freedom that can accept
energy contributes (1/2)kp to the heat capacity. In a quantum ideal low temperature
(kpT < Eyr) Fermi gas most particles cannot accept energy since their state cannot
change to that of an occupied level. The only electrons that can accept energy are
those in a range ~kpT about the Fermi level, that is, only a fraction ~kgT /Ef of
the total number.

This observation has two consequences that can be confirmed by a rigorous
calculation:

1. The molar heat capacity of electrons in metal is about a factor ~kpT /EF
smaller than that of a classical ideal gas.

2. This electronic contribution to the heat capacity is linear in the temperat-
ure 7. This should be contrasted with the cubic form of the low temperature
dependence of the phonon contribution, Eqs (4.54) and (4.57).

4.3.2 The free electron theory of metals: Motion

Next consider the motion of these electrons. It was already mentioned that in addi-
tion to their density, metallic electrons are characterized, at this level of theory, by
a relaxation time 7. In the Drude theory this enters via a simple friction force by
assuming that under a given force f(¢) the electron moves according to

r=v

dv B 1f(t) 1 ©
dt m rv

(4.66)

This implies that at steady state under a constant force the electron moves with a
constant speed v = m~ ' tf. Using f = —e& where £ is the electric field and —e is
the electron charge, and the expression for the electric current density in terms of
the electron density #, charge —e and speed v,

j = —nev (4.67)

we find

£ (4.68)
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The coefficient that relates the current density to the electric field is the conductiv-
ity* o. We found

(4.69)

The conductivity obtained from the Drude model is seen to be proportional to
the electron density and to the relaxation time, and inversely proportional to the
electron mass.

Note that the conductivity o has the dimensionality of inverse time. The Drude
model is characterized by two time parameters: t, that can be thought of as the
time between collision suffered by the electron, and o. Typical values of metallic
resistivities are in the range of 10~°Q cm, that is, o = 10°(Q cm)_1 = 108571,
Using this in (4.69) together n ~ 102 cm ™3, e ~ 4.8 x 10719 esu and m ~
9 x 10728 g leads to 7 of the order ~10~'4 s. Several points should be made:

1. The arguments used to get Eq. (4.69) and consequently the estimate T ~
10~1* s are classical, and their validity for metallic electrons cannot be taken
for granted without further justification.

2. The conductivity (4.69) depends on the carrier charge as e, therefore a
measurement of electric conductivity cannot identify the sign of this charge.

Information about the sign of the mobile charge may be obtained from another
observable, the Hall coefficient. The Hall effect is observed when a current carrying
conductor (current in direction x, say) is placed in a magnetic field H perpendicular
to the current direction, the z direction say. An electric field £ is formed in the
direction y perpendicular to both the current and to the applied magnetic field, and
the ratio Ry = &, /j'H; is the Hall coefficient. A theory done on the same classical
level as used above leads to

Ry = L (4.70)
nec

where c is the speed of light. Here the sign of the charge carriers is seen to matter,
and Hall effect measurements gave the first indications that charge carriers in metals
(e.g. Al) can be effectively positive. Such an observation cannot be explained in
the framework of the classical theory described above. Understanding this, as well
as many other electronic properties of crystalline solids, requires a more detailed
electronic structure theory of solids that takes into account their periodic structure.

* The conductivity o is the inverse of the resistivity—the resistance per unit length of a conductor
of unit surface cross-section. Equation (4.68) is a local version of Ohm’s law.
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4.3.3 Electronic structure of periodic solids: Bloch theory

In order to study the implications of the periodic structure of lattices on the electronic
structure of the corresponding solids we consider a single electron Hamiltonian of
the form

H=T+U() (4.71)

where T and U are respectively kinetic and potential energy operators, and where
periodicity enters through

Ur+R)=U(r) (4.72)

with any lattice vector R, given by Eq. (4.1).

It is convenient to use periodic boundary conditions. For simplicity we consider
a cubic lattice, so we take the system to be a rectangular prism with sides L| =
Niai, Ly = Nyar, Lz = Nzas, that is infinitely reproduced to form infinite space.
As in the free particle problem (Section 2.8) this is used just for mathematical
convenience, assuming that bulk properties of the system do not depend on the
boundary conditions for Ly, Ly, L3z — o0.

In the absence of the periodic potential our problem is reduced again to that
of a free particle. Eigenfunctions of H = T that satisfy the periodic boundary
conditions are of the form

KT pikix1 yikoxz yiksxs (4.73)
and the wavevector k = (k1, k2, k3) needs to satisfy
el = ok thatis &5 =1;  j=1,2,3 (4.74)
This in turn implies that the allowed values of k; are®

2 2w nj )
kj:_nj:__’ ]:1,2,3, nj:(),ZI:l,th,... (475)
L aj N;

These waves satisfy the orthonormality relation:

Ly
fdxlei(Zn/Ll)nlxle—i(ZN/Ll)”ixl =718
0

(4.76)

/
ni,n

> This is a result for a cubic lattice. The generalization for any lattice is k = Z}:l (nj /Nj)lA)j, where

f)j (j = 1,2, 3) are the primitive vectors of the reciprocal lattice.
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and in three dimensions

/ Bre'® KT — 5 L Ll = 80 R (4.77)
LiLyLs

The presence of the periodic potential U(r) has important consequences with
regard to the solutions of the time-independent Schrédinger equation associated
with the Hamiltonian (4.71). In particular, a fundamental property of eigenfunctions
of such a Hamiltonian is expressed by the Bloch theorem.

4.3.3.1 Bloch's theorem

The Bloch theorem states that the eigenfunctions of the Hamiltonian (4.71), (4.72)
are products of a wave of the form (4.73) and a function that is periodic on the
lattice, that is,
Yk (1) = ™t (1) (4.78)
Uk (r) = upk(r + R) (4.79)
A corollary of Eqs (4.78) and (4.79) is that such functions also satisfy

Yk (r +R) = e® Ry (1) (4.80)

where R is a lattice vector. For a free particle u,i is constant and Eqgs (4.78)—(4.80)
are satisfied for all R. The vector k and the number(s) » are quantum numbers: K is
associated with the wave property of these functions, while z stands for any quantum
number needed to specify the wavefunction beyond the information contained in k.

The proof of Bloch’s theorem can be found in any text of solid state physics
and will not be reproduced here. In the course of that proof it is shown that the
eigenfunctions ¥,k (r) can be written in the form

Ye(r) = e*TY O geTCT (4.81)
G

where C]((n) are constant coefficients and where the sum is over all vectors G of the

—iGr

reciprocal lattice. By definition, the function u,(r) = ) g Cl((”_)Ge satisfies

Uk (r) = upk (r + R), so Y (r) of Eq. (4.81) is indeed a Bloch function.
Several consequences follow immediately:

1. From (4.81) it follows that

Ykt (1) = XY O e CTOT =y () (4.82)
G
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(The last equality follows from the fact that a sum over G and over G — G’
are identical—both cover the whole reciprocal space.) Furthermore, from
Ynk+G = ¥k we find that the eigenenergies also satisfy

Epx+c = Enx (4.83)

that is, both the eigenfunctions v and eigenvalues E are periodic in the
wavevector k with the periodicity of the reciprocal lattice.

2. Under the imposed periodic boundary conditions, the wave component
exp(ikr) again has to satisfy exp(ik;L;)) = 1 (j = 1,2,3), with the same
implications for the possible values of k as above, that is, Eq. (4.75) for a
cubic lattice. Furthermore, Eqs (4.82) and (4.83) imply that for any recip-
rocal lattice vector G the wavevectors k and k + G are equivalent. This
implies that all different k vectors can be mapped into a single unit cell,
for example the first Brillouin zone, of the reciprocal lattice. In partic-
ular, for a one-dimensional lattice, they can be mapped into the range
—(/a)...(w/a). The different values of k are then £k = (2w /a)(n/N),
where N = L/a (L is the length that defines the periodic boundary condi-
tions) is chosen even and where the integer n takes the N different values
n=-WN/2),-(N/2)+1,...,(N/2) — 1.

3. Even though in similarity to free particle wavefunctions the Bloch wavefunc-
tions are characterized by the wavevector k, and even though Eq. (4.80) is
reminiscent of free particle behavior, the functions v,k (r) are not eigenfunc-
tions of the momentum operator. Indeed for the Bloch function (Eqs (4.78)
and (4.79)) we have

o e for
Py = ;Vlﬁk = 7V(e'k'ruk(r)) = hkyr + elk'ryvuk(r) (4.84)

that is, ¥ is not an eigenfunction of the momentum operator. #k is sometimes
called the crystal momentum.

Problem 4.3. Show that in a three-dimensional lattice the number of distinctly
different k vectors is N1 N, N3. Since these vectors can all be mapped into the
first Brillouin zone whose volume is by - (by x b3) = (27)3/w where w =
a; - (ap x a3) is the volume of the primitive unit cell of the direct lattice, we can
infer that per unit volume of the reciprocal lattice there are N1 Ny N3 / [27)3 /w] =
wN1NyN3 / Qr) =Q / (27)3 states, where Q = LiLyLs is the system volume.
Show that this implies that the density (in k-space) of allowed k states is 1/(27)>
per unit system volume, same result as for free particle.
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4.3.4 The one-dimensional tight binding model

This model consists of a row of identical atoms arranged so that their centers lie
on a one-dimensional lattice (along the x-axis, say) with lattice-spacing a. Denote
the electronic Hamiltonian for atom j by 4; and the corresponding atomic orbitals

by ¢jn

hidin = €3in (4385)
where 52 are the energy levels of an individual atom. By symmetry
¢jn(r) = ¢n(x —ja,y,z) (4.86)

The Hamiltonian of the full system is H= Ejilj + ¥, where ' is the interatomic
interaction. We focus on the low-energy regime where the atomic orbitals are well
localized about their corresponding atomic centers, and use this set of electronic
states as a basis for the representation of the full problem. When a — oo, that is,
the atoms are infinitely far from each other, V' — 0 and we have

(Dl H | pjrr) = €388 (4.87)

For finite a both diagonal and non-diagonal elements of H change, and in particular
($jnlH |y # 0.

Consider then the Hamiltonian matrix in this atomic orbital representation. We
denote A

((bjanM)jn) =é&n (488)

By symmetry, these diagonal elements do not depend on j. We see that in the sub-
matrix of A associated with the same atomic level n defined on each atom, all
diagonal elements are the same ¢,. Non-diagonal elements of H result from the
interatomic coupling, and if the atomic centers are not too close to each other these
elements will be small relative to the spacings between different &,,’s, that is,

(Dl HIpjrw) < len — &

(Note that we take the atomic levels n and n’ to be nondegenerate. Degenerate
levels have to be included within the same sub-matrix). In this case the existence of
the non-diagonal matrix elements of H will have an appreciable effect only within
the sub-matrices defined above. Disregarding non-diagonal matrix elements of H
outside these blocks constitutes the tight binding model. Explicitly, we take

(ulH|pyw) =0 forj #j unlessn=n' (4.89)

In this case our problem is reduced to diagonalizing each Hamiltonian sub-matrix
associated with the same atomic level n (or with a group of degenerate atomic
levels) and with the different atomic centers.
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Further simplification is achieved by an additional approximation. When the
atomic orbitals are closely localized about their corresponding centers it is reas-
onable to assume that interatomic couplings are appreciable only between nearest
neighbors

(Gl H1$jn) = ey + By a1 (4.90)
From now on we drop the index » and denote ¢, = «, 8, = B. The corresponding
Hamiltonian sub-matrix is

B 0 0
y_| B o« B 0
H= 0 B o § (4.91)
0 0 B °
and the Schrédinger equation
B 0 0 :
g a—E g 0| G
=0 4.92
0 B a«—E B||Cn (492)
0 0 B

will yield the coefficients of the expansion of the eigenfunctions in terms of the
atomic orbitals

V() =Y Crigy(r) (4.93)
J

and the corresponding eigenvalues Ej. The index &k corresponds to the different
solutions of (4.92).
Now, Eq. (4.92) is equivalent to the set of coupled equations

BCi—1+ (@ —E)Ci+ BCi11 =0 (for all integer j) (4.94)
whose solutions are
Cy = €7k = & (x; = ja is the position of atomic center ;) (4.95)
Inserting (4.95) to (4.94) leads to an equation for the eigenvalue E (k)
Be " 4 (a — E(k)) + B =0 (4.96)

which yields
E(k) =a +2Bcoska (4.97)
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An explicit form for the eigenfunctions is obtained from (4.95), (4.93), and (4.86)

V() =Y M) =) M (x — ja,y,z) (4.98)
J J

For any lattice vector R = la (I integer) this function satisfies

Yk + R,p,2) =) Mo —ja+R,y,2)
J

= &MY " HUIR g (x — (ja — R),y,2) = "Ry (x,p,2) (4.99)
J

comparing to Eq. (4.80) we see that this is a Bloch function in one dimension.
Alternatively, we can rewrite Eq. (4.98) in the form

Y (r) = e®u(r) (4.100)

and show that u(r) = ), e_ik(x_ja)¢(x — ja,y,z) has the periodicity of the lattice,
satisfying the Bloch condition (4.79) on the one-dimensional lattice.

Problem 4.4. Show that u(r) defined above satisfies u(x + la,y,z) = u(x,y,z)

Going back to the eigenvalues, Eq. (4.97) three observations can be made. First,
when the atoms are far from each other 8 = 0 and £ (k) = «. This is our zero-order
solution—all states associated with the same quantum level on the different atomic
centers are degenerate. Second, when the coupling 8 between nearest neighbor
atoms is switched on, this degeneracy is lifted. The infinite number of degenerate
levels now become a band of states spanning a range of energies of width 48
between o« — 28 and « + 2. Finally, as a function of &, E (k) is periodic, with the
period 27 /a—a special case of Eq. (4.83).

4.3.5 The nearly free particle model

In the tight binding model we start from electronic states localized on individual
atoms and explore the consequence of coupling between these atomic centers. Here
our starting point is the free electron, and the periodic lattice potential enters as a
small perturbation. Thus, writing

H=Hy+H  withHy=T; H = U(r) = U(r +R) (4.101)

the free particle model draws its simplicity from the assumption that H; is
small. This smallness should be measured relative to the energy range considered,
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that 1s, if
Hy = Ey (4.102)
we assume that U < E.

How can we use this to simplify our problem in the present context? Consider
one of the eigenfunctions of the unperturbed Hamiltonian H

‘ K2
Y =" Ep=——k (4.103)

C 2m

We have found that the perturbation U couples each such eigenfunction to other
zero-order wavefunctions according to (cf. Eq. (4.81))

5T = Y G ™ TOT = G+ Y Gege® O (4104)
G G#0

Inserting (4.104) into the Schrédinger equation, Hy = Evy we find that the
coefficients Ck are the solutions of

hZ
<%k2 — E) Ci+ ) UcCic =0 (4.105)
G

where G belongs to the reciprocal lattice and where

1

Qpc
Qpc

Ug d’reCTUr)  (integral over the primitive cell)  (4.106)

Here Qpc is the volume of the primitive cell. Note that we can take Uy = 0 without
loss of generality. This just means that we have taken the average lattice potential
to be zero, that is, fQPC d*rU(r) = 0. Equation (4.105) represents a set of coupled
equations for all the coefficients Ci associated with the original k and all the k’
derived from itby k' = k — G.

Suppose for the moment that only G = 0 and one other reciprocal lattice vector
are involved. The coupled equations are

wk?
o E)Ck+UgCk—cg =0 (4.107)
m

i (k — G)2
2m

— E) Cxk—c+UECk =0 (4.108)
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where we have used U_g = Ué. The condition for a nontrivial solution is a secular
equation for £ that yields
1/2
0 /

0 2
&, — €&
E=(ef+eh )+ (%) +IUGP | 5 ek= - (4109)

N —

If | U(;|2 is much smaller than (sg — sl(i_G)2 we can expand in their ratio to get the
two solutions

|Ugl? |Ug?
El :Sl(i-i-W, EQISI‘Z_G—W (4110)
€k ~ fk—G €k ~ k-G

showing small corrections to the free particle energies. In the other extreme limit,

00 _ 0 — 0
ifey =¢,_g=¢" weget

Ei=¢0+ Ug; Ey =¢y— Ug (4.111)

This splitting has the same origin as the splitting that takes place between any two
coupled levels that are degenerate in zero order, see, for example, the treatment
of Section 2.2. Indeed Eq. (4.109) is the same as Eq. (2.19) with E,, E} replaced
by 82, egfc, and V13 replaced by Ug. In summary we may say that in the “almost
free particle limit” the free particle energies are only slightly modified (Eq. (4.110))
except when k satisfies for some reciprocal lattice vector G the equality 8](1 = gl(sz'

This condition implies that k> = (k — G)?, that is, 2k - G = G? or

A1
k-GzzG (4.112)

where G = G /G is a unit vector in the direction of G.

What is the physical meaning of this condition? In one-dimension it implies
that £ = £(1/2)G, and since G = (2w /a)n (n integer or zero) the smallest £
that satisfies this condition is & = 4w /a. Since distinct values of & lie in the
range —m/a,...,w/a (the first Brillouin zone) we find that the one-dimensional
equivalent to (4.112) is the statement that k lies at the edge of the Brillouin zone.

Equation (4.112) is a generalization of this statement to three dimensions. The
set of equations (4.105) represent, in the weak periodic potential limit, a set of
uncoupled waves (i.e. we can practically disregard the second term on the left-hand
side of (4.105)) except when (4.112) is satisfied, namely when Kk is at the edge of
the Brillouin zone. At that point the zero-order energies associated with the waves
k and k — G (and just these two waves) are the same, therefore these states are
strongly coupled, leading to the energy splitting given by Eq. (4.111).
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Fic. 4.2 A graphic display of the origin of band structure in the nearly free electron model.
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Fic. 4.3 The origin of band structure in the nearly free electron model: An extended picture that
shows also the origin of the k-periodicity of E (k).

A graphical interpretation of this situation is shown in Fig. 4.2. The energy as a
function of & is shown for two waves whose origins in k-space differ by G = 27 /a.
Each energy curve corresponds to the free particle parabola. Their coupling by the
periodic potential does not appreciably change them except in the neighborhood of
k = m/a. The effective strong coupling in this neighborhood leads to the splitting
shown.

An extended picture of this situation is depicted in Fig. 4.3. Here we show the
parabolas representing the free particle energies associated with each of the & vectors
(in one-dimension) that are coupled to each other according to Eq. (4.105), that is, &,
k £ 2m/a, k £ 4m/a,.... At each point where two parabolas cross, the energy
spacing between the two zero-order energies is small relative to the amplitude of
the periodic potential. This leads to splitting and to the band structure in the energy
spectrum. Also, the emergence of the reciprocal lattice periodicity of E (k) is clearly
seen. Again we note that a reduced picture may be obtained by focusing on the first
Brillouin zone (marked in Fig. 4.3 as the shaded area)—the equivalent zones in
k-space represent physically equivalent descriptions.

4.3.6 Intermediate summary: Free electrons versus noninteracting electrons in a
periodic potential

Let us summarize the important differences between the free electron model of a
metal and models based on the electronic band structure as discussed above. The
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first disregards, while the second takes into account, the periodic lattice potential
on which the electrons move. The electron spin will not be an issue; we just keep in
mind that a factor of 2 in the single electron density of state arises for the multiplicity
of spin states.

1. In the free electron model the electronic wavefunctions are characterized by
a wavevector k (—oo < ki, kp, k3 < 00) and can be chosen to be also
eigenfunctions of the momentum operator with eigenvalues #k. The eigen-
states of an electron moving in a periodic potential are also characterized by
a wavevector k (the crystal momentum) whose independent values lie within
a single primitive cell of the reciprocal lattice. Another quantum number 7
take discrete integer values and distinguishes between different bands.

2. The eigenfunctions of the free particle Hamiltonian can be written as free
waves, Y (r) = Q72 exp(ik - r). Bloch states have the form Yk (r) =
eik'run,k (r) where u has the lattice periodicity, that is, u, x (r + R) = u, k (r)
where R is any lattice vector.

3. The energy cigenvalues of the free particle are E(k) = A2k%/(2m) where
m is the particle mass. As such, the energy is a continuous variable that can
take values in the interval (0, co). The energy eigenvalues that correspond
to Bloch states satisfy £,(k + G) = E,(k) and, as seen in Sections 4.3.4
and 4.3.5, are arranged in bands separated by forbidden energy gaps.

4. For free particles, #k is the momentum and the corresponding velocity is
ak/m = A~ 'VE (k). These momentum and speed change under the operation
of an external force Fexernal. It may be shown that as long as this force does
not change too fast in space and time, a classical-like equation of motion

Ak = Fex (4.113)

holds.® Indeed, we have used equivalent expressions, for example, (4.66), in
the analysis of Section 4.3.2. As pointed out above, the “crystal momentum”
7k is not really an eigenvalue of the electron’s momentum operator. Still,
under certain conditions it is possible to show that the function

vu(k) = 7 IVE, (k) (4.114)

still represents the speed of the electron in the state (n, k), that is, in a given
band and with a given crystal momentum. Furthermore, Eq. (4.113) for the
rate of change of the crystal momentum remains approximately valid under

® The validity of Eq. (4.113) is a nontrivial issue that should be examined carefully under any given
conditions.
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these conditions. Equations (4.113) and (4.114) constitute the basis to what
is known as the semiclassical model of electron dynamics.

Problem 4.5. Show that if the external force Fey is derived from a time-
independent potential, Fext = —V Ukt (1), and if the total energy of an electron
in Bloch state (n, k) that moves in this external potential is taken as

Etot(r) = Ep(k) + Uext(r) (4.115)

than Eq. (4.113) follows from (4.114) and the requirement that energy is
conserved.

Solution: Conservation of Ety(r) during the electron motion implies

0— dEo (1)

= K - VkE,(K) + | - Ve Uext (1) (4.116)

We have used subscripts k and r to distinguish between the corresponding
gradient. Using (4.114) in the form r = h_IVkEn(k) we get itk = —V;
Uext (r) = Fext.

4.3.7 Further dynamical implications of the electronic band structure of solids

An immediate and most important consequence of the band structure of crystalline
solids is the distinction between metals and nonmetals that reflects the position
of the Fermi energy vis-a-vis the band energy. Before addressing this issue it is
important to consider the energy scales involved. The following points are relevant
for this consideration:

1. In atoms and molecules the characteristic electronic energy scale is typically
a few electronvolts. This is the order of energy spacing between the lower
electronic energies of atoms and molecules. It is also the order of interatomic
coupling (e.g. interaction of electrons on one atom with the nucleus of its
nearest neighbor, that is, the § parameter in (4.91)) and of the Fermi energy
calculated from (4.61). We thus expect the bandwidths and band gaps to be
of the same order of up to a few electron volts.

2. These characteristic energies scales are larger by about two orders of mag-
nitude than another important energy scale—the thermal energy. Indeed, at
T =300 K we have 1 eV/(kgT) = 38.7.
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These two observations imply that most electrons in a solid cannot contribute to
dynamical processes that require energy exchange of magnitude kg7 or less—the
argument is similar to that made in Section 4.3.1. One can furthermore assert that
filled bands, that is, band for which all states lie below the Fermi energy do not
contribute to the electric or thermal conduction of a solid. To see this note first that
when a small electric field or a small temperature gradient is applied, the energies
involved are not sufficient to add or remove electrons to/from the band. The energy
and electrical fluxes associated with a filled band are then given by

i= —é / dkp(k)v(k) (4.117)

and :
je = §/dkp(k)E(k)v(k) (4.118)

where p(k) = 2 x Q/(27)3 is the density of states per unit volume of k-space
(the factor 2 comes from the spin multiplicity) and €2 is the system volume. Using
Eq. (4.114) for the electron speed, these expressions become

e dk
j=-—- | —VE(Kk 4.119
i=-5 [ Ve @119)
and
o f k VE?(k) (4.120)
VE=50 ) 43 '

These integrals are done over the volume of a primitive cell of the reciprocal lattice.
Using a theorem (see Section 1.1.3) that states that the integral over a period of the
gradient of a periodic function is zero, we find that both j and jz vanish.

Thus, we have found that filled bands do not contribute to the charge and energy
transport properties of solids. Empty bands obviously do not contribute either. We
may conclude that solids in which all bands are either full or empty are insulators.
In this case the Fermi energy, or more generally the electronic chemical potential,
is located in the gap, far (relative to kp7) from the nearest bands above and below
it, so that all lower bands are fully occupied and all upper ones are empty.

In the other extreme case the Fermi energy is found in the interior of a band and
we are dealing with a metal. As long as it is far (relative to kgT) from the band
edges, the situation is not much different from that described by the free electron
model discussed in Sections 4.3.1 and 4.3.2, and this model provides a reasonable
simple approximation for the transport properties.

In the interesting case where the Fermi energy is in the gap but its distance from
the nearest band is not very large, this band may be thermally populated. This leads
to a characteristic temperature dependence of the density of mobile charge carriers
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and the associated transport properties. Such solids are called semiconductors, and
are discussed next.

4.3.8 Semiconductors

When T = 0 semiconductors are insulator in which the gap between the highest
filled band (henceforth referred to as valence band) and the lowest empty one
(referred to as conduction band) is relatively small. At elevated temperatures that are
still lower than the melting point enough electrons are transferred from the valence
to the conduction band and form a population of mobile charges that contributes to
electronic transport. Alternatively, the source of electrons in the conduction band
and/or their deficiency in the valence band can be the result of electron transfer
to/from impurity species as discussed below.

Figure 4.4 displays a schematic electronic structure showing the valence and
conduction bands and the gap between them. The two bands are arranged in a way
that is reminiscent of what was seen in the nearly free electron model, Fig. 4.3,
except that in general the minimum conduction band energy and the maximum
valence band energy are not necessarily aligned vertically above each other.” Real
band structure diagrams are far more complex both because different bands can
overlap in energy and because in the three-dimensional k-space £ (k) can behave
differently in different & directions. Still, this simple picture suffices for conveying
some fundamental issues:

1. Semiconductors are low bandgap insulators. “Low” is defined qualitatively, so
that an appreciable density of electrons can be thermally excited into the conduction
band at temperatures that are technologically relevant. In silicon, a large gap semi-
conductor (Eg = 1.12eV; exp(—Eg/kgT) ~ 1.6 x 10712 at 300 K), this density is
very small at room temperature. Germanium (E; = 0.67) and indium-antimonide
(InSb, E; = 0.16€eV; exp(—Eg/kpT) ~ 2 x 1073 at 300 K) are examples of lower
gap semiconductors. For comparison, in diamond E, = 5.5eV.

2. When electrons are excited, thermally or optically to the bottom of the con-
duction band they behave essentially as free mobile charge carriers. Indeed, we
may expand the conduction band energy £.(k) about the bottom, at k = k¢, of the

7 This observation is experimentally significant. It can be shown that photoinduced electronic excit-
ation from the valence to the conduction band obeys a selection rule by which the k vector remains
essentially unchanged. When the minimum valence band energy and the maximum conduction band
energy are aligned exactly above each other in this diagram, the minimum absorption energy determ-
ines the band gap. Otherwise, when the minima and maxima occur at different points in k-space,
the minimum absorption energy is larger than the band gap. In the semiconductor literature these
processes are referred to as direct transitions and indirect transitions, respectively.
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Conduction band

Valence band

Fic. 4.4 A portion of a schematic band structure diagram showing the energy as a function of k in a
particular direction of k-space, for the valence and conduction bands. The minimum energy difference
Eg is the band gap. u is the electron chemical potential.

conduction band in the form

2 2
Ec(k) = Ec + Pk~ ke)” (4.121)
2me

m is defined from this expansion.? The electron near the bottom of the conduction
band may be regarded as a free particle of mass m.. We refer to this mass parameter
as the effective mass of the conduction band electron.

3. As discussed in Section 4.3.2, mobile charge carriers move as free particles
between scattering events. The conductivity o, Eq. (4.69), depends on their density
n and on the relaxation time t. In metals # does not depend on temperature while t
decreases with increasing 7" because it is partly determined by electron—phonon
scattering that increases at higher temperatures. Therefore, metallic conduction
decreases with increasing 7. In semiconductors, the strong exponential temperat-
ure dependence of the density » of mobile charge carriers dominates the temperature
dependence of the conductivity, which therefore increases with temperature.

4. The above discussion pertains to conduction by electrons in the conduction
band without addressing their source, and would remain the same also if these elec-
trons are injected into the conduction band from the outside. It should be intuitively
clear that if, instead, we remove electrons from the valence band the resulting “elec-
tron vacancies” or “holes” contribute to the conduction in a similar way: Electrons

8 Equation (4.121) is a simplified form. The general expansion takes the form
3
Ec(K) = Ec + (1/)8* Y (kG — ke)(mg 1)y (ky — key)
ij=1

and defines the effective mass tensor m.
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move to fill the vacancies, which amounts to an effective motion of positive holes
in the opposite direction. The rigorous formulation of this statement rests on two
points:

a)

b)

Writing Eq. (4.117) in the form

j=—e /Q £§§vao; v(k) = A~ 'VE(k) (4.122)

occupied
band states

and using the fact that when the integral in (4.122) is carried over all states in
the band the result vanishes, imply that the current density j is also given by

j=e / d—kv (k) (4.123)

473

unoccupied
band states

Rather than looking at the occupied states in the almost filled valence band
we can focus on the few empty states. The current density is given according
to (4.123) as an integral over these unoccupied states, or “states occupied by
holes,” and its form is the same as (4.122) except with positive, rather than
negative, charge.
The dispersion relationship for these states, near the top of the valence band, is
obtained by expanding the band energy Ey (k) about its maximum at k = ky,
leading to an equation similar to (4.121)
n(k — ky)?
E,kK)=E, — ——— (4.124)
2my

(again a more general expression should usually be used®). The important
thing to note is that since we now expand near the band maximum, the
curvature of the dispersion curve is negative, that is, the particle behaves
as if its effective mass is —my. This means that an external force in a given
direction should induce motion in the opposite direction (Ak = Fey; and
v=—(1/ my)HK). Equivalently, since the forces relevant to the problem are
derived from the interaction of the electrons with electrostatic or electromag-
netic fields, they are proportional to the particle charge. The resulting hole
acceleration can therefore be taken to correspond to a particle of positive
mass my but with a charge of opposite, that is, positive, sign. Referring to
Eq. (4.123) we may conclude that the motion of holes, that is, the acceleration
resulting from the action of an external field, reflect particles carrying posit-
ive charge. An additional factor e is needed to get the electric current so this
current is proportional to e? as was already asserted in discussing Eq. (4.69).
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We may conclude that electron and holes contribute additively to the observed
conductivity of the semiconductor, 0 = o, + on. The contributions o, of the
electron density in the conduction band and oy of holes in the valence band can be
approximately assessed from Eq. (4.69),

neet. DpvelTy
O¢ = 5 Oh =
me ny

(4.125)

where the densities of electron and holes in conduction and valence bands are
denoted n. and py, respectively.

5. In the picture portrayed so far, the existence of electrons in the conduction
band must result from thermal excitation of these electrons out of the valence band,
hence

e = Py (intrinsic semiconductors) (4.126)

This always holds when the semiconductor is clean, without any added impurities.
Such semiconductors are called intrinsic. The balance (4.126) can be changed by
adding impurities that can selectively ionize to release electrons into the conduction
band or holes into the valence band. Consider, for example, an arsenic impurity
(with five valence electrons) in germanium (four valence electrons). The arsenic
impurity acts as an electron donor and tends to release an electron into the system
conduction band. Similarly, a gallium impurity (three valence electrons) acts as an
acceptor, and tends to take an electron out of the valence band. The overall system
remains neutral, however now n. # py and the difference is balanced by the
immobile ionized impurity centers that are randomly distributed in the system. We
refer to the resulting systems as doped or extrinsic semiconductors and to the added
impurities as dopants. Extrinsic semiconductors with excess electrons are called
n-type. In these systems the negatively charged electrons constitute the majority
carrier. Semiconductors in which holes are the majority carriers are called p-type.
6. The main variables that determine the transport and screening (see below) of
both intrinsic and extrinsic semiconductors are the mobile carrier densities #. and
pv. Given the energetic information, that is, the electronic band structure, and the
dopant concentrations, these densities can be evaluated from equilibrium statistical
mechanics. For example, the density of electrons in the conduction band is

o0
1 1
Ec
where Q is the system volume and p. (£) is the density of single electron states in the

conduction band. The determination of the chemical potential u is discussed below.
In what follows we will denote by p = p/ 2 the density of states for unit volume.
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In the effective mass approximation we assume that the expansion (4.121) is valid
in the energy range (near the conduction band edge) for which the integrand in
(4.127) is appreciable. In this case we can use for p¢ (E) the free particle expression
(cf. Eq. (4.59))

Q mg _
pc(E) = —2—3,/2mc(E —E.) = Qp(E) (4.128)
T h
Similarly
Ey Ey
_ 1 _ 1
Pv = /dE,Ov(E)(l —m) = / dE,Ov(E)m (4.129)
—00 —00

where, again in the effective mass approximation, the hole density of states is given
by an equation like (4.128) with m, and |E — E | replacing m. and £ — E.. Note that
the function fi, (E) = [exp(B(u — E)) + 117! that appears in (4.129) can be thought
of as the average hole occupation of a level at energy E.

We have seen that for most room temperature semiconductors E, > kpT.
Simpler expressions may be obtained in the often encountered situation when the
inequalities

Ec — u > kgT; w—Ey > kpT (4.130)

are also satisfied. In this case we can simplify the occupation factors according to

1

- 0~ —BE—). :
BE- 4 1 e ; E > E. (conduction band) (4.131a)
1
- 0~ —B(n—E).
BB 4 1 e ; E < E(valence band) (4.131b)
In this case Eqs (4.127) and (4.128) take the simpler forms
ne(T) = Ne(T)e PEm) (4.132a)
po(T) = Py(T)e PH—EY) (4.132b)
where
o0
Ne(T) = / dE pe(E)e PEE) (4.133a)
E;
Ey
PD) = [ B ED (4.133b)

—o0
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Problem 4.6.
1. Show that under the approximation that leads to (4.132) we can write
nepy = NePye PEs (4.134)

2. Show that in the effective mass approximation

1 (2mekgT\*/?

N(T) = ~ 4.135
1 [ 2mykgT\>"?

P(T) = - 4.135b

Using expressions (4.135) with the free electron mass replacing m or my, yields
2.5 x 10" cm™3 at T = 300 K for these parameters.

The only yet unknown quantity in Eqs (4.132) is the chemical potential . It
can be determined from the condition of local charge neutrality, which for intrinsic
semiconductors is simply n. = py.

Problem 4.7. Show that for intrinsic semiconductors, assuming the validity of
(4.132),

1 Py
W= [(Ev +E)+ksTln (Vﬂ (4.136)

C

In the extrinsic case, the expression of overall charge neutrality should take into
account the existence of immobile positive centers of donors that lost electrons
and/or negative centers of acceptors that gained electrons. Also, the validity of the
approximations (4.131) may some times become questionable. We will not dwell
on the details of these calculations but it should be clear that they have now been
reduced to merely technical issues.

4.4 The work function

Chapter 17 of this text focuses on the interface between molecular systems and
metals or semiconductors and in particular on electron exchange processes at such
interfaces. Electron injection or removal processes into/from metals and semicon-
ductors underline many other important phenomena such as contact potentials (the



THE WORK FUNCTION 165

potential gradient formed at the contact between two different metals), thermionic
emission (electron ejection out of hot metals), and the photoelectric effect (electron
emission induced by photon absorption). Two energetic quantities are central to the
understanding of these phenomena: The electron chemical potential and the work
function.

Let us start from individual atoms. The minimum energy required to remove
an electron from a given atom is the atomic ionization potential, IP. The energy
released upon inserting an electron to the atom is the electron affinity, EA, of that
atom. (A negative electron affinity implies that energy is required to insert the
electron.) For a given atom IP # EA because different electronic energy levels of
the atom are involved in the two processes: An electron is removed from the highest
occupied atomic orbital and is inserted to the lowest unoccupied one. Obviously,
the electron affinity of a given atom is equal to the ionization potential of the
corresponding negative ion.

Things are somewhat more complicated already with molecules. While the con-
cepts of ionization potential and electron affinity remain the same, the underlying
nuclear motion can affect the observed energies. Two issues are at play: First, the
equilibrium nuclear configuration of a molecule is usually different from that of the
corresponding molecular ions, and second, that the timescale for nuclear motions is
much slower than that which characterizes the electronic process. For this reason,
what is usually observed is the sudden, or vertical, energy to remove the electron,
which is larger than the actual, so called adiabatic, ionization potential. Figure 4.5
depicts the difference between these quantities.

A macroscopic solid can be regarded as a very large molecule, and the situation
pictured above remains in principle the same. Some differences however should be
noted:

1. In metals, the ionization potential and the electron affinity are the same,
and are given by the electron chemical potential (or the Fermi energy at 7 = 0)
measured with respect to the vacuum energy.’ To be specific we write, for 7' = 0,

(IP)metal = —EF (4.137)

where the vacuum energy is taken as the energy origin. In a zero-temperature
semiconductor the ionization potential is the difference between vacuum energy
and the top of the valence band, while the electron affinity is the corresponding
difference between vacuum and the bottom of the conduction band. This implies that

IP— EA = E,

® Unless otherwise stated, the term “vacuum energy” is taken to refer to the ground state energy of
a single free electron in infinite space.
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Nuclear potential

surface of the
molecular

positive ion

Nuclear potential surface
of neutral molecule

Fic. 4.5 A comparison between the vertical and the adiabatic molecular ionization potentials. The
parabolas represent the nuclear potential surfaces of the molecule and the molecular ion. The horizontal
shifts correspond to the different equilibrium nuclear configurations of these species. Electronic
energies are measured from the corresponding ground vibrational levels. (IP), and (IP)p are the
vertical and adiabatic ionization potentials, respectively.

2. The nuclear relaxation energy (the difference between the vertical and adia-
batic ionization potentials) is expected to be negligible for metals: The electronic
states involved in losing or gaining an electron by the metal are delocalized and the
effect on the nuclear configuration of removing or adding a single electron to the
system is therefore negligible.

3. The energy needed to remove an electron from the interior of a metal to
vacuum at infinity is given by (4.137). However, in practical measurements, the
probe that determines electron exit from the molecule (in, say, photoemission or
thermionic emission experiments) is located at distances from the metal surface that
are small relative to the metal size. At such distances the measured workfunction
(as determined, for example, from the photocurrent energy threshold in a photoe-
mission experiment) depends on the excess charge density on the metal surface.
Such excess charge results from the fact that the metal surface provides a different
local environment for the metal electrons than the bulk, therefore if electrons were
distributed homogeneously in all parts of the metal including its surface, the local
electron chemical potential at the surface would be different then in the bulk. This
leads to a redistribution of the electron density and to excess (positive or negative)
surface charge. In this case the workfunction is given by

W = —Ep + Wy (4.138)

where Wj is the additional work associated with this surface charge. This additional
contribution to the electron removal energy can be in the order of 5-10% of the
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workfunction, and usually depends on the particular metal surface involved in the
experiment. In qualitative estimates we often disregard this issue and use quoted
experimental values of the workfunction as measures of the true ionization potential
(or Fermi energy) of the metal.

4.5 Surface potential and screening

4.5.1 General considerations

Metals, semiconductors, electrolyte solutions, and molten salts have in common the
fact that they contain given or variable densities of mobile charge carriers. These
carriers move to screen externally imposed or internal electrostatic fields, thus
substantially affecting the physics and chemistry of such systems. The Debye—
Huckel theory of screening of an ionic charge in an electrolyte solution is an example
familiar to many readers.

When two such phases come into contact, charge may be transferred between
them, creating a potential difference between the two phases. This is already
observed when two different metals come into contact. At equilibrium we should
be able to move an electron through this contact without energy cost. However,
if the work to extract an electron from one metal is its work function /1, and the
work gained by inserting the electron to the other metal is the second work function
W», then energy conservation implies that there must be an interfacial electric field
that does work W1 — W, on the electron, that is, a potential difference between the
two metal faces (called contact potential) given by

—eAD = W) — Wy (4.139)

A potential difference may be also imposed externally. One may expect intuit-
ively that far enough from the interface the system exhibits the properties of a pure
homogeneous system with no potential gradients (this statement is a rephrasing of
the familiar principle that the electrostatic field must vanish in a homogeneous sys-
tem containing mobile charge carriers). Therefore, the potential change (the terms
“potential distribution” or “potential fall” are often used) must take place near
the interface. The following example demonstrates the importance of knowing the
way the potential is distributed across such interfaces: We consider a molecule
seated near a semiconductor surface (Fig. 4.6). The molecule is characterized by
its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO), and the semiconductor is characterized by its valence and con-
duction bands, VB and CB, and their edges, Ey and E, respectively. Suppose we
are interested in the possibility to transfer an electron from the molecule to the
semiconductor following an optical excitation that transfers an electron from the
HOMO to the LUMO molecular level. When the energy relationships are as shown
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Fic. 4.6 A molecule (represented by its HOMO and LUMO levels) next to a semiconductor surface
characterized by its conduction and valence band edges, £ and Ey. Following excitation that populates
the HOMO, electron transfer into the conduction band of the semiconductor can take place when the
alignment of molecular and semiconductor levels are as in (b), but not (a) (see also Fig. 4.8).

in panel (a) electron transfer is energetically forbidden because the LUMO is posi-
tioned next to the semiconductor band gap with no available levels to accept the
electron. Electron transfer could take place after populating the LUMO if Ejymo Was
higher than E. so the LUMO is energetically degenerate with empty conduction
band states in the semiconductor. This could happen if a potential bias is imposed
between the molecule and the semiconductor, so that the molecule side is at negative
potential bias relative to the semiconductor surface as shown in panel (b).

Now, a potential bias can be practically imposed only between the interiors
of the semiconductor and the molecular phases. The implications for the process
under discussion are related to the way this bias is reflected in the potential fall
at the semiconductor-molecule interface. This is the issue under consideration.
Before addressing this issue we need to understand how an electrostatic potential
is distributed in each phase separately.

4.5.2 The Thomas—Fermi theory of screening by metallic electrons

It should be appreciated that in contrast to the simple free electron models used
in much of our discussion of metals and semiconductors, a treatment of screening
necessarily involves taking into account, on some level, the interaction between
charge carriers. In the Thomas—Fermi theory this is done by combining a semiclas-
sical approximation for the response of the electron density to an external potential
with a mean field approximation on the Hartree level—assuming that each electron
is moving in the mean electrostatic potential of the other electrons.

Consider a semi-infinite metal represented by the gray area in Fig. 4.7. The
homogeneous bulk metal is taken to be locally neutral, the electronic charge is
compensated by the positive background and the potential is constant. Near impur-
ities or at the surface this is not necessarily so. Suppose that the potential is given
to be ®g on the metal surface and ®p in its interior and consider the potential
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Fic. 47 A semi-infinite metal with a surface potential ®(x = 0) = Pg and bulk potential
®(x - o0) = & A model for discussing metallic screening.

distribution in between these regions and what is the charge associated with this
distribution.

The system is infinite in the y and z directions, so our problem is one-
dimensional. In the absence of potential bias we have free electrons that occupy
eigenstates of the kinetic energy operator up to the Fermi energy. The density of
states per unit volume is (cf. Eq. (4.59))

3/2
G(E) = %%«/E (4.140)
72 h

In the presence of an external potential we use a semiclassical argument as in
(4.115), by which the electronic states remain the free wave eigenstates of the
kinetic energy operator associated with eigenvalues Ex , however the corresponding
electronic energies become position-dependent according to

E(x)=Ex —e(®(x) — Pp) = Ex — edP(x) (4.141)

The Fermi energy is the same everywhere, however (4.141) implies that the ground
state energy becomes position-dependent. Equivalently, we may regard the zero
energy as uniformly fixed everywhere in the system but the Fermi energy becoming
position-dependent

Er — Ep + e5®(x) (4.142)

The excess density of electrons at position x is therefore given by

Ep+e8®(x) Ef
on(x) = / dEp(E) — /dEﬁ(E) (4.143)
0 0



170 INTRODUCTION TO SOLIDS

which, using (4.140) yields

3/2
Sn(x) = (;L[(EFJr es®)3/? — B/

e<1><<E]: (2m)3/2e/Er
2m2h3

(4.144)
84>(x)

The excess charge density associated with the surface potential is therefore

_(@m)*2eEy

dpg(x) = —edn(x) = TR ——§P(x) (4.145)

Using the one-dimensional version of the Poisson equation (1.216), 328®/dx* =
—4m 8py, this yields an equation for the potential distribution

325>,
W = KTFSCI) (4146)

where kT is the inverse Thomas Fermi screening length

47
(2 h)3/2

1/4

frk = ————5 2m)3 /A Eg (4.147)

The general solution of (4.146) is §® (x) = A exp(krrx) + B exp(—krrx) and using
SP(x =0) = dg— P and §P(x — o0) = 0 leads to the final solution in the form

O (x) = dp + (Ps — Pp)e ™ (4.148)

The Thomas—Fermi length, kT_F1 characterizes screening by metallic electrons:
Given the potential on the metal surface, the potential inside the metal approaches
its bulk value within this length scale. Using the electron charge and mass together
with a value for Ef in the range of, say, 5 eV, yields ~0.6 A for this length. The
metal is seen to screen efficiently any potential imposed on its surface: The interior
of the metal does not see the surface potential beyond a “skin depth” of the order
of ~1 A,

4.5.3 Semiconductor interfaces

Contacts between semiconductors on one side, and metals, electrolyte solutions, and
other semiconductors are pervasive in today’s technology. Contacts between semi-
conductors and various types of molecular environments are increasingly found in
advanced application such as organic light-emitting diodes. Understanding the elec-
trical properties of semiconductor interfaces starts again with the relatively simple



SURFACE POTENTIAL AND SCREENING 171

example of Fig. 4.7: Taking the gray area in this figure to be a semiconductor
of known properties (band structure, doping, dielectric constant, and temperature)
and given a difference between the surface electrostatic potential &g and the bulk
potential g, how is the potential distributed at the semiconductor interface (here
assumed planar), namely what is the dependence of the potential on the distance x
from the surface going inwards toward to interior?

A detailed answer to this question can be found in many texts on semiconductors
and semiconductor interfaces. Here we just outline the main points of this theory
and make a few observations that will be referred to elsewhere in this text:

1. As in Section 4.5.2, the solution to this problem is obtained from the Poisson
equation (1.219), which is again needed in one dimension

328 ® (x) A
—3x2 = _?8[)(]()() (4.149)

where ¢ is the dielectric constant'® and 8p4 1s the excess charge density.

2. In turn, the excess charge density §p, (x) depends on the local potential. To see
this consider Egs (4.127) and (4.129) for the densities of electrons in the conduction
band and holes in the valence bands. These equations where written for a system
where the potential is uniform everywhere (and can therefore be taken zero). The
presence of an additional potential §® (x) at position x has the effect of shifting the
local electron energy by —e8® (x).!! Under the approximation that yields (4.132)
the corresponding local electron and hole densities become

ne(x; T) = NC(T)e—,B(Ec—ea‘D(X)—IL) (4.150a)
and
pv(; T) = PV(T)e—ﬂ(lL—Ev-i-eSCID(X)) (4.150b)
3. For intrinsic semiconductors the net excess charge is
8pg(x) = nc(x) + py(x) (4.151)

This case is completely analogous to the case of ionic solution that was treated in
Section 1.6.3. Indeed, Eq. (4.151) is identical to (1.247). For |ed®| < kpT we can
proceed along the same lines as in that treatment to obtain (cf. Eq. (1.253))

®(x) = Op + (ds — dple ™ (4.152)

1% Note that in the corresponding equation used in the Thomas—Fermi theory, Section 4.5.2, one
takes ¢ = 1: It is assumed that the dielectric response is dominated by the free metallic electrons,
which are treated explicitly.

" Here we apply the same semiclassical approximation that was used in (4.115) and (4.141).
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Conduction band

E——/

Valence band

Fic. 4.8 A molecule (represented by its HOMO and LUMO levels next to a semiconductor surface)
characterized by its conduction and valence band edges, E. and Ey—same as Fig. 4.6, except that the
common effect of an interfacial electrostatic potential is shown in the semiconductor band bending
near its surface. In the case shown the surface potential is lower than in the semiconductor bulk,
leading to up-bending of the band edges.

where « is a screening length given by Eq. (1.252) withz, = z_ = 1, n®

Nce_ﬁ(EC_/‘), nlj_ — PV(T)e_ﬁ(“_EV>.

4. For extrinsic semiconductors the calculation is somewhat more involved
because of the presence of immobile charged centers, but as long as linearization
of Eq. (4.150) in §® can be implemented the result will again be similar in form
to (4.152) with a screening length which is essentially of the same form (1.252).
It again depends on the density of mobile carriers densities, which may now be
dominated by the doping characteristics of the semiconductor.

5. Equation (4.150) reveals an important characteristic of semiconductor sur-
faces: The effect of the surface potential can be represented by defining local band
edges,

—

E, E, > E.—edP(x),Ey —edD(x) (4.153)

Since the electronic properties of semiconductors are determined by the relative
positioning of the electronic chemical potential and the band edges, this would imply
that the surface potential modifies the electronic behavior of semiconductor sur-
faces relative to their bulk, including the surface charge density and the propensity
for accepting or releasing electrons. An example is shown in Fig. (4.8). Note that
at equilibrium the electronic chemical potential is a position-independent constant
over all the semiconductor volume. While we will not develop this subject further
here, it should be evident that understanding electrostatic effects on band struc-
tures at semiconductor interfaces is a prerequisite to understanding charge transfer
reactions at semiconductor surfaces.!?

12 For further reading see A. Many, Semiconductor Surfaces (North Holland, New York, 1965) or
W. Ménch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 1995).
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Fic. 4.9 The potential bias distribution in an interface between two systems containing mobile
charges.

6. Itis of interest to compare screening in a “typical” semiconductor to that found
in a “typical” ionic solution, keeping in mind that the screening length is inversely
proportional to the square root of the mobile charge density. In a 1M fully ionized
monovalent salt solution the total carrier density is of the order ~102! ionscm 3.
In most intrinsic semiconductors the number is smaller by orders of magnitude,
as can be seen from Eqs (4.134) and (4.135) and the estimates underneath which
imply ne = py = /NePye PEe/2 2.5 1019 e=PE2/2_ For highly doped extrinsic
semiconductors the density of majority carriers is approximately determined by the
density of the corresponding impurities and can be as high as 10'° cm ™3, same as
in a 0.01 M electrolyte solution. We may conclude that the screening length in a
semiconductor is at most comparable to that of ~10 mM electrolyte solution.

4.5.4 Interfacial potential distributions

It is remarkable that the surface potential fall toward its bulk value is a similar
exponential function, (4.148) or (4.152), in the semiclassical Thomas—Fermi the-
ory of electronic screening in the Debye—Huckel/Gouy—Chapman theory of ionic
screening and at semiconductor interfaces. Here we consider the following issue:
When two such phases come into contact as in Fig. 4.9, and a potential bias is set
between their interiors, how is the potential drop distributed at the interface?

Denote the two systems by L and R and let their corresponding inverse screening
lengths be «7, and «g. The potentials in the interior bulk systems are given as ®;,
and ®p, respectively. ®g denotes the yet unknown potential at the interface, where
x = 0. Atissue is the magnitudes of the partial contributions ®; — &g and &g — dp
to the overall potential bias ®; — p.

Using (4.152) we can write

®;(x) = &f + (Og — D), x<0 (4.154a)
Dp(x) = Og + (g — DPr)e “*Y; x>0 (4.154b)
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This form contains the information concerning the bulk potentials and also the fact
that ®;(x = 0) = ®r(x = 0) = dg. To find dg in terms of ®; and P we use the
electrostatic continuity relationship

0Ly (2% (4.155)
dx x=0 dx x=0 ‘
This leads to P
By = RERTILPL (4.156)
KL + KR
and to
Ps—dr kL Ky !

®; —Pr  Kkp + kR KL_1+K1§1
—1

(4.157)
o, — dg kR Ky

O —Dr kKR ik 4!
Equation (4.157) is the mathematical expression of the intuitive result: The inter-

facial potential between two phases in contact is distributed between these two
phases in proportion to the corresponding screening lengths.

Further reading

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooke Cole, Philadelphia, 1976).



5
INTRODUCTION TO LIQUIDS!

Fluid substances must be composed

Of smooth and rounded particles. Poppy seeds
Might serve as an example, being round

And small and smooth, mercurial as drops

Of water, almost never held together...

Lucretius (c. 99—c. 55 Bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968.

The statistical mechanics of atomic motion in gases and solids have convenient
starting points. For gases it is the ideal gas limit where intermolecular interac-
tions are disregarded. In solids, the equilibrium structure is pre-determined, the
dynamics at normal temperature is characterized by small amplitude motions about
this structure and the starting point for the description of such motions is the har-
monic approximation that makes it possible to describe the system in terms of
noninteracting normal modes (phonons). Liquids are considerably more difficult
to describe on the atomic/molecular level: their densities are of the same order as
those of the corresponding solids, however, they lack symmetry and rigidity and,
with time, their particles execute large-scale motions. Expansion about a noninter-
acting particle picture is therefore not an option for liquids. On the other hand, with
the exclusion of low molecular mass liquids such as hydrogen and helium, and of
liquid metals where some properties are dominated by the conduction electrons,
classical mechanics usually provides a reasonable approximation for liquids at and
above room temperature.? For such systems concepts from probability theory (see
Section 1.1.1) will be seen to be quite useful.

! This chapter follows closely part of D. Chandler’s Introduction to Modern Statistical Mechanics,
(Oxford University Press, 1987, chapter 7).

% An often used criterion for the validity of classical mechanics is that the De Broglie wavelength
A=h/p (h is the Planck constant and p—the particle momentum) should be small relative to the inter-
molecular length scale. If we use {p = (|p|)7} (Where ()7 denotes thermal averaging) this becomes
essentially the thermal De Broglie wavelength, A ~ Ay = #A,/2n/(mkpT). At 300 K and for a
molecular weight of nitrogen, say, we get A = 0.18 A, small compared to characteristic distances in
liquids—atomic sizes and range of interatomic potentials.
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This chapter introduces the reader to basic concepts in the theory of classical
liquids. It should be emphasized that the theory itself is general and can be applied
to classical solids and gases as well, as exemplified by the derivation of the virial
expansion is Section 5.6 below. We shall limit ourselves only to concepts and
methods needed for the rest of our discussion of dynamical processes in such
environments.

5.1 Statistical mechanics of classical liquids

The microscopic state of a classical system of N atoms is characterized by a
point in phase space, (rN,pN) = (p1,P2,--->PN,T1,I2,...,Ty). The classical

Hamiltonian is
N

2
p.
HeV.p")y =Y L+ uah 5.1
r,p") l._12mz'+ (™) (5.1)
where U is the potential energy which depends on the positions of all atoms in
the system. The probability to find the system in the neighborhood dr" dp® of the

point (r", pV) is £ (", p")dr" dp" , where
e PH

N N\ __
f(r 9p )_ fderdee_ﬂH (52)

The denominator in Eq. (5.2) is related to the classical canonical partition function.’
Using Eq. (5.1) this distribution function can be written as a product of
momentum and position parts

fa,pVy = o@V)PaY) (5.3)

where
o~ B Xipi/2m

o(pY) =
(p ) fdee_ﬂZip%/Zm

(5.4)

is the probability distribution for the momentum sub-space, itself separable into a
product of factors associated with individual degrees of freedom

N e Pri/2m )
oMy =[o@):  ¢p) = ————— = QamkgT)~2e Fri/2m
i=1 f dpie—ﬁp%/Zm
—0oQ0

(5.5)

* Quantum mechanics implies the uncertainty restriction on the determination of positions and
momenta, limiting the number of possible quantum states. This leads to the canonical partition function

for a system of N identical particles Q = (N1h3V)~! S drNdee_ﬁH(rN’ P
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and where U
— r
PNy =—2 (5.6)
[ drNe=BUG)
is the probability distribution to observe the system at configuration phase
point r". The denominator in Eq. (5.6), Zy = / drV e BUCY) the Configurational
partition function.
The potential U(r") is a sum over all intra- and intermolecular interactions
in the fluid, and is assumed known. In most applications it is approximated as a
sum of binary interactions, U V) = i j u(r;) where r;; is the vector distance
from particle 7 to particle j. Some generic models are often used. For atomic fluids
the simplest of these is the hard sphere model, in which u(r) = 0 for » > a and
u(r) = oo for r < a, where a is the hard sphere radius. A more sophisticated
model is the Lennard Jones potential

u(r) = 4e [(%)12 _ (%)6] (5.7)

Here o is the collision diameter and ¢ is the depth of the potential well at the min-
imum of u(r). For molecules we often use combinations of atomic pair potentials,
adding several body potentials that describe bending or torsion when needed. For
dipolar fluids we have to add dipole—dipole interactions (or, in a more sophisticated
description, Coulomb interactions between partial charges on the atoms) and for
ionic solutions also Coulomb interactions between the ionic charges.

5.2 Time and ensemble average

Consider an equilibrium thermodynamic ensemble, say a set of atomic systems char-
acterized by the macroscopic variables T (temperature), 2 (volume), and N (number
of particles). Each system in this ensemble contains N atoms whose positions and
momenta are assigned according to the distribution function (5.2) subjected to the
volume restriction. At some given time each system in this ensemble is in a par-
ticular microscopic state that corresponds to a point (r", p") in phase space. As
the system evolves in time such a point moves according to the Newton equations
of motion, defining what we call a phase space trajectory (see Section 1.2.2). The
ensemble corresponds to a set of such trajectories, defined by their starting point
and by the Newton equations. Due to the uniqueness of solutions of the Newton’s
equations, these trajectories do not intersect with themselves or with each other.
In this microscopic picture, any dynamical property of the system is represented
by a dynamical variable—a function of the positions and momenta of all particles,

A= AxV, p") (5.8)
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The associated thermodynamic property is the ensemble average
= (A@™,p") =A@, T,N) (5.9)
that is,
AQ,T,N) = / / drNap"f ¥, p") A, pY)

B ffdrNdeefﬂH(rN,pN)A(rN’pN)
B [ [ dxNdpNeBHEN.pY)

(5.10)

Equation (5.10) defines an ensemble average. Alternatively we could consider
another definition of the thermodynamic quantity, using a time average

AQ,T,N) = lim % / AN ()pN (1))dt (5.11)

The ergodic “theorem” of statistical mechanics (see also Section 1.4.2) states
that, for “realistic” systems, these two kinds of averaging, Eqs (5.10) and (5.11)
yield identical results. As example of an application of this theorem consider the
total kinetic energy of the system. The corresponding dynamical variable is

1
A=) 5 Pl =ritpL oL (5.12)

1=
Using Eqgs (5.3)—(5.5), Eqgs (5.10) and (5.12) yield
3
AQ,T,N) = ENkBT (5.13)

Therefore, under the ergodic theorem, Eq. (5.11) implies that

p,(t)2
3NkB lim = / Z (5.14)

This observation has an important practical consequence: In numerical simulation
we usually follow a single-system trajectory in time, and the system temperature
can be obtained from such an equilibrium trajectory using Eq. (5.14).* Note that

* In practice, the operation lim; s o0 (1/7) jor dt is replaced by an average over a finite number of
points sampled along the equilibrium trajectory.



REDUCED CONFIGURATIONAL DISTRIBUTION FUNCTIONS 179

Eq. (5.14) holds separately for each atom, that is,

T

1 1 [ pi()?
T'=— lim —/p’(’)

3kp oo T m;
0

for any atom i.

5.3 Reduced configurational distribution functions

Consider the configuration space distribution function P(r"), Eq. (5.6). Mathemat-
ically, it is the joint distribution function (see Section 1.5.2) to find the N particles
of the system in their respective positions in configuration space, that is, P(r" )dr"
is the probability to find particle 1 in the range dr| near ry, and particle 2 in the
range dr, near rp, and particle 3 in the range dr3 near r3, and so on.

We may also define a reduced distribution (see Section 1.5.2). The probability
to find particle 1, say, in the neighborhood dr; of r; irrespective of the positions
of all other particles is P1/N) (r1)dry, where

PYN () = f draydrydrs, ..., dryP(Y) (5.15)

In a homogeneous system of volume  this is obviously P/M(r) = 1/Q. We
may similarly define a reduced joint distribution function to find the two particles
1 and 2 at location ry, rp, respectively, irrespective of the positions of all other
particles

PN (x|, 1) = /dr3dr4, o dry P (5.16)

Note that P@/N) is normalized, that is,
/drldrgP(z/N)(rl,rz) = /drNP(rN) =1 (5.17)

If all the particles in the system are identical then r| and r, can be the coordinates of
any two particles in the system. It is sometimes convenient to use a normalization
that will express the fact that, if we look at the corresponding neighborhoods of ry
and rp, the probability to find these neighborhoods occupied by any two particles
increases in a statistically determined way with the number of particles in the
system. This is achieved by multiplying the joint distribution function P?/N) (ry, rp)
by the number, N(N — 1), of distinct pairs in the system. This yields the pair
distribution function

p®M (1, 1) = NN = DPA M (1), 17). (5.18)
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Noting that N (N — 1) is the total number of pairs in the system, p@/N) represents
the density of such pairs per unit volume. This concept can be generalized: the
reduced joint distribution function for particles 1, ..., is given by

PYN(xy, . 1y = /dr,,+1,dr,,+2, . dryPa) (5.19)

and the » particle distribution function is defined by

N!
N ry, o) = ——— PN ey r
p ( 19 9 n) (N—n)' ( 1’ 9 }’l)
NI —UG")
= —/drN_”e—N (5.20)
(N —n)! fdrNe—ﬁU(r )
where drV " = dr,i1,...,dry. To get a better intuition about these density func-

tions it is useful to note that the relation of p(z/ N (ry, 1) to PN (ry,1rp)is the
analog of the relationship (in a homogeneous system) between p(!/N) = N/ and
PU/N) = 1/Q. The distributions P*/N) are always normalized to 1. On the other
hand, p""/M) is normalized to the number of particles N, p*/V) is normalized to
the number of pairs, N(N — 1), etc. (Note that, for indistinguishable particles, the
number of distinct pairs is N(N — 1)/2. The normalization we chose is convenient
because it satisfies relations such as Eq. (5.23) below).

As already noted, in a homogeneous fluid P{1/Y) does not depend on the
particle’s position and therefore

1 N
pa/N) _ = pN) =

G =" (5.21)

that is, p(I/V) is just the density p. In an ideal gas there are no correlations between
particles, therefore in an isotropic system

PN w1, 10) = PUD )PV () = (5.22)
Hence, the pair distribution function for an isotropic ideal gas is given by
NN —1)
Py =~ p’ (5.23)

Correlations in the system caused by deviation from ideality can be measured by
the pair correlation functions

g(r,r2) = p¥M(ry, 1)/ p? (5.24)
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or
p@/IN) _ 2
h(ri,r) = — Q- gri,ry) —1 (5.25)

It should be intuitively clear that the correlation between any two particles vanishes
as [r; — ry| — oo. Therefore g — 1 and 4 — 0 in this limit. For homogeneous
fluids all positions are equivalent, and it follows that g(r;,r2) = g(r; — rp). For
homogeneous-isotropic fluids g(ry,r2) = g(|r; — r2|), and similarly for 4. In this
case we refer to these functions as radial distribution functions.

The physical meaning of the pair correlation function g can be elucidated by
using the conditional probability concept introduced in Section 1.5.2. In ana-
logy with Eq. (1.187), the single particle conditional distribution function in a
homogeneous system is given by

PC/MN)(ry,17)

(1/N) - Vb

dry = QPPN (r), r2)dr; (5.26)

(the second equality follows from Eq. (5.21) that holds for homogeneous systems).
PUY/N)(ry | rp)dry is the conditional probability to find particle 1 in the neighbor-
hood dry of ry given that particle 2 (or, if all particles are identical, any particle) is
at rp. Using Eqgs (5.18) and (5.24) this can be rewritten in the form

pg(ri,r2) = NPV (ry | 1) (5.27)
The product on the right is the conditional density (number of particles per unit

volume) of particles at r; given that a particle is at r». For a homogeneous system
this can be rephrased as follows:

pg(r) is the density of particles at r given that a particle is located at the origin
r =0.

If the system is also isotropic, g depends only on the modulus » of r. In the absence
of correlations between particles, g = 1 and the conditional density is simply p
irrespective of whether there is a particle at the origin or not. When correlations
exist, g describes their effect on the fluid structure.

Figure 5.1 shows the pair correlation function of a typical Lennard—Jones liquid.
Two general features are seen: First, the short range structure that shows that atoms
in liquids arrange themselves about a central atom in a way that reflects their atomic
diameters (here expressed by the Lennard—Jones parameter o), and, second, the
relative fast decay of this short-range order, expressed by the rapid approach of

g(r)to 1.
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3h g(r)

rlo

Fic. 5.1 The pair correlation function of a Lennard—Jones fluid.

f Detector]

(0,0,0) Rp

Fig. 5.2 A schematic view of a wave scattering off an atom.

5.4 Observable implications of the pair correlation function

5.4.1 X-ray scattering

For normal liquids the characteristic structural distance is of order ~1 A. A probe
of liquid structure should therefore have a characteristic wavelength A in this range.
This calls for using X-rays or light atomic particles as probes. In liquids we are
interested in the short-range structure, on the scale of intermolecular distances. This
implies the need to apply short range interactions and therefore the use of particles
should be limited to neutral ones, such as neutrons.

To see how g can be measured by X-rays or neutron scattering consider the
scheme of a scattering experiment shown in Figure 5.2. An atom A at r4 scatters an
incoming wave with wavevector ki, and the scattered wave with wavevector Koyt
is monitored by the detector at Rp. The scattering angle is 6, as shown. In what
follows we consider elastic scattering only, that is, |Ki,| = |Kout|.

The scattered wave at the detector is

1 " ; k , .
S :f(k)melkm'rA-Hkour(RD—rA) ~ |l{I{(f)l{delkout'RDe—lk'l'A (5.28)
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where f (k) is an atomic scattering factor, k = koyt — ki and Rc is the center of
the scattering sample. All vectors are related to some origin at (0,0,0). Note the
approximation that was made in order to obtain the last part of Eq. (5.28) (see
Problem 5.1). The appearance in the denominator of the distance between the atom
and the detector results from the fact that the scattered amplitude depends inversely
on this distance.

Problem 5.1. Discuss the approximation made in Eq. (5.28). (a) Under what
conditions can we replace ra by Rc in the denominator, as done? (b) Why is it
impossible to make this substitution in the phase factor e K742

Because |Kj,| = |Kout|, the scattering angle 8 and the modulus of the scattered
wavevector are related to each other by

6 4m . 0
k = 2|kjy| sin - = — sin — 5.29
[Kin| sin 5 = —=sin (5.29)
The total scattered intensity is the absolute-value square of the scattered amplitude,
which is in turn a combination of scattered waves like Eq. (5.28) summed over all
scattering centers. The signal at the detector is therefore

2

R ARG
10)=|f(h) = Y eV = T
|RC—RD|; IRc — Rp|?

NS (k) (5.30)

where S is the structure factor, the factor in /(0) that depends on the fluid structure:
R

Sk) = — ik-(r1=r;) 5.31

k) =+ <1,,Z-1 e (531)

To find a more useful form for S(k) we first separate it to its diagonal (I = j)
and non-diagonal parts. The diagonal part yields unity. In a homogeneous isotropic
system all N(N — 1) non-diagonal terms are identical. We get

1 .
Sk) =1+ NN(N — 1) (K r—r)y

N(N — 1) [ drV ek Ti—r2)e=pU
N [ drNe=PU

1 .
=1+ / dr / dryp @M (11, 1p)e™ 1712 (5.32)

=1+
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The last equality was obtained using Eqs (5.16) and (5.18). Since the system is
homogeneous we have pCMN)(r), 1) = ng(rlz) with rj2 = r; — rp. Therefore
the integrand is a function of ri only and [ dry [ dry = [driy [dri = Q [ dri,.
This yields

Sh) =1+ f drizpg(rip)e™ (5.33)

This identifies S(k) with the Fourier transform of the pair correlation function,
so the latter may be obtained from the structure factor by inverting the transform.
Finally, denoting » = |r12| and using, for an isotropic system, g(r13) = g(r) we get

o0
S(k) =1+ 2mp / drr*g(r) / d sin 9e'tr cos?
0

= Tp/ drrsin(kr)g(r) (5.34)
0

5.4.2 The average energy

Because some of the important interactions used to model atomic and molecular
fluids are binary, the corresponding averages that define macroscopic thermody-
namic quantities can be expressed in terms of the pair correlation function. The
following calculation of the average energy is an example. We consider the aver-
age potential energy in a homogeneous atomic fluid of identical particles with an
interatomic potential given by

vy =" u(ry) (5.35)
i

We already know that the average kinetic energy is (3/2)NkpT, so once the average
potential energy has been calculated we will have a full microscopic expression for
the macroscopic energy of the system. This average potential energy is

NWN —1
(U) =) fulry) = %(u(l’lz))
i>j
CINN = 1) [ deVu(rpp)eFre)
2 [ drNe=BUEY)

N
NV -1 [ drN=2=puc)
= T/dl‘ldl‘gu(rlg) fdrNe—lsu(rN) (536)
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Using again the definition of the pair correlation function g, this leads to

1
W) = 50" f dr, / dtrg(F)u(r)

= %,oN/drg(r)u(r) = ZJTpN/drrzg(r)u(r) (5.37)
0

The last equality holds for an isotropic and homogeneous system. This result can
be understood intuitively: For each of the N particles in the system (taken to be at
the origin), the potential energy is obtained as a volume integral over the density
of interaction energy associated with this particle. The latter is pg(r) (density of
other particles at position r), multiplied by u(r). This will lead to double-counting
of all interactions and should therefore be divided by 2. The result is (5.37).

5.4.3 Pressure

Next consider the pressure. It may be obtained from the canonical partition function

31 3InZ
Peipr (2L _ppr (22 (5.38)

The second equality results form the fact that in the expression for O

; 2 kT 3N/2
0= er}:;:nal< mZzB ) Zv; Iy Z/drNe‘ﬁU(‘“N) (5.39)

Z is the only term that depends on the volume. Since we expect that the macroscopic
properties of the system will not depend on the shape of the container, we can
consider a cubic box of dimension €2!/3. To make this dependence explicit we will
scale all coordinates by Q173 where V is the volume, so that x; = Q1/3%;. In terms
of the new coordinates x, Zy is

1 1
Zy = QY / / e PUE) ggN (5.40)
0 0

where
o) =Y u@'ry) (5.41)

i<j
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With the dependence of Z on Q2 expressed explicitly we can take the derivative

1 1

— = =7 QY — ... | d i<j v 5.42

e oV T g / / re (542)
0 0

In the second term on the right the derivative with respect to volume may be found
as follows:

1 1
i //die_ﬁZl<ju(Ql/3fl])
dQQ
0 0

1

— _,B/ /drNZ(u (91/31_'11)(1/3)9 2/3 —_) ﬁZK]u(Q /31'1/)

i<j
going back to unscaled coordinates ,3 N , -8 Zi<' u(r;)
o O SR
B
=~V = 1) [ dr'ri i @p)e Y (5.43)

Here we have used the notation #'(r) = Vu(r). Using this in (5.42) yields

dlnZy 1 8Zy N

= = N(N —1 ! 5.44
T 7y ae -9 6ieTa ( )(rizu'(r12)) (5.44)

Using the same arguments that led to N(V — 1){(u(r12)) = pN [ drg(r)u(r), (see
Eqs (5.36) and (5.37)) we now get N(N — 1)(rjpu/(r12)) = pN f drg(r)r- u'(r),
SO

P d1n Zy 02 ,
_ — 5 — d . 545
inT ( o) )N’T P~ bkp T rg(ryr-u'(r) (5.45)

To get explicit results for the thermodynamic quantlties discussed above (energy,
pressure) we need an expression for g(r). This is considered next.

5.5 The potential of mean force and the reversible work theorem

Consider again our equilibrium system of NV interacting particles in a given volume
V' at temperature 7. The average force exerted on particle 1 by particle 2 is
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defined by

—BU
d U(FN)> _ _fdl‘g . ..fdrN(aU/arl)e (5.46)

F (r,r):—<— =
<12> 72 rL.r fdr3...fdrNe_/3U

81‘1
Here the total force acting on particle 1 was averaged over all of the system’s
configurations in which particles 1 and 2 are fixed in their positions r; and r»,
respectively. In an isotropic system this mean force depends only on the vector
distance, ry, between particles 1 and 2, and if the particles are structureless only
on the magnitude of this distance.

Knowing (F12)(ri2) makes it possible to integrate it in order to calculate the
reversible work needed to bring particles 1 and 2 from infinite mutual distance
to a relative distance r between them, while averaging over the positions of all
other particles. The latter are assumed to be at equilibrium for any instantan-
eous configuration of particles 1 and 2. Note that the word “reversible” enters
here as it enters in thermodynamics: A reversible process is one where a system
changes slowly enough so that equilibrium prevails throughout the process. This
work W (T, 2, N;r) is called the potential of mean force. It is intuitively clear that
its dependence on €2 and N enters only through their ratio, p = N/ Q. As defined,
W satisfies W

Vo) _ g, (5.47)
drq
and from Eq. (5.46) we get

dw _ [drs... [dry (0U/orpe PV . T(d/drl)fdm...fdr]ve_lw
dr, fdrg... [drye U = B Tars [ drye FU

—kBT— [m / drs .. / drye” f‘U] (5.48)

Next we change the integral on the RHS of Eq. (5.48) in the following way:

_ NN —1) _
BU BU
/drg.../drNe :>pzfdrl...fdrNe—ﬁU/dryn/drNe

(5.49)
This can be done because the added factors do not depend on r;. Using the definition
of the pair correlation function g(r) we find

aw (1‘12) d
—— = —kgT—1 5.50
an L ng(riz) (5.50)
In particular, for isotropic systems where g(ri2) = g(|ri2|)
aw d
O T L e (5.51)
dr dr
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and integrating between some distance » between two particles and infinity (where
W =0and g = 1) yields

W) =—kpT Ing(r) (5.52)
For an isotropic system at equilibrium at given 7', 2, N we then have
g(r) =e PO (5.53)

As defined, W (r) is the reversible (minimal) work needed to bring two tagged
particles in the system from infinite separation to a distance » between them. For
our equilibrium system at a given volume and temperature this is the change in
Helmbholtz free energy of the system in this process. If the particles repel each other
we need to put work into this process, and the change in free energy is positive,
that is, W > 0. In the opposite case of attraction between the particles W < 0.
Expression (5.53) reflects the corresponding change in the probability to find two
such particles with a distance » between them relative to the completely uncorrelated
case where g = 1.

In the low density limit the work W (r) is dominated by the two-body potential,
so W (r) — u(r). Therefore the low density limit of g(r) is

2(r) 223 exp(—Bu(r)). (5.54)

5.6 The virial expansion—the second virial coefficient

In the absence of inter-atomic interactions the system is an ideal gas that satisfies
P/(kgT) = p. The virial expansion is an expansion of P/(kpT) in a power series
in p:

L B+ (5.55)
kBT_p 20 .

We can get the first correction from Eq. (5.45) by using the fact that the potential of
mean force between two atoms in the fluid is the bare interaction potential corrected
by a term that vanishes with the fluid density

gr)=e PO W) = ur) + 0(p) (5.56)

Therefore in Eq. (5.45) it is sufficient to use W = u in order to get the first-order
correction to the ideal gas law. We find

1
6kgT

1
By = / dre POy (r) . r = c / dr(Ve PO . py (5.57)
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and for an isotropic system
o0
_ 4 f 3 d —ﬂum (5.58)
6
0

This can be simplified by performing integration by parts, leading to the final result
for the second virial coefficient

[e.¢]
By = —2m / drr? (e P4 — 1) (5.59)
0

Further reading

U. Balucani and M. Zoppi, Dynamics of the Liquid State (Clarendon Press, Oxford, 1994).
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Edition (Elsevier, London, 1986).
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6
TIME CORRELATION FUNCTIONS

It is no wonder

That while the atoms are in constant motion

Their total seems to be at total rest,

Save here and there some individual stir.

Their nature lies beyond our range of sense,

Far far beyond. Since you can not get to see

The things themselves, they are bound to hide their moves,
Especially since things we can see, often

Conceal their movement too when at a distance...

Lucretius (c. 99—c. 55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

In the previous chapter we have seen how spatial correlation functions express
useful structural information about our system. This chapter focuses on time cor-
relation functions (see also Section 1.5.4) that, as will be seen, convey important
dynamical information. Time correlation functions will repeatedly appear in our
future discussions of reduced descriptions of physical systems. A typical task is
to derive dynamical equations for the time evolution of an interesting subsystem,
in which only relevant information about the surrounding thermal environment
(bath) is included. We will see that dynamic aspects of this relevant information
usually enter via time correlation functions involving bath variables. Another type
of reduction aims to derive equations for the evolution of macroscopic variables by
averaging out microscopic information. This leads to kinetic equations that involve
rates and transport coefficients, which are also expressed as time correlation func-
tions of microscopic variables. Such functions are therefore instrumental in all
discussions that relate macroscopic dynamics to microscopic equations of motion.

6.1 Stationary systems

It is important to keep in mind that dynamical properties are not exclusively relevant
only to nonequilibrium system. One may naively think that dynamics is unimportant
at equilibrium because in this state there is no evolution on the average. Indeed
in such systems all times are equivalent, in analogy to the fact that in spatially
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homogeneous systems all positions are equivalent. On the other hand, just as in
the previous chapter we analyzed equilibrium structures by examining correlations
between particles located at different spatial points, also here we can gain dynamical
information by looking at the correlations between events that occur at different
temporal points.

Time correlation functions are our main tools for conveying this information in
stationary systems. These are systems at thermodynamic equilibrium or at steady
state with steady fluxes present. In such systems macroscopic observables do not
evolve in time and there is no time origin that specifies the “beginning” of a
process. However, it is meaningful to consider conditional probabilities such as
P(B,t | A,t1)dB—the probability that a dynamical variable B will have a value
in the range (B,...,B + dB) at time #, if another dynamical variable 4 had
the value 4 at time ¢;, and the joint probability P(B, t;A4,t)dBdA that 4 will
be in the range (4,...,4 + dA4) at time ¢t = ¢| and B will be in (B,...,B + dB) at
time 7. These two probabilities are connected by the usual relation (cf. Eq. (1.188))

P(B,t;A,t1) = P(B,t2 | A,t1)P(4, 1) (6.1)

where P(4, t1)dA is the probability that A has a value in the range (4, ...,4 + dA4)
at time #1. In a stationary system the latter obviously does not depend on time,
P(4,t) = P(A) and the conditional and joint probabilities depend only on the time
difference

P(B5t2;A9t1) :P(B,ZZ _t19A50)3 P(Bstz IAatl) :P(B,IZ _tl |A50) (62)

where ¢t = 0 is arbitrary.
The time correlation function of two dynamical variables 4 and B can formally
be defined by (see also Eq. (7.42a))

Cup(t1, 1) = (A(t1)B()) = // dAdBABP(B,ty;4,11) (6.3)

In a stationary system it is a function of the time difference only
(A(1)B(12)) = (4(0)B(1)) = (A(=0)B(0)); t=n—1 (6.4)

Regarding Eq. (6.3), note that we did not say anything about the joint probability
function. While it seems intuitively clear that such function exists, its evaluation
involves analysis of the time evolution of the system. To see this more clearly let
us focus on classical mechanics, and recall that the observables 4 and B correspond
to dynamical variables 4 and B that are function of positions and momenta of all
particles in the system

A = AN o), pV (01, B = Bir" 1), p" (1] (6.5)
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The phase space trajectory r” (¢), pV (¢) is uniquely determined by the initial con-
ditions rV(t = 0) = rV; pN (t=0) = pN . There are therefore no probabilistic
issues in the time evolution from ¢# = 0 to . The only uncertainty stems from the
fact that our knowledge of the initial condition is probabilistic in nature. The phase
space definition of the equilibrium time correlation function is therefore,

Cap(ti, ) = / deNap" e, pMyAfn; eV, p", t = 01Bl; ¥, pY,t = 0]

(6.6)

where, for example, A[t;; ry, pN,t = 0] is the value of 4 at time ¢, that is,
A[rN (11),pN (t1)], given that the state of the system was ", pN )att = 0, and
where f(r"V, p") is the phase space distribution function for this initial state. In
stationary system this “initial” state distribution does not depend on time.

How do the definitions (6.3) and (6.6) relate to each other? While a formal
connection can be made, it is more important at this stage to understand their range of
applicability. The definition (6.6) involves the detailed time evolution of all particles
in the system. Equation (6.3) becomes useful in reduced descriptions of the system
of interest. In the present case, if we are interested only in the mutual dynamics of
the observables 4 and B we may seek a description in the subspace of these variables
and include the effect of the huge number of all other microscopic variables only
to the extent that it affects the dynamics of interest. This leads to a reduced space
dynamics that is probabilistic in nature, where the functions P(B, #;4,t) and
P(B,ty | A,t1) emerge. We will dwell more on these issues in Chapter 7. Common
procedures for evaluating time correlation functions are discussed in Section 7.4.1.

6.2 Simple examples

Here we describe two simple examples, one based on classical and the other on
quantum mechanics, that demonstrate the power of time correlation functions in
addressing important observables.

6.2.1 The diffusion coefficient

The diffusion coefficient describes the coarse-grained dynamics of particles in
condensed systems (see Section 1.5.5). To get an explicit expression we start from
(cf. Eq. (1.209))

1 )
D= lim —((r() —r©)) 6.7)
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and use
t

r(t) —r(0) = /dt’v(t/) (6.8)
0
to get

t

t t t

((r(t) — r(0))?) = / dr’ / dr"(v(t") - v(t)) =2 / dr’ / dr’ (v(¢"y - v(t))
0 0 0 0

(6.9)

The last equality holds because Cy(¢) = (v(#1) - v(t1 + 1)) = (v(t1 + 1) - v(#)) =
Cy(—1). Note that we rely here on the classical identity v(z1) - v(#; + ¢) = v(t] +
t) - v(t1). Therefore,

t t//

1
D = lim —/dt”/dt’Cv(t” —1) (6.10)

t—o00 3t
0 0

This can be simplified by changing variables: 8 = ¢ — ¢, with 6 goes from ¢” to
0 and dt’ = —d#. This leads to

t t’

1
3D = lim —/dt”/d@Cv(Q) 6.11)

t—>o0 t
0 0
The integral is done over the shaded area in Fig. 6.1. Using this picture it is
easily seen that the order of integration in (6.11) may be changed so as to give

t

t
1
3D= lim — [ dO | di"Cy(9)

t—oo t
0 6
1 t
= lim — [ d6(t —60)Cy(0) (6.12)
t—oo t
0
The correlation function Cy(#) = (v(0) - v(¢)) vanishes at long time because

velocities at different times become quickly (on a timescale of a few collisions)
uncorrelated which implies (v(0) - v(¢)) — (v(0))(v(¢)) = 0. For this reason the



SIMPLE EXAMPLES 197

0

Fic. 6.1 The integration interval for Eq. (6.11).

range of 6 that contributes in (6.12) is limited to such rather short times. Therefore,
when t — oo Eq. (6.12) yields

t o0
3D:t£rgo%/d9(t—9)Cv(9) - /dQCV(G) (6.13)
0 0

A time correlation function that involves the same observable at two different
times is called an autocorrelation function. We have found that the self-diffusion
coefficient is the time integral of the velocity auto-correlation function

le»—A

/dt v(t)-v(0)) = é / dt(v(t) - v(0)) = é&v(a) =0) (6.14)
0

—0o0

where N N
Cy(w) = / diCy(t)e'® = / dr(v(t) - v(0))e'" (6.15)

Equation (6.14) associates the zero frequency component of the velocity time cor-
relation function with the long-time diffusive dynamics. We will later find (see
Section 6.5.4) that the high frequency part of the same Fourier transform, Eq. (6.15),
isrelated to the short-time dynamics of the same system as expressed by its spectrum
of instantaneous normal modes.

6.2.2 Golden rule rates

The golden rule rate expression is a standard quantum-mechanical result for the
relaxation rate of a prepared state |i) interacting with a continuous manifold of
states {|f}}. The result, derived in Section 9.1, for this rate is the Fermi golden rule
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formula according to which the rate is k; = I";//i where (cf. Eq. (9.28))

Fi = 2n (Vi Ppp)e,—, = 21 Y Vi |P8(E; — Ey) (6.16)
f

where Vs = (i|V/ |f) and V is the coupling responsible for the relaxation, and where
pr is the density of states in the manifold {f'}. If at # = 0 the system is represented
by a thermal ensemble of initial states, the decay rate is the average!

T=21Y Py |Vyl*8(E — Ey) (6.17a)
i f
Pi=07le Pl 0=3 "¢ B=(eD) (6.17b)

From (cf. Eq. (1.60)) 27 §(E; — Ef) = Al ffooo dt exp(i(E; — Ef)t/h) and Ex|k) =
Holk) (k = i,f) we get
0

2m8(Ei — Ep)e PHGIVIf) =7 f di{ilePH (/1 o= iflot /My )

—n~! f de (il P D)) (6.18)

where f/[ (1) = e’ﬁ‘)’ /h IA/e_’ﬁot /M is the interaction representation of the operator V.
Inserting (6.18) into (6.17) and using?

DIINFI=T= "l @ =0 (6.19)
f i
where 7 is the unit operator, we get

r=r"! f dr(Vi(OVi(0) 7 (6.20)

' In fact what is needed for Eq. (6.17) to be a meaningful transition rate is that thermal relaxation
(caused by interaction with the thermal environment) in the manifold of initial states is fast relative
to I'. See Section 12.4 for further discussion.

% The equality (il V1i'y = 0 for all i, is a model assumption: The picture is of two manifolds of
states, {i} and {f'} and an interaction that couples between, but not within, them.
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Here (...)r is the quantum thermal average, (...)7 = Tr[e—#Ho . .]/Tr[e*ﬂHO],
and Tr denotes a trace over the initial manifold {i}. We have thus identified the
golden rule rate as an integral over time of a quantum time correlation function
associated with the interaction representation of the coupling operator.

6.2.3 Optical absorption lineshapes

A variation on the same theme is the optical absorption lineshape, where the trans-
ition from the group of levels {i} to the group {f'} is accompanied by the absorption
of a photon of frequency w. The transition rate monitored as a function of w is
essentially the absorption lineshape L(w). Except of the fact that the process is
accompanied by the absorption of a photon, the rate is again given by the golden rule
expression (6.16) modified to account for the given energetics and with coupling
that is proportional to the dipole moment operator (for dipole allowed transitions) /i,

L) =AY Piy IGIAL)P8E — Ef + ho) (6:21)
i /

where P; = e PEi /> e PEi (4 is the dipole moment operator, and 4 is a numerical
constant. The same procedure that leads to (6.21) now yields

o0
A . A A
L) ~ 5 — / die’ (L(Op0)); ) = e/t pemitht/h (6 22)
—0oQ

where Hj is the system Hamiltonian that does not include the interaction with the
radiation field Eq. (6.22) is an expression for the golden rule rate of a process that
involves absorption of energy %w from an external source.

In many applications we use models that are more explicit about the nature of the
initial and final states involved in this transition. A common model (see Chapter 12)
is a two-level system that interacts with its thermal environment. The lineshape of
interest then corresponds to the photon-induced transition from state 1 to state 2,
dressed by states of the thermal environment. The initial and final states are now
li) = |1,a) and |f) = |2,a’) where « and o are states of the bath. Equation (6.21)
can then be rewritten as’

L) =A4) Py Y |iaow*8(E1 + e0 — Ey — £ + he) (6.23)

o a

3 The form (6.23) relies on a weak system-bath coupling, whereupon the energies are written as
additive contributions, for example, £ + &4, of these subsystems.
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where we have used P; = e PE1+e) /5 o= BlEIHed) — o=Bea /5 o=Péa = P,
and 1420 = (la|ft|2a). The operator [t can be expressed in the form

= f2|1) (2] + f2112)(1] (6.24)

in which /11, and 1] are operators in the bath subspace. Denoting fiwy; = E» — E|
and repeating the procedure that leads to (6.20) gives

o0
A . A .
L(a)) = 27-[_}2 / dte_l(w_wZI)f ZPa Z (0!|/112|Ol/>(allelHBt/hﬂ21€_lHBt/h|Ol)
00 o o
00
A —i(w—wa)ty 0
=57h dte (12p21(0)B (6.25)

3

Let us have a closer look at the two forms, (6.22) and (6.25). The form (6.22)
was obtained from a picture that looked at a system as a whole, and follows from
a golden-rule type expression (Eq. (6.21)) for the transition between two groups
of states, {i} and {f’}, separated along the energy axis by the photon energy /w.
Equation (6.25) was obtained for a model in which these groups of states are chosen
in a particular way that looks at our overall system as a two-level system interacting
with a bath. In (6.22) the time evolution and averaging is done in the space of the
overall system. In contrast, in (6.25) the operators [t12, L2 are bath operators and
the correlation function is defined in the bath subspace. If the two-level system is
not coupled to its environment then /171 () becomes a time-independent scalar and
(6.25) gives L(w) ~ §(w — wz1). The result is a §-function because in the model
as defined above no source of broadening except the coupling to the thermal bath
was taken into account. The environmental broadening originates from the fact
that in the presence of system-bath coupling the correlation function ({12121 (¢))B
depends on time in a way that reflects the effect of the bath dynamics on the system.

The simplest model for the time-dependent dipole correlation function is an
exponentially decaying function, (/1(¢)(0)) ~ exp(—TI'|¢[).* This form leads to a
Lorentzian lineshape

o0
L(w) ~ / dte™ (@m0l = Tl — 2T (6.26)
(0 — w21)? + I'?
—00

* This is a useful model but we should keep in mind its limitations: (1) It cannot describe the correct
dynamics near ¢t = 0 because the function exp(—I"|#|) is not analytic at that point. Also, it does not
obey the fundamental identity (6.72), and therefore corresponds to a high temperature approximation.
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Such Lorentzian lineshapes will be also obtained from microscopic quantum
(Section 9.3; see Eq. (9.49)) and classical (Section 8.2.4; Eq. (8.41)) models.

6.3 Classical time correlation functions

The time correlation function of two observables, 4 and B was defined as
Cup(t1, 1) = {(A(t1)B(t2)) (6.27)

where, in phase space the average should be understood as an ensemble average
over the initial distribution as detailed in Eq. (6.6).
For a stationary (e.g. equilibrium) system the time origin is irrelevant and

Cyp(t1, ) = Cyp(t1 — t2) (6.28)

In this case the correlation function can also be calculated as the time average

T

1
Cyp(t, ) = lim — /A(tl + t)B(ty + t)dt (6.29)
T—00 2T
-7
The equality between the averages computed by Eqgs (6.27) and (6.29) is implied
by the ergodic “theorem” of statistical mechanics (see Section 1.4.2).

Att — 0Othe correlation function, C45(#) becomes the static correlation function
C43(0) = (4B). In the opposite limit # — oo we may assume that correlations
vanish so that

lim Cyp(t) = (4)(B) (6.30)
t—00

We will often measure dynamical variables relative to their average values, that is,
use A — (A) rather than 4. Under such convention the limit in (6.30) vanishes. In
what follows we list some other properties of classical time correlation functions
that will be useful in our future discussions.

1. The stationarity property (6.28) implies that (4(z + s)B(s)) does not depend
on s. It follows that

0= %(A(t +5)B(s)) = (At + 5)B(5)) + (At + 5)B(s))
= {(A(NB(©)) + (4(NB(0)) (6.31)
Thus, we have found that for a stationary system

(A()B(0)) = —(A(t)B(0)) (6.32)
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An alternative proof provides insight into the nature of time averaging: From
Eq. (6.29) we have

T

. 1 .
(A()B(0)) = lim — /A(t +)B(Hdr' (6.33)
T—>00 T
0
Integrating by parts leads to

T

= lim_ %[A(t +)BW)IZ5 — rlgngoé / At +1)B({ydt = —(A(NB)  (6.34)
0

(the first term vanishes because 4 and B, being physical variables, are bounded).
We will henceforth use the notation B = B(t = 0).

2. Animmediate corollary of (6.32) is that the equal time correlation of a classical
dynamical variable with its time derivative is zero

(44) = 0. (6.35)

Problem 6.1. Using similar reasoning as in (6.31) and (6.34) show that
(4(DB) = —(4(1)B) (6.36)
and more generally

(4% ()B) = (=1)"(4" ())B™) (6.37)

where A™ denotes the nth time derivative.

Problem 6.2. For a classical harmonic oscillator whose position and momentum
are x and p define the complex amplitude

a(t) = x(t) + (i/(mw))p(t) (6.38)
so that x = (1/2)(a + a*) and p = —(imw/2)(a — a*). a and a*evolve accord-
ing to @ = —iwa; a* = iwa*. Show that for a harmonic oscillator at thermal
equilibrium

(@) = (@)?) =0;  (lal*) = 2kpT/(mo”) (6.39)

Use it to show that (x(#)x(0)) = (kgT /ma)z) cos(wt).



CLASSICAL TIME CORRELATION FUNCTIONS 203

3. An important property of time correlation functions is derived from the time
reversal symmetry of the equations of motion. The time reversal operation, that is,
inverting simultaneously the sign of time and of all momenta, reverses the direction
of the system’s trajectory in phase space. At the moment the transformation is made
each dynamical variable is therefore transformed according to

A—eygA (6.40)

where ¢4 = +1 or —1 depending on whether A is even or odd in the combined
power of the momenta. Except for that, the dependence of A on r and p remains
the same and, since the time-reversed trajectory is a legitimate system’s trajectory,
it samples in equilibrium the same system’s states as the original trajectory. This
yields the same result for Eq. (6.29). It follows that

Cyp(t) = (A()B(0)) = e4ep(A(—1)B(0)) = 4¢p({A(0)B(t)) = e4e5Cpa (1)
(6.41)
It also follows that autocorrelation functions (4 = B) are even functions of time

Cua(t) = Cyu(—1) (6.42)

4. Dynamical variables that correspond to observables are real, however it is
sometimes convenient to work with complex quantities such as the variables a and
a* in Eq. (6.38). For a complex dynamical variable the autocorrelation function is
conventionally defined as

Caa(t) = (A)A¥) (6.43)

This insures that C44(¢) is a real function of ¢ because, by the same argument as
in (6.41)
Cua(t) = (ADA™) = (A(=)A") = (44™ (1)) = (A" () A4) = C44()*  (6.44)

Note that this reasoning assumes that A and 4*(¢#) commute, and therefore holds
only in classical mechanics.
5. An important property of all correlation functions follows from the Schwarz’s
inequality, Eq. (1.87)
(AB)? < (4A4)(BB) (6.45)

or, if 4 and B are complex,
[(AB*)|* < (44%)(BB¥) (6.46)

From this it follows that
[Caa(®)] < 1C14(0)] (6.47)
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that is, the magnitude of an autocorrelation function is never larger than its initial
value.
6. Consider the Fourier transform of an autocorrelation function

o

Cas(w) = / dre™ Cy4(1) (6.48)

—00

This function is sometimes called the power spectrum or the spectral function of the
observable 4(¢), and can be related to the absolute square of the Fourier transform
of A(¢) itself. To show this start from

T

Ar(w) = f A dt (6.49)
-T
whence
T T 00
(|A7(@)|?) /dz[d/ (=) (4t — ) A*(0)) '=3° 2T / dte' T Cuq(1)
-T -T —00

(6.50)
This result is known as the Wiener—Khintchine theorem (see also Section 7.5.2).
From the obvious inequality (|47 (w)|?) > 0 it follows that

Cya(w) >0 (6.51)

that is, the spectrum of an autocorrelation function is nonnegative.
7. Consider again the autocorrelation function

Caa(t) = (A(HA")

In real systems, where the interaction potential is continuous and finite for all relev-
ant interatomic distances, all forces are finite and the time evolution is continuous.
C44(t) isthen an analytical function of time, and in particular can be expanded about
t = 0. From Cy4(t) = C44(—1) it follows that only even powers of ¢ contribute to
this expansion:

o0

2n 00 t2n
Cur) = 2_(:) ®<A<2”>A*> - Z(j) D P 652
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where again A is the nth time derivative of 4, and where we have used Eq. (6.37).
For the velocity autocorrelation function of a given particle this leads to

3kBT 1

(v(®) -v) = (1-— EQOt +--4) (6.53)
where
2 _ M e oy — 2
Q= 3kBT(V V) 3kaT<IVU| ) (6.54)

where U is the potential and —V U is a gradient with respect to the position of
the particle, that is, the total force on that particle. For a fluid of identical particles
Qq is sometimes referred to as the “Einstein frequency” of the fluid. This is the
frequency at which a tagged particle would vibrate for small amplitude oscillations
in the averaged (over all frozen configurations) potential well created by all other
particles. Since the forces in liquids are similar to those in solids, we expect this
frequency to be of the same order as the Debye frequency of solids, of the order of
1013-10M 571,

Problem 6.3. Show that

1 2
—(V2U) (6.55)

2
QO=3m

and use this result to show that if the potential U is a sum of binary interactions,
U=(1/2) Zi,/' u(r;j) then

o0

/ Vzu(r)g(r)rzdr (6.56)
0

2mp
2
% = 3m

where g(r) is the (radial) pair correlation function.

Solution: Start from (|ViU2) = [dr¥e PV Uy . viu@h)/

[d r e‘ﬂU(rN), where the subscript 1 refers to the tagged particle that serves to
specify the force, and rewrite it in the form

(9,0 = _ L[4V Vv at
T [ drNe=BUE)

(6.57)
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The expression in the numerator is [ drV Vle_ﬁU(rN) ViUxy) =
[drN (V- (e PUV U)) — [drVe PUVZU and the contribution of first term
on the right may be shown to be zero. Indeed, from the divergence theorem
(Eq. (1.36))

/ dr (vy - (e PUv,U)) / / drN e AU

= /drN_I/dsle_ﬂU(ﬁ-VlU)// drV =AU (6.58)
S1

Where 1 is a unit vector in the subspace of the tagged particle in the direction
normal to the surface S of this subspace. The integrand in (6.58) is seen to be
the averaged force exerted on the system’s surface by the tagged particle. For
a system with short-range forces this quantity will vanish like (system size) ™!
which is the ratio between the number of particles near the surface to the total
number of particles. This implies that (| VU |?) = kgT (V2U) from which follows
(6.55). To obtain the expression (6.56) one follows the procedure of Section 5.4.2,
except that the relevant sum is not over all pairs but only over pairs that involve
the tagged particle.

Problem 6.4. Show that the short time expansion of the position autocorrelation
function is

(r(0) - r(0)) = () — %tz(vz) o= (2 — %l%th SE (6.59)

Note that the negative sign in the O(z?) term is compatible with the inequal-
ity (6.47).

6.4 Quantum time correlation functions

The quantum mechanical analog of the equilibrium correlation function (6.6) is
N A~ e_'B[:I ~ N
Cup(ti,12) = (A(1)B(12)) = Tr jA(tl)B(tZ) (6.60)

where Q = Tr(e—#") and where X (1) = Xu(r) = &ft/n R e—iflt/h (Xu denotes
the Heisenberg representation, see Section 2.7.1, however for notational simplicity
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we will suppress this subscript in the remainder of this section). The quantum
mechanical thermal average and the quantum density operator p = O~ ! exp(—B8H)
are discussed in more detail in Section 10.1.5. Several properties follow directly:

1. From the cyclic property of the trace and the fact that the equilibrium dens-
ity operator p = O lexp(—BH) commutes with the time evolution operator
exp(—iHt/h) it follows that

(A0)B(1) = (At = )BO)) or Cap(ti, 1) = Cap(ti —12)  (6.61)

and that o o
(A(®)B(0)) = (4(0)B(—1)) (6.62)

These identities are identical to their classical counterparts, for example, (6.28).
2. If A and B are real operators

(A(H)B(0)) = (A(—)B(0))* (6.63)
3.1f A and B are hermitian operators then the identities
Cpa(—1) = (B(=0A(0)) = (BO)A(1)) = (BO)YA)T)* = (4(1)B(0))*
(where we have used the identity (10.37)) implies that for such operators
(A(DB0)) = (BO)A®)*,  thatis, Cap(t) = Cjyy(—1) (6.64)

A special case of the identity (6.64) is (;1 (l‘)za 0)) = (21( —[)121 (0))*. This shows
that (6.63) holds also for the autocorrelation function of a hermitian (not necessarily
real) operator.

4. For hermitian 4 and ]_??, the Fourier transform

Cup(®) = / dte™ Cp(1) (6.65)

satisfies the symmetry property

o0
t——t

Cypg(—w) = | dte ™ Cyp(t) == / dte’ Cy5(—1)
—00

dte’'C}; ,(t) = Ch 4 (@) (6.66)

I
!
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The reader should notice the difference between C‘g (@) = f fooo dte'®! Cj,(t) and
(Cpa(w))* = [0, dte™'C} (1)

Problem 6.5. For the real and imaginary part of the quantum correlation function

Cis(t) = Cup(t) + Cip(t) = 2ReCyp(t)

(6.67)
C (1) = Cup(t) — Cip(t) = 2iImCyp(t)
Show that
Cip(—t) = C4, (), Cp(—t) = —Cg (1) (6.68)
and
Ciz(@) - ZO die™' C (1) = Cap(@) + Cpa(—w) 669)

Cp(@) = Cup(@) — Cps(—w)

5. In the representation defined by the complete set of eigenstates of the
Hamiltonian Egs (6.60) and (6.65) yield

o0 o0

Cyp(w) = /dte"‘” (A(H)B(0)) = /dte"‘”Tr( lﬁt/hzae—iﬁ[t/hé>
%o -
1 o
= G / die® Z Z o BEngiEr—Enlifhy B 6.70)
—00 nom

The integral over time yields 27 45 (E;,, — En, + hw), so
Cap(@) = =57 D &) AunBund (En = En+he)  (671)
n m

from this follows the following interesting identities

Cyp(w) = P Cpy(—w) (6.72)
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or

/ dte' (A(H)B(0)) = &P / dte "' (B(£)A4(0)) = P / dte’ (B(0)A(t))

(6.73)
Equations (6.72) and (6.73) are obtained by replacing in (6.70) exp(—BE,) —
exp(—pB(E, — Aw)). The possibility for this substitution is implied by (6.71). We
then get

o0
,BEm A A
/ dte’ (4(H)B(0)) = P f dte"‘”ZZ (m|Bln) (nle 4/ qe= 1/ )
—00
00 4 e—ﬁﬁA . R Ny
= ePhe / dte'' Tr e Be!/h g1/ (6.74)
—00

which is the expression on the right-hand side of (6.73). The middle form in (6.73)

is obtained by transforming the integration variable t — —t. For B=4 Eq. (6.73)
becomes

/ dte' (A(HA0)) =P | dte’™® (A(—1)A(0))

Bhiw

dte " (4(£)A(0)) (6.75)

!
I

Note that in classical mechanics the mutual commutativity of 4(¢) and 4(0) implies
that these identities are satisfied without the factors e#"®. This is consistent with
the fact that the classical limit is achieved when Bhiw < 1. We will see that the
identities (6.73) and (6.75) imply the existence of detailed balance in thermally
equilibrated systems.

6.5 Harmonic reservoir

The Debye model discussed in Section 4.2.4 rests on three physical observations:
The fact that an atomic system characterized by small oscillations about the point
of minimum energy can be described as a system of independent harmonic oscillat-
ors, the observation that the small frequency limit of the dispersion relation stems
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from the characterization of long wavelength modes as sound waves and the real-
ization that an upper frequency cutoff is suggested by the finite number of atoms
and the finite interatomic distance. None of these features rely on some underlying
crystal periodicity. Indeed, in describing systems interacting with their condensed
thermal environment we often model the latter as a bath of harmonic oscillators
even when this environment is not a periodic solid or even a solid at all. This model-
ing is suggested by the mathematical simplicity of the harmonic oscillator problem
on one hand, and by timescale considerations on the other. We will return to the
latter issue below. In what follows we assume the thermal environment (referred
to as “bath” below) may indeed be described by a set of independent oscillators
(“modes”) and explore the dynamical properties of such an environment.

6.5.1 Classical bath

We consider a classical equilibrium system of independent harmonic oscillators
whose positions and velocities are denoted x;,v; = X;, respectively. In fact, deal-
ing with normal modes implies that we have gone through the linearization and
diagonalization procedure described in Section 4.2.1. In this procedure it is con-
venient to work in mass-normalized coordinates, in particular when the problem
involves different particle masses. This would lead to mass weighted position and
velocities, y; = ,/m;x;; y; = ,/m;v; and to the normal modes coordinates (v, itj),S
in terms of which the bath Hamiltonian is

H=(1/2) Zj @ + i), (6.76)
The phase space probability distribution is

P({ig, u}) = | | Pe Gtk ug)
¢ (6.77)

w
P (itge, ug) = ﬁ2nk —(1/2) B +wu?)

5 The normal modes are derived from the mass weighted coordinates, therefore u has the dimen-
sionality [l][m]l/ 2Ina system of identical atoms it is sometimes convenient to derive the normal
modes from the original coordinates so as to keep the conventional dimensionality of « and 7. In this
case the Hamiltonian is H = (m/2) ) _; h (u + j u2) and Eqgs (6.78) take the forms

(ugug) = kgT/(mo®)os (i) = (kpT /m)Sy
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The coefficient in front of the exponent is a normalization factor. This leads to

kgT .. .
(upur') = —-Spe'; (i) = kpT oy (ugig) = 0 (6.78)

Wy

This bath is characterized by the density of modes function, g(w), defined such that
g(w)dw is the number of modes whose frequency lies in the interval w,...,w +
dw. Let

A= Zj Cju;, B = Zj Cjitj =A (6.79)

and consider the time correlation functions

Caa(t) = (A(1)A(0)), Cpa(t) = (B()B(0)), and Cyp(r) = (A(1)B(0))

(6.80)

Such correlation functions are often encountered in treatments of systems coupled to
their thermal environment, where the model for the system—bath interaction is taken
as a product of 4 or B with a system variable. In such treatments the coefficients
c; reflect the distribution of the system—bath coupling among the different modes.
In classical mechanics these functions can be easily evaluated explicitly from the
definition (6.6) by using the general solution of the harmonic oscillator equations
of motion

() = u;(0) cos(w;t) + w~ i (0) sin(w;t) (6.81a)

i{j(l‘) = —a)juj(O) sin(a)jt) + uJ(O) cos(a)jt) (6.81b)

Problem 6.6.

(1) Show that if Eq. (6.78) holds for u;(t = 0) and u;(¢ = 0) then it holds at
any time, for example, a)j.2<uj(t)uj/ @) = (W Ouy (1)) = kT4 .

(2) Using Eqgs (6.81) show that the velocity time correlation function of a
classical harmonic oscillator in thermal equilibrium satisfies

(i1;(0)iyr (1)) = kpT cos(w;t)é; v (6.82)
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(3) Use Eq. (2.166) to show that the quantum analog of (6.82) is

5 . ho hwj iwit
(u;(0)a; (1)) = o cos(wjt) + Te 7 (6.83)

wj __ 1

(4) Show that in an isotropic harmonic system of N identical atoms with
atomic mass m the density of normal modes is related to the atomic
velocity correlation function by

M . 3m N 5 . —iwt
T f dt(x(0)x(2))e (6.84)

Solution to 6(4). Derivation of Eq. (6.54):
From Eqs (4.13) and (6.81) it follows that

G030y =Y > (T (T e Gitg ()i (1))

kK
=kpT Y (T 1) Ty cos(wt) (6.85)
k

In the second equality we have used the unitarity of T. Using also
> (T7HuTy = 1 we get from (6.85)

D G5(0)(0) = ksT Y coswyt = kgT / dwg(w) cos(wt) (6.86)
J k 0

If all atoms are identical, the left-hand side of (6.86) is 3Nm (x(0)x(¢)) where x is
the atomic velocity (see Eq. (4.9)). Defining g(—w) = g(w), we rewrite (6.86)
in the form

keT [ .
(x(0)%(2)) =6";—N / dwg(w)e'™ (6.87)

which leads, by inverting the Fourier transform, to (6.84).
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Using Eqs (6.81) and (6.78) in (6.80) yields

2 o0
c; 2kpT J
Caat) = ksT > L cos(ejt) = =2 / do cos(r) (6.882)
. :; T w
J 0
2UsT [
Cpp(t) = kgT Y _ ¢} cos(ejt) = 2B | dww () cos(wr) (6.88b)
- T
J 0
and
c? 2hsT [
Cyp(t) = kgT Z .~ sin(w;t) cos(w;jt) = /da)J(a)) sin(wt) cos(wt)
;Y Ty
(6.89)
where J (w) is the bath spectral density, defined by
b c?
— J
J(@) =7 > ;jé(a} — w)) (6.90)

J

The function is defined as a sum of delta-functions, however for macroscopic
systems this sum can be handled as a continuous function of w in the same way that
the density of modes, g(w) = Zj 3w — w)) is.® Defining the coupling density by

A(w)g(w) = Zj 78 (0 — ) (6.91)
Equation (6.90) can also be written as

2
J(w) = W (6.92)

6.5.2 The spectral density

The spectral density, Eqs (6.90) and (6.92) is seen to be a weighted density of modes
that includes as weights the coupling strengths c?(w). The harmonic frequencies wj

® This is a coarse-graining procedure that is valid if the spacing between frequencies w; is much
smaller than the inverse time resolution of any conceivable observation. See Section 1.4.4 and
Eq. (1.182).
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are obviously positive, therefore by this narrow definition J (w) (and g(w)) are zero
for negative values of the frequency. It is sometimes useful to extend these functions
to negative frequencies by defining g(—a))cz(—w) = g(a))c2 (w). From (6.90) or
(6.92) it follows that under this definition J (w) is an antisymmetric function of w,

J(—») = —J (@) (6.93)

The spectral density (see also Sections (7-5.2) and (8-2.5)) plays a prominent
role in models of thermal relaxation that use harmonic oscillators description of
the thermal environment and where the system-bath coupling is taken linear in the
bath coordinates and/or momenta. We will see (an explicit example is given in
Section 8.2.5) that J (w) characterizes the dynamics of the thermal environment as
seen by the relaxing system, and consequently determines the relaxation behavior
of the system itself. Two simple models for this function are often used:

The Ohmic spectral density

J(w) = nwexp(—|ol/w) (6.94)

is characterized by a cutoff frequency w, a linear dependence on w for w < w.
and an exponential drop to zero for w > w.. We will see in Section 8.2.5 that in the
limit where ! is smaller than all the characteristic system timescales this model
bath affects a simple constant friction on the system.

The Drude (sometimes called Debye) spectral density

(6.95)

also grows linearly with o for @ < w, however it vanishes as w~! when w — oo.

Problem 6.7. In Section 8.2.5 we will encounter the “memory function” Z(¢) =
2/mwm) fooo dw(J(w)/w) cos(wt). Calculate the memory functions associated
with the Ohmic and the Drude models and compare their time evolutions.

6.5.3 Quantum bath

For a system of harmonic oscillators it is easy to derive the quantum equival-
ents of the results obtained above, as was already exemplified by Problem 6.6(3).
By way of demonstration we focus on the time correlation function, Cy4(¢) =
Zj C]2<ftj(l)itj (0)). The normal mode position operator can be written in terms of
the raising and lowering operators (cf. Eq. (2.153); note that the mass factor does
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not appear below because normal modes coordinates are mass weighted variables)
iy = \/h/Qu) (@ + &) (6.96)

Using Eqs (2.165) and (2.196), (2.197) we get

2
Caa(®) = Zj 2—;((;1]» + e ™ 4 pie'"
7

o0
7 , _
=— / doJ ()[(n(w) + e ™ + n(w)e'™'] (6.97)
T
0
where n;, = n(w) = (ePh@i — 1)~1, In the classical limit where
nw) = (kpT/hw) > 1 this leads again to (6.88a). Cpp(f) and

Cyp(t) are obtained along similar lines, and for example, Cyp(t) =
(ih/7) [;° do o (@)[(n(w) + De ™ — n(w)e™’]. At time ¢t = 0 this gives
C4p(0) = (ifi/7) fooo wJ (w), demonstrating that the identity (6.35) does not hold
for quantum correlation functions.

Problem 6.8.

(1) Show that Cy4(7) satisfies the identity (6.64).

(2) Show that ffooo dte'' C 4(t) = 2h[J (w) (n(w) — n(—w) + 1)].

(3) Show that [Z die™'Caa(t) = &P [ dte' Cua(—t) =
ePhe [ dte™'Cy4(t) as implied by Eq. (6.73).

6.5.4 Why are harmonic baths models useful?

Consider Eq. (6.84). This result was obtained for a harmonic system of identical
and equivalent atoms. We could however reverse our reasoning and define a vibra-
tional spectrum for a dense atomic system from the velocity autocorrelation function
according to Eq. (6.84). Since this function can be computed for all systems, includ-
ing liquids and disordered solids, we may use (6.84) as a definition of a spectrum
that may be interpreted as density of modes function for such media. We can then
use it in expressions such as (4.33), and (6.92). Is this approach to dynamics in
condensed phases any good?

We can also take another route. Obviously, we can repeat the development
that lead to Eq. (4.12) for any harmonic system. We can define such a system by
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expanding of the interatomic potential about some configuration xé’ , not neces-

sarily a minimum point, and neglecting higher-order terms, as in (4.6). This can
be done also for liquids, taking xév to be any instantaneous configuration. The
matrix K, Eq. (4.9), is again diagonalized and the spectrum of eigenvalues in (4.11)
is used to construct the density of modes. The resulting (gjnst (@)), averaged over
all relevant configurations (usually a thermal distribution) is the averaged density
of instantaneous normal modes of the liquid.

The two distributions, g(w) defined by (6.84) and (gjnst(w)), are not identical,
and neither should be taken as a representation of a real harmonic system. Indeed,
while the eigenvalues defined by Eq. (4.11) are all positive, so that the corres-
ponding frequencies are real, there is no reason to expect that this will be the case
for the “instantaneous frequencies.” Imaginary instantaneous frequencies (negat-
ive eigenvalues in (4.11)) just reflect the fact that configurations other than local
minimum points of the potential surface may have negative curvature in some
directions. As for the velocity correlation function, while intuition tells us that high-
frequency Fourier components in (6.84) indeed reflect a local oscillatory motion,
low-frequency ones seem more likely to reflect longer-range motion. Indeed, the
zero frequency Fourier transform f fooo dt(x(0)x(t)) has been shown (see Eq. (6.14))
to be related to the diffusion coefficient of the corresponding particle.

Still, these concepts are found to be useful and their usefulness stems from times-
cale considerations. We will repeatedly see that for many chemical processes the
relevant timescales for environmental interactions are short. This does not mean that
the system sees its environment for just a short time, but that the dynamics is
determined by a succession of short time interactions. If subsequent interactions
are uncorrelated with each other, each can be treated separately and for this treat-
ment a harmonic bath picture might suffice. Two conditions need to be satisfied for
this to be a good approximation:

1. In the instantaneous normal mode picture, the density should be high enough
and the temperature low enough so that the solvent stays not too far from
its equilibrium configuration and therefore the contribution of modes of
imaginary frequencies can be disregarded.

2. The timescale of environmental (solvent) motions that determine the solvent
dynamical effect on the process of interest should be shorter than the timescale
on which the solvent can be described as a harmonic medium.

Figure 6.2 shows an example where these ideas were applied to water as a solvent.
The process under investigation is solvation dynamics (see Chapter 15), in this par-
ticular case—solvation of electron in water. Figure 6.2(a) shows the instantaneous
normal mode density for water at 300 K obtained from numerical simulations. By
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Fic. 6.2 (a) Instantaneous normal modes in room temperature water as obtained from molecular
dynamics simulations. The negative frequency axis is used to show the density of imaginary frequen-
cies. (b) The solvation response function (see Chapter 15) for electron solvation in water, calculated
from direct classical MD simulations (full line), from the instantaneous normal mode representation
of water (dash-dotted line), and from a similar instantaneous normal mode representation in which
the imaginary frequency modes were excluded (dashed line). The inset in Fig. 6.2 shows the short
time behavior of the same data. (From C.-Y. Yang, K. F. Wong, M. S. Skaf, and P. J. Rossky, J. Chem.
Phys. 114, 3598 (2001).)

convention the modes of imaginary frequency are shown on the negative side of
the w axis. The peaks about 1700 cm~! and 3600 cm ™! correspond to the internal
vibrational modes of water. Figure 6.2(b) shows the result of a calculation per-
taining to solvation dynamics of electron in water, comparing the result of a full
calculation (full line) to results obtained by representing water as a normal mode
fluid with normal mode density taken from Fig. 6.2(a) (dashed-dotted-line) and
from a similar calculation (dashed line) that uses only the real frequency modes.
The agreement, forup to ¢ =~ 100 fs, between the full calculation and the calculation
based on instantaneous normal modes of real frequencies, suggests that at least as
a practical tool a harmonic view of water can be useful for describing processes
whose dynamics is determined by shorter timescales.
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The use of harmonic baths to model the thermal environment of molecular
systems does not rest only on such timescale arguments. We have seen in Chapter 3
that the radiation field constitutes an harmonic environment that determines the
radiative relaxation properties of all material systems. We will see in Chapters 15
and 16 that dielectric solvents can be modeled as harmonic environments in which
the harmonic modes are motions of the polarization field. In the latter case the
harmonic environment picture does not rely on a short time approximation, but
rather stems from the long wavelength nature of the motions involved that makes
it possible to view the solvent as a continuum dielectric.

Further reading

J. P. Hansen and 1. R. McDonald, Theory of Simple Liquids, 2" edition (Elsevier, London, 1986)
Chapter 7.
D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976) Chapters 21-22.
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INTRODUCTION TO STOCHASTIC PROCESSES

Once you make

The count of atoms limited, what follows

Is just this kind of tossing, being tossed,
Flotsam and jetsam through the seas of time,
Never allowed to join in peace, to dwell

In peace, estranged from amity and growth...

Lucretius (c.99—c.55 Bcg) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

As discussed in Section 1.5, the characterization of observables as random vari-
ables is ubiquitous in descriptions of physical phenomena. This is not immediately
obvious in view of the fact that the physical equations of motion are deterministic
and this issue was discussed in Section 1.5.1. Random functions, ordered sequences
of random variable, were discussed in Section 1.5.3. The focus of this chapter is a
particular class of random functions, stochastic processes, for which the ordering
parameter is time. Time is a continuous ordering parameter, however in many prac-
tical situations observations of the random function z(¢) are made at discrete time
0<t <t,...,<t, <T.Inthis case the sequence {z(¢;)} is a discrete sample of
the stochastic process z(¢).

7.1 The nature of stochastic processes

Let us start with an example. Consider a stretch of highway between two intersec-
tions, and let the variable of interest be the number of cars within this road segment
at any given time, N (¢). This number is obviously a random function of time whose
properties can be deduced from observation and also from experience and intuition.
First, this function takes positive integer values but this is of no significance: we
could redefine N — N — (N) and the new variable will assume both positive and
negative values. Second and more significantly, this function is characterized by
several timescales:

1. Let 7 is the average time it takes a car to go through this road segment, for
example 1 min, and compare N (¢) and N (¢ + A¢) for At <« 11 and At > 17.
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Fic. 7.1 Anillustrative example of stochastic processes: The number of cars in a given road segment

during a period of 30 min. Sampling is taken every 1 min which is the average time it takes a car to
pass through this road segment.
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Fic. 7.2 The same process as in Fig. 7.1, observed over a longer timescale. Sampling is taken every
3 h over a period of 24 h.

Obviously N () =~ N(t + At) for At < 71 while in the opposite case the
random numbers N (¢) and N (¢ + A¢) will be almost uncorrelated. Figure 7.1
shows a typical result of one observation of this kind. The apparent lack
of correlations between successive points in this data set expresses the fact
that numbers sampled at intervals equal to or longer than the time it takes to
traverse the given distance are not correlated.

. The apparent lack of systematic component in the time series displayed here

reflects only a relatively short-time behavior. For time exceeding another
characteristic time, 7, typically of the order ~1 h for this problem, we observe
what appears to be a systematic trend as seen in Fig. 7.2.

Here sampling is made every 3 h over a period of 24 hours and the line
connecting the results has been added to aid the eye. Alternatively, we may
perform coarse graining in the spirit of Eq. (1.180) using time intervals of,
say, At = 1y = | h, which will lead to a smoother display. The systematic
trend shows the high and low traffic volumes at different times of day.

. If we extend our observation to longer times we will see other trends that

occur on longer timescales. In this example, we may distinguish between
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long timescale (multi-year) evolution associated with changing population
characteristics, monthly evolution related to seasons, daily evolution associ-
ated with work-weekend schedules, hourly evolution (timescale 7,) related to
day/night and working hours, and short time evolution (timescale 71) asso-
ciated with individual driver’s timings. All but the last one are systematic
phenomena that could be analyzed and predicted. This last stochastic com-
ponent could be eliminated from our considerations by coarse graining over
time period longer than 7; and shorter than 7. The resulting description
will be adequate for many practical applications, for example, planning the
highway system.

Note that in the example considered above, the systematic behavior and the
stochastic fluctuations arise from different causes. Sometimes the random motion
itself gives, in time, a systematic signal. If we put an ink drop at the center
of a pool of water the systematic spread of the ink by diffusion is caused by
random motions of the individual molecules, each characterized by zero mean
displacement.

Consider another example where the variable of interest is the number »n of
molecules in some small volume A} about a point r in a homogeneous equilib-
rium fluid. Again, this is a random variable that can be monitored as a function of
time, and the result n(¢) is again a stochastic process. In the homogeneous fluid
all spatial positions are equivalent and we may regard a set of such points {r;}
and volumes AV about them, sufficiently far from each other so that these small
volumes are statistically independent. This defines an ensemble of identical sys-
tems. The corresponding ensemble of stochastic trajectories, n;(¢); j = 1,...,N,
is a collection of different realizations of the stochastic process under considera-
tion. We can also obtain such different realizations if we focus on a single system
and generate trajectories n(¢) from different starting times. The equivalence of both
ways for generating realizations stems from the fact that the stochastic process
under discussion is stationary, displaying no average (systematic) time evolution.

The following table represents a data set collected at discrete time points for N
such systems

t1=0 Hh=H+At t3=1 + 2At
ny ni(t) ni(t) ny(t3)
ny  np(fy) ny (1) na(t3)

ny NN '(tl) ny .(12) ny '(tz)
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Each line in this set represents a realization of our stochastic process. In fact each
set of numbers starting at any time, for example, n1(#3), n1(t4 —3), n1(ts — 13), . . .,
represents such a realization. Each column, for example, n;(#1);j = 1,...,N,
contains different realizations of the random variable that represents the number of
particles in volume AV at the given time.

Two important observations can now be made

1. The data set given above can be used to generate the probability distribution
associated with the random variable #. For each column (i.e. at each time ¢)
we can count the number of systems in the ensemble, S,(¢), that contain at
time ¢ exactly » molecules. A plot of S, against n is called histogram. The
required probability distribution at time # is given by this histogram after
normalization

P(n,t) = lim Sy 5O (7.1)
N—oo Zn S, (1) N—ooo N

In practical applications a finite large N is used. In a stationary system like

our equilibrium fluid, where P(n, t) = P(n) does not depend on time, we can

reduce statistical errors by further averaging (7.1) over different time data

(i.e. different columns).

Problem 7.1. Consider the observation of the number of cars on a road
segment as a function of time discussed above. In order to obtain the
distribution P(n, ¢) for this process one needs to obtain a representative set
of stochastic trajectories. Using the timescales scenario discussed above
for this system, suggest a procedure for obtaining an approximation for
P(n,t).

2. The stationary nature of our system and the ergodic theorem (see
Section 1.4.2) imply that time and ensemble averaging are equivalent. This
by no means implies that the statistical information in a row of the table
above is equivalent to that in a column. As defined, the different systems
j=1,...,N are statistically independent, so, for example, (n(¢t)ny(t1)) =
(n1(t1)){n2(t1)). In contrast, when two times, #; and 7, are close to each
other the numbers n1(¢;) and n;(f2) may not be statistically independent so
that (n1(t))n1(t2)) # (n1(t1)){n1(t2)). The time series provide information
about time correlations that is absent from a single time ensemble data. The
stationary nature of our system does imply, as discussed in Section 6.1, that
(n1(t1)n1(t2)) depends only on the time difference t, — ¢1.
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More generally, while in a stationary system P(n,f) = P(n) contains no
dynamical information, such information is contained in joint distributions like
P(ny, t2;n1, t1) (the probability to observe n1 molecules at time 71 and 7, molecules
at time #p) and conditional distributions such as P(ny, f; | n1, t1) (the probability to
observe ny molecules at time ¢, given that n; molecules were observed at time #1).
We will expand on these issues in Section 7.4.

7.2 Stochastic modeling of physical processes

Given the initial conditions of a classical system of V particles (i.e. all initial 3V pos-
itions and 3N momenta) its time evolution is determined by the Newton equations
of motion. For a quantum system, the corresponding N -particle wavefunction is
determined by evolving the initial wavefunction according to the Schrédinger
equation. In fact these initial conditions are generally not known but can often
be characterized by a probability distribution (e.g. the Boltzmann distribution for
an equilibrium system). The (completely deterministic) time evolution associated
with any given initial state should be averaged over this distribution. This is an
ensemble average of deterministic trajectories.

As discussed in Section 1.5.1, we often seek simplified descriptions of physical
processes by focusing on a small subsystem or on a few observables that charac-
terize the process of interest, and these variables then assume random character.
As a particular example consider the center of mass position r; of an isotopically
substituted molecule 7 in a homogeneous equilibrium fluid containing a macro-
scopic number N of normal molecules. The trajectory r;(¢) of this molecule shows
an erratic behavior, changing direction (and velocity) after each collision. This tra-
jectory is just a projection of a deterministic trajectory in the 6/V-dimensional phase
space on the coordinate of interest, however solving this 6N -dimensional problem
may be intractable and, moreover, may constitute a huge waste of effort because it
yields the time dependence of 6N momenta and positions of all N particles while we
are interested only in the position r;(¢) of a particular particle i. Instead we may look
for a reduced description of r;(¢) only. We may attempt to get it by a systematical
reduction of the 6/V-coupled equations of motion. Alternatively, we may construct
a phenomenological model for the motion of this coordinate under the influence of
all other motions. As we shall see, both ways lead to the characterization of r;(t) as
a stochastic process.

As another example consider the internal vibrational energy of a diatomic
solute molecule, for example, CO, in a simple atomic solvent (e.g. Ar). This
energy can be monitored by spectroscopic methods, and we can follow processes
such as thermal (or optical) excitation and relaxation, energy transfer, and energy
migration. The observable of interest may be the time evolution of the average
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vibrational energy per molecule, where the average is taken over all molecules of
this type in the system (or in the observation zone). At low concentration these
molecules do not affect each other and all the information can be obtained by
observing (or theorizing on) the energy E;(f) of a single molecule j. The aver-
age molecular energy (E(¢)) is obtained as an ensemble average of E;(¢) over
many such molecules, or over repeated independent observations on a single
molecule.

With respect to the average vibrational energy, it is often observed following
vibrational excitation that this observable relaxes as an exponential function of time,
(E()) = E(0) exp(—y1). A single trajectory E;() (also observable in principle by
a technique called single molecule spectroscopy, see Section 18.6.3) is however
much more complicated. As before, to predict its exact course of evolution we
need to know the initial positions and velocities of all the particles in the system
(in quantum mechanics—the initial many-particle wavefunction), then to solve the
Newton or the Schrédinger equation with these initial conditions. Again, the res-
ulting trajectory in phase space is completely deterministic, however Ej(¢) appears
random. In particular, it will look different in repeated experiments because in set-
ting up such experiments only the initial value of E; is specified, while the other
degrees of freedom are subjected only to a few conditions (such as temperature and
density). In this reduced description E;(f) may be viewed as a stochastic variable.
The role of the theory is to determine its statistical properties and to investigate
their consequences.

Obviously, for a given physical process, different stochastic models can be
considered by employing different levels of reduction, that is, different subspaces
in which the process is described. For example, the time evolution of the vibrational
energy of a single diatomic molecule can be described as a stochastic evolution
of just this variable, or by studying the stochastic dynamics in the subspace of the
coordinate (the internuclear distance) and momentum of the intramolecular nuclear
motion, or by focusing on the atomic coordinates and velocities associated with
the molecule and its nearest neighbors, etc. These increasingly detailed reduced
descriptions lead to greater accuracy at the cost of bigger calculations. The choice
of the level of reduction is guided by the information designated as relevant based
on available experiments, and by considerations of accuracy based on physical
arguments. In particular, timescale and interaction-range considerations are central
to the theory and practice of reduced descriptions.

The relevance of stochastic descriptions brings out the issue of their the-
oretical and numerical evaluation. Instead of solving the equations of motion
for ~6x10%% degrees of freedom we now face the much less demanding,
but still challenging need to construct and to solve stochastic equations of
motion for the few relevant variables. The next section describes a particular
example.
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7.3 The random walk problem

Random walk is a stochastic process that represents a reduced molecular description
of diffusion, in which a particle starts from a given position and executes a stochastic
motion, occasionally changing direction in a random way. This random change in
direction represents a collision process, after which the particle assumes a new,
randomly chosen, direction, moves a certain length Ax (of the order of the mean
free path) until the next collision. As a simple example consider a one-dimensional
lattice model with lattice spacing Ax, in which the particle moves between nearest
neighbor lattice points. During a time interval A¢ the particle may move to the
right with probability p, = k. At and to the left with probability p; = k;At. The
probability that it stays in its original position is 1 — p, — p;. k; and k. are rate
coefficients, measuring the probabilities per unit time that the corresponding events
will occur. In an isotropic homogeneous system the rates to move to the right and the
left are the same, k; = k-, and are position-independent. Inequality may reflect the
existence of some force that makes these rates different from each other. Obviously
pi and p, are linear in At only for At sufficiently small, so that these numbers are
substantially less than 1.

7.3.1 Time evolution

Starting from ¢ = 0, we want to know the probability P(n,t) = P(n, N, At) that
the particle has made a net number # of steps to the right (a negative n implies that
the particle has actually moved to the left) after time # = N A¢. In other words, for
a particle that starts at position n = 0 we seek the probability to find it at position
n (i.e. at distance nAl from the origin) at time ¢, after making at total of N steps.
An equation for P(n, t) can be found by considering the propagation from time 7 to
t+ At:

P, t+At) = P(n,t)+ kAt (P(n — 1,t) — P(n, 1))+ kAt (P(n+ 1,¢) — P(n, 1))

(7.2)
In Eq. (7.2) the terms that add to P(n, ¢) on the right hand side result from the walk.
Thus, for example, k, AtP(n— 1, t)is the increase in P(n, t) due to the possibility ofa
jump from position z-1 to position n during a time interval Az, while —k, AtP(n, t)
is the decrease in P(n,t) because of transition from n to n+1 in the same period.
Rearranging Eq. (7.2) and dividing by At we get, when At — 0,

dP(n, 1)
at

=k (Pnh—1,) —P(n,t)) + ki (P(n+1,1) — P(n,1)) (7.3)

Note that in (7.3) time is a continuous variable, while the position # is discrete.
We may go into a continuous representation also in position space by substituting
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n—>nAx=x,n—1—x—Ax, n+1— x4+ Ax, to get

dP(x,1)
at

=k (P(x — Ax,t) — P(x,0)) + ki (P(x + Ax, 1) — P(x,1))  (7.4)

Here P(x, t) may be understood as the probability to find the particle in an interval
of length Ax about x. Introducing the density f (x, ¢) so that P(x, ) = f (x, ) Ax and
expanding the right hand side of (7.4) up to second order in Ax we obtain

et _ +D82f(x, )

ot 0x ax2 (7:3)
where
v = (k — ki) Ax = (p, — p1) (Ax/At) (7.6)
and where
D = (1/2)(k + k) Ax* = (pr + p1)[AX? /2 AD)] (7.7)

Note that even though in (7.5) we use a continuous representation of position and
time, the nature of our physical problem implies that Ax and A¢ are finite, of the
order of the mean free path and the mean free time, respectively.

To get a feeling for the nature of the solution of Eq. (7.5) consider first the
case D = 0 (that is also obtained if we truncate the expansion that led to (7.5)
after first order). The solutions of the equation df /0t = —vdf /dx have the form
f(x,t) = f(x — vt), that is, any structure defined by fmoves to the right with
speed v (drift velocity). This behavior is expected under the influence of a constant
force that makes &, and &; different. The first term of (7.5) reflects the effect of the
systematic motion resulting from this force.

Problem 7.2.

(1) Under what physical circumstances does a constant force lead to motion
with a constant speed that depends linearly on the force?

(2) Suppose the force on the particles is derived from a potential U = —Fx.
Assume that the rates &, and 4; satisfy

_JAexp[-B(Ux+Ax) — U(x))] for U(x + Ax)>U(x)
kG—xtAx) = {A for Ux + Ax) < U(x)

where 8 = (kgT)~!. Assuming that |F Ax| < kgT derive an expression
for the mobility u, a (temperature-dependent) parameter defined by v = uF'.
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Next consider Eq. (7.5) for the case v =0, that is, when &, = £;. In this case Eq. (7.5)
becomes the diffusion equation

Af (x,1) _ Dazf(x, )

7.8
ot 9x2 (7.8)
The solution of this equation for the initial condition f'(x,0) = §(x — xg) is
FOt 30,0 = 0) = — & — o) (7.9
X, t]xp,t =0)= ———exp| ——— .
’ @xn' 72 P\ " abi

Note that the left-hand side is written as a conditional probability density. This is
the probability density about point x at time ¢ given that the particle was at x¢ at
time ¢ = 0. Note also that the initial density f'(x,0) = §(x — xq) reflects the initial
condition that the particle was, with probability 1, at xg. The diffusion process is
the actual manifestation of the random walk that leads to a symmetric spread of the
density about the initial position.

Problem 7.3.

(1) Show that the transformation x — vt — x transforms Eq. (7.5) into the
form (7.8). What is the implication of this observation?

(2) Show that the solution of (7.5) under the initial condition f (x,0) = &(x —
X()) is

L 1 (x—vz‘—xo)2
f(x,tlxo,t = 0) = W EeXp (-T) (710)

The solution (7.10) shows both drift and the diffusion spread.

7.3.2 Moments

Further insight into the nature of this drift—diffusion process can be obtained by
considering the moments of this probability distribution. Equation (7.3) readily
yields equations that describe the time evolution of these moments.
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Problem 7.4. Show that both sides of Eq. (7.3) yield zero when summed over all
n from — oo to oo, while multiplying this equation by # and »? then performing
the summation lead to

d(n)
and
d(n?)
7 =2(n) (kr — k) + kr + ki (7.12)

Assuming (n)(t = 0) = (n?)(t = 0) = 0, that is, that the particle starts its walk
from the origin, n = 0, Eq. (7.11) results in

(n)e = (b — k)t (7.13)
while Eq. (7.12) leads to
(n*) = (ke — k)* 1 + (kr + k)t (7.14)

From Eqs (7.13) and (7.14) it follows that

(8n*); = (n*); — ()7 = (ke + k)t = (pr +pz>Ait =@ +p)N  (7.15)

for a walker that has executed a total of N steps during time t = N A¢.
Similar results may be obtained from Eq. (7.5). Suppose the particle starts at the
origin, x = 0. Its average position at time ¢ is given by

o0

(x); = / dxxf (x,t) (7.16)

—00
Therefore,

o

y 2
0 (x) — / dxxaixf(x’t)+D / dxx%f(x,t) (7.17)

ot

—00
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Integrating on the right-hand side by parts, using the fact that / and its derivatives
have to vanish at |x| — oo, leads to!
d {x)
ot

=, that is, (x) = vz at all times (7.18)

Consider now the second moment

o0
%), = f dxex?f (x, 1) (7.19)
—00
whose time evolution is given by
o
3 (x? df (x,t 3%f (x,t
) _ /dzf(x)+D/d2f(x) (7.20)
ot ax2
—00

Again, integration by parts of the terms on the right-hand side and using the above
boundary conditions at infinity, that is,

o0 8 o0
o0
/ dxx® == A [x2f] — / dx2xf = =2 (x),
8x —00
— 00 —00
3 ) i
/dx2 f:[zaf] /dx2x—:—2[f]°° +2/dxf—2
X
—00
(7.21)
leads to 8 (x?)/dt = 2v*t + 2D, therefore, since (x*)g = 0,
(%), =v** + 2Dt = (x)?> 4 2Dt (7.22)
or
(6x%), = 2Dt (7.23)

' To obtain Eqs (7.18) and (7.21) we need to assume that / vanishes as x — oo faster than x2,
Physically this must be so because a particle that starts at x = 0 cannot reach beyond some finite
distance at any finite time if only because its speed cannot exceed the speed of light. Of course, the
diffusion equation does not know the restrictions imposed by the Einstein relativity theory (similarly,
the Maxwell-Boltzmann distribution assigns finite probabilities to find particles with speeds that
exceed the speed of light). The real mathematical reason why f has to vanish faster than x~2 is that in
the equivalent three-dimensional formulation f () has to vanish faster than 2 as r — oo in order
to be normalizable.
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Problem 7.5. Show using x = nAx that Eqs (7.13) and (7.15) lead directly to
Egs. (7.18) and (7.23), respectively.

Together Eqs (7.18) and (7.23) express the essential features of biased random
walk: A drift with speed v associated with the bias k. # k;, and a spread with
a diffusion coefficient D. The linear dependence of the spread (8x?) on time is
a characteristic feature of normal diffusion. Note that for a random walk in an
isotropic three-dimensional space the corresponding relationship is

(8r2) = (8x2) + (8y%) + (8z%) = 6Dt (7.24)

7.3.3 The probability distribution

Next consider the probability distribution itself. The solutions to the approximate
Eqs (7.8) and (7.5) are the probability densities in Eqs (7.9) and (7.10), respectively,
which are Gaussian functions. To gain insight on the nature of the approximation
involved we consider, for simplicity, a model slightly different from that considered
above, where jumps to the left or the right occur in every time-step, so that p, +
p1 = 1. Let the total number of steps taken by the particle be N. The probability for
a particular walk with exactly #, steps to the right (i.e. n; = N — n,. steps to the left,
so that the final position relative to the origin is nAx; n=n, —n; = 2n, — N) is

N! _
Wy () = ————pp) " (7.25)

The coefficient N!/[n,!(N — n;)!] is the number of distinct walks characterized by
the given n, Note that the form (7.25) is normalized

N N N1
114 — ’ e N _ 1 7.26
712::0 N (1) r12=:0 IV — P P (®r +p1) (7.26)

The distribution (7.25) is called binomial. Its most frequent textbook example is
the outcome of flipping a coin with probabilities to win and lose given by p, and p;,
respectively. The probability to have n, successes out of N coin flips is then given
by the binomial distribution (7.25).

The first moment of the distribution (7.25) can be computed according to

N N

N! n N—n, ) N! n N—n,
(n,) = ;12:—1 T =P =g }12:_1 PRIl
d _
= pr—@r+p)" =N, +p)V ' =p,N (7.27)

opr
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Note that the identity p, + P; = 1 was used affer the derivative with respect to p,
was taken.

Problem 7.6. Show that the second moment of the binomial distribution
(7.25) is

a 2
(n2) = ( "5 ) @r +p)" = Np)* + Nowpi

so that the variance is
(8n2) = Novp (7.28)

The net distance (in number of steps) that the particle walks from its original position
isn = n, — n; = 2n, — N. Obviously,

{n) = 2p, = HN (7.29)

while (n?) = 4(n?) —4(n,)N + N? = 4p>N> +4Np,p; — 4p,N? +N?. This leads to

(8n?) = (n®) — (n)> = 4Np,p; = 4Np,(1 — p,) (7.30)

Note the difference between this result and Eq. (7.15). This difference reflects the
fact that the model that leads to (7.15) is different from the present one that leads
to (7.25) and consequently to (7.30): In the former p, 4+ p; = (k- + k;) At can be
considerably smaller than 1, while in the latter p; +p, = 1. Equation (7.30) implies
that if p, = 0 or 1 there is no uncertainty in the walk so (§n%) = 0. In contrast,
Eq. (7.15) implies that uncertainty remains also when p, or p; (but not both) vanish
because at each step the particle can move or not. For pure (unbiased) diffusion
where p, = p; = 1/2 Eqs (7.15) and (7.30) yield identical results.

Consider now the distribution (7.25) in the limit N >> 1. In this limit the length
of the walk, nAx is much larger than the step size Ax, which was the basis for the
expansion made in order to transform Eq. (7.4) to the form (7.5). In this limit the
factorial factors in Wy (n), Eq. (7.25) can be approximated by the Stirling formula,
In(N!) ®# NInN — N, leading to

In[Wy(m,)]=NInN —n,Inn, — (N — n,) In(N — n,)
+n.Inp, + (N — ) Inp; (7.31)

Further simplification is obtained if we expand Wy (n,) about its maximum at 7.
ny is the solution of 9 In[Wy (n,)]/dn, = 0, which yields n; = Np, = (n,). The



232 INTRODUCTION TO STOCHASTIC PROCESSES

nature of this extremum is identified as a maximum using

3 In W 1 1 N
anz - - <0 (7.32)
n n. N —n, n(N —n;)

7

When evaluated at n* this gives 8% In W /dn? [ nx = —1/(Npypy). It is important to
note that higher derivatives of In ' are negligibly small if evaluated at or near n.
For example,

Pnw 1 1 L1 1
e == 5-5 (7.33)
al’l,, nk I’l;'f W - n;lj) N pr Py

and, generally, derivatives of order £ will scale as (1/N yk=1 Therefore, for large N,
Wy can be approximated by truncating the expansion after the first nonvanishing,
second-order, term:

(ny — n¥)? (ny — n¥)?
In Wy@m) = In W) — ——r2 — InWn*) — —— 12 734
nWym,) = InW(n)) o) nWn,) 26n2) (7.34)

where in the last step we have used Eq. (7.28). This leads to the Gaussian form

(nr — (n,))?

; r :Nr, 82 :Nr
) ] (ny) = Npr, (8n;.) = Np,pi

1
Wyn) = ———exp | —
N (1) 27 ond) exp[
(7.35)

The pre-exponential term was taken to make the resulting Gaussian distribution
normalized in the range (—o0, 00) by replacing the sum over all n, by an integral.
In fact, n, is bounded between 0 and N, however unless p, is very close to 1 or 0,
the distribution is vanishingly small near these boundaries and extending the limits
of integration to oo is an excellent approximation. For the variable n = 2n, — N
we get

N
Py(n) = Wy ( ;”)

[n—N@, —pD) }_) L ep _(n—(n))?
8Nppi 27 (8n2) 2 (8n?)

~exp |-

(7.36)

Again, in the last step we have calculated the normalization factor by replacing the
sum over n by an integral in (—00,00). The fact that starting from (7.25) we have
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obtained Gaussian distributions in the large N limit is an example of the central
limit theorem of probability theory (see Section 1.1.1).

Finally, recalling that position and time are related to » and N by x = nAx and
t = N At we get from (7.36)

1 = @)?
P(x,t) = —27[ ) exp{ —2(8x2) } (7.37)
with
_ 2
(x) = %t = vt (8x%) = 4p,p; (&%) t=2Dt (7.38)

Again, the result for the diffusion coefficient D = 2p,p;(Ax)?/At is the same as
in Eq. (7.7) only when p, = p; = 1/2. The important observation is, again, that a
Gaussian distribution was obtained as an approximation to the actual binomial one
in the large N limit.

7.4 Some concepts from the general theory of stochastic processes

7.4.1 Distributions and correlation functions

In Section 7.1 we have defined a stochastic process as a time series, z(¢), of random
variables. If observations are made at discrete times 0 < #| < f2,..., < t,, then the
sequence {z(¢)} is a discrete sample of the continuous function z(¢). In examples
discussed in Sections 7.1 and 7.3 z(#) was respectively the number of cars at time
t on a given stretch of highway and the position at time ¢ of a particle executing a
one-dimensional random walk.

We can measure and discuss z(#) directly, keeping in mind that we will obtain
different realizations (stochastic trajectories) of this function from different exper-
iments performed under identical conditions. Alternatively, we can characterize
the process using the probability distributions associated with it. P(z, t)dz is the
probability that the realization of the random variable z at time ¢ is in the interval
between z and z 4 dz. P> (z2t2; z1t1)dz1dz is the probability that z will have a value
between z; and z; + dz; at #; and between zp and zy + dzp at fy, etc. The time
evolution of the process, if recorded in times 7y, t{, f2, . . . , t, is most generally rep-
resented by the joint probability distribution P(z,t,; . . .;zoty). Note that any such
joint distribution function can be expressed as a reduced higher-order function, for
example,

P(z3t3;z111) = /d22P(Z3t3;Zzl2;Zlf1) (7.39)



234 INTRODUCTION TO STOCHASTIC PROCESSES

As discussed in Section 1.5.2, it is useful to introduce the corresponding
conditional probabilities. For example,

P (z1t1; z0t0)d
Py(z1t1 | z0t0)dz1 = A (7.40)
P1(zot0)

is the probability that the variable z will have a value in the interval zy, . . ., z] +dz;
at time #1 given that it assumed the value zg at time #y. Similarly,

Py(z4t4; 2313, 2080 21 t
Py (zaty; z3t3 | zotn; 21 1 )dz3dzg = 4(2ale; 23033 2010; 21 1)dZ3dZ4 (7.41)
Par(z2t252111)

is the conditional probability thatzisinza, . ..,za+dzg attg and isinzs, . .., z3+dz3
at 73, given that its values were z, at t, and z; at 71.

In the absence of time correlations, the values taken by z(¢) at different times
are independent. In this case P(zutn; Zp—1tn—1; - - - ;20t0) = | [p—o P (k. tx) and time
correlation functions, for example, C(#2,11) = (z(#2)z(t1)), are given by products
of simple averages C(t2,11) = (z(t2))(z(t1)), where (z(t1)) = [ dzz P(z,#1).This
is often the case when the sampling times #;, are placed far from each other—farther
than the longest correlation time of the process. More generally, the time correlation
functions can be obtained from the joint distributions using the obvious expressions

C(t, 1) =/d21 /d222221P2(2212;2111) (7.42a)

Ctz,tr,1) = fdm fd22/dZ3Z32221P3(Z313;Zzt2;lel) (7.42b)

In practice, numerical values of time correlations functions are obtained by aver-
aging over an ensemble of realizations. Let z(¥)(¢) be the kth realization of the
random function z(¢). Such realizations are obtained by observing z as a func-
tion of time in many experiments done under identical conditions. The correlation
function C (22, t1) is then given by

N

Clom = Jim 3 ()0 0) (143)
k=1

If the stochastic process is stationary, the time origin is of no import-
ance. In this case Pji(z;,t;1) = Pi(z1) does not depend on time, while
Py(z2t2;z1t1) = Pa(22,t0 — t1;21,0) depends only on the time difference Aty =
t, — t1. In this case the correlation function C(f;, 1) = C(Aty1) can be obtained
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by taking a time average over different origins along a single stochastic trajectory
according to
1 N
C@t) = lim — ty + t)z(t 7.44
(1) NgnooN];c(H)z(k» (7.44)

Here the average is over a sample of reference times that span a region of time that
is much larger than the longest correlation time of the process.

Further progress can be made by specifying particular kinds of processes of phys-
ical interest. In the following two sections we discuss two such kinds: Markovian
and Gaussian.

7.4.2 Markovian stochastic processes

The process z(¢) is called Markovian if the knowledge of the value of z (say z;) ata
given time (say #) fully determines the probability of observing z at any later time

P(zaty | z1t1;20t0) = P(22t2 | 2111); th>1 >t (7.45)

Markov processes have no memory of earlier information. Newton equations
describe deterministic Markovian processes by this definition, since knowledge
of system state (all positions and momenta) at a given time is sufficient in order to
determine it at any later time. The random walk problem discussed in Section 7.3
is an example of a stochastic Markov process.

The Markovian property can be expressed by

P(zaty; 21115 20t0) = P22tz | 2111) P (21115 20t0); forto <ty <t (7.46)
or

P(zat0;z111 | zotg) = P(z22t2 | z111) P (2111 | zotp); fortg <t < (7.47)
because, by definition, the probability to go from (z;,#1) to (z2,2) is independent of
the probability to go from (zo,#) to (z1,#1). The above relation holds for any inter-
mediate point between (zo,tp) and (z2,#,). As with any joint probability, integrating

the left-hand side of Eq. (7.47) over z; yields P(z2t2 | zotp). Thus for a Markovian
process

P(zaty | zoty) = /d21P(Zztz | z1t1)P(z1t1 | zoto) (7.48)

This is the Chapman—Kolmogorov equation.
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Problem 7.7. Show that for a Markovian process

N
Pn(@nIN;ZN-1IN-1; - - - ;21115 Z20t0) = P1(20,%0) HPz(Zntn | Zn—1tn—1)
n=1

(7.49)

The time evolution in a Markovian stochastic process is therefore fully described
by the transition probability P (zt | Z't').

What is the significance of the Markovian property of a physical process? Note
that the Newton equations of motion as well as the time-dependent Schrodinger
equation are Markovian in the sense that the future evolution of a system described
by these equations is fully determined by the present (“initial”’) state of the system.
Non-Markovian dynamics results from reduction procedures used in order to focus
on a “relevant” subsystem as discussed in Section 7.2, the same procedures that led
us to consider stochastic time evolution. To see this consider a “universe” described
by two variables, z; and z;, which satisfy the Markovian equations of motion

d:

% = Fi 1(0, 22(0), 1) (7.502)
d assume:
=2 B @@ 20,0 B (210, 1) (7.50b)

dt
For simplicity we have taken F> to depend only on z;(¢). If z1 is the “relevant”
subsystem, a description of the dynamics in the subspace of this variable can be
achieved if we integrate Eq. (7.50b) to get

t
) =20 =0)+ / dt' Fa(z1(¢), 1) (7.51)
0

Inserting this into (7.50a) gives

t
d
% =z1(t=0)+F; | z1(1),22(t = 0) + / dt'Fs (z1(1), 1), 1 (7.52)
0

This equation describes the dynamics in the z; subspace, and its non-
Markovian nature is evident. Starting at time ¢, the future evolution of z;
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is seen to depend not only on its value at time ¢, but also on its past his-
tory, since the right-hand side depends on all values of zj(¢') starting from
=02

Why has the Markovian time evolution (7.50) of a system with two degrees
of freedom become a non-Markovian description in the subspace of one of them?
Equation (7.51) shows that this results from the fact that z;(¢#) responds to the
historical time evolution of z;, and therefore depends on past values of zy, not only
on its value at time ¢. More generally, consider a system A + B made of a part
(subsystem) A that is relevant to us as observers, and another part, B, that affects
the relevant subsystem through mutual interaction but is otherwise uninteresting.
The non-Markovian behavior of the reduced description of the physical subsystem
A reflects the fact that at any time ¢ subsystem A interacts with the rest of the
total system, that is, with B, whose state is affected by its past interaction with A.
In effect, the present state of B carries the memory of past states of the relevant
subsystem A.

This observation is very important because it points to a way to consider this
memory as a qualitative attribute of system B (the environment or the bath) that
determines the physical behavior of system A. In the example of Eq. (7.50), where
system B comprises one degree of freedom z, its dynamics is solely determined
by its interaction with system A represented by the coordinate z1, and the memory
can be as long as our observation. In practical applications, however, system A
represents only a few degrees of freedom, while B is the macroscopic surrounding
environment. B is so large relative to A that its dynamics may be dominated by
interactions between B particles. Our physical experience tells us that if we disturb
B then leave it to itself, it relaxes back to thermal equilibrium with a characteristic
relaxation time 7g. In other words, B “forgets” the disturbance it underwent on this
timescale. If this remains true also in the case where A and B interact continuously
(which says that also in this case 7g is dominated by the internal dynamics of B),
then the state of B at time ¢ does not depend on disturbances in B that were caused
by A at times earlier than ¢ = ¢ — tg. Consequently, dynamics in the A subspace at
time ¢ will depend on the history of A at earlier times going back only as far as this
t'. The relaxation time tg can be therefore identified with the memory time of the
environment B.

2 Equation (7.52) shows also the origin of the stochastic nature of reduced descriptions. Focusing
on z1, we have no knowledge of the initial state zp (f = 0) of the “rest of the universe.” At most we
may know the distribution (e.g. Boltzmann) of different initial states. Different values of z (¢ = 0)
correspond to different realizations of the “relevant” trajectory z| (¢). When the number of “irrelevant”
degrees of freedom increases, this trajectory assumes an increasingly stochastic character in the sense
that we can infer less and less about its evolution from the knowledge of its behavior along any given
time segment.
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We can now state the condition for the reduced dynamics of subsystem A to be
Markovian: This will be the case if the characteristic timescale of the evolution of A
is slow relative to the characteristic relaxation time associated with the environment
B. When this condition holds, measurable changes in the A subsystem occur slowly
enough so that on this relevant timescale B appears to be always at thermal equi-
librium, and independent of its historical interaction with A. To reiterate, denoting
the characteristic time for the evolution of subsystem A by 74, the condition for
the time evolution within the A subspace to be Markovian is

B < Ta (7.53)

While Markovian stochastic processes play important role in modeling molecu-
lar dynamics in condensed phases, their applicability is limited to processes that
involve relatively slow degrees of freedom. Most intramolecular degrees of free-
dom are characterized by timescales that are comparable or faster than characteristic
environmental times, so that the inequality (7.53) often does not hold. Another
class of stochastic processes that are amenable to analytic descriptions also in
non-Markovian situations is discussed next.

7.4.3 Gaussian stochastic processes

The special status of the Gaussian (“normal”) distribution in reduced descriptions
of physical processes was discussed in Section 1.4.4. It stems from the central
limit theorem of probability theory and the fact that random variables that appear
in coarse-grained descriptions of physical processes are themselves combinations
of many more or less independent random variables. The same argument can be
made for the transition probability associated with the time evolution step in a
stochastic description of coarse-grained systems, assuming that the corresponding
probability is affected by many random events. It leads to the conclusion that
taking a Gaussian form for this probability is in many cases a reasonable model.
A succession of such evolution steps, whether Markovian or not, constitutes a
Gaussian stochastic process. As a general definition, a stochastic process z(f) is
Gaussian if the probability distribution of its observed values z1, z, . . . , z, at any n
time points #1, t2, . . ., t, (for any value of the integer n) is an n-dimensional Gaussian
distribution.

—(1/2) 3y Yy 4k G—m)) Ge—my). —00 < z; < OO

(7.54)

Pu(z1t152005 . . . s Zpty) = ce

where m; = (j = 1,...n) are constants and the matrix (a;;) = A is symmetric and
positive definite (i.e. u'Au > 0 for any vector u) and where c is a normalization
factor.
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A Gaussian process can be Markovian. As an example consider the Markovian
process characterized by the transition probability

N2
Prty | zity) = —M} (7.55)

1
————exp
V2w Ay |: 2A]2d

This process is Gaussian by definition, since (7.54) is satisfied for any pair of times.
The distribution (7.55) satisfies

1 (z2 — 20)*
dz1P(z2ty | z111) P (2111 | zoto) = Xp|—— 55— 5
/ 2 2 2(A3, + A2)
2 (A5 + Afp) 21 10
(7.56)
Therefore the Markovian property (7.48) is satisfied provided that
Al = A3, + A%, (7.57)

If we further assume that Ay, is a function only of the time difference #; — #;, that
is, Ay = A(ty — 1), it follows that its form must be

A(f) = /2Dt (7.58)

where D is some constant. Noting that A%O is the variance of the probability dis-
tribution in Eq. (7.55), we have found that in a Markovian process described by
(7.55) this variance is proportional to the elapsed time. Comparing this result with
(7.9) we see that we have just identified regular diffusion as a Gaussian Markovian
stochastic process.

Taken independently of the time ordering information, the distribution (7.54) is
a multivariable, n-dimensional, Gaussian distribution

Po(z1,22, .. . 2y) = ce” /2 Limt X i Gj=m)) k=) —00 < zj < 00
(7.59)
In Appendix 7A we show that this distribution satisfies
@) =mps  (oz6m) =[] . (where sz =z — () (7.60)
.

This shows that a Gaussian distribution is completely characterized by the
first two moments of its variables. Furthermore, we show in Appendix 7A
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that the so-called characteristic function of the n-variable Gaussian distribution,
®,(x1,x2,...,x,), defined as the Fourier transform of this distribution

o o0
D,(x1,...,x,) = / dzi,..., / dz,Pn(z1,22, . .. ,Zn)eiZ/lefo

—0o0 —o0

_ (eiZf:1ijj> (7.61)
is given by

(Dn(X) — (eix-z> — eim~x7(1/2)x~A_1~x (7.62)
where the vectors z, X, and m are defined as z = (z1,22,...,2,) m =
(my, my,...,my), and x = (x1, x2,...,x,). More explicitly, this implies the

following identity for the multivariable (zi, z», . . ., z,) Gaussian distribution

<ei ijj2j> — ei Zj Xj (Zj) —(1/2) ZJ kaj<52j52k>xk (763)
where {x;,j = 1,...,n} are any constants.

Problem 7.8. For a two-variable distribution of the type (7.54)

—(1/2) X1 Yiey aG—mp) @ —mp).

Py(z1,27) = ce —00 <z; <00

show that |
(e”!) = exp [(21) + 5((521)2)]

and

1
(e122) = exp {<Z1> + (22) + S1@21)°) + ((322)%) + 2((521)(322))]}

Equations (7.60)—(7.63) describe general properties of many-variable Gaussian
distributions. For a Gaussian random process the set {z;} corresponds to a sample
1zj,tj} from this process. This observation can be used to convert Eq. (7.63) to a
general identity for a Gaussian stochastic process z(¢) and a general function of
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time x(¢) (see Appendix 7B)

t t

t
<exp i/dt/x(t/)z(t/) >:exp i/dt/x(t/)m(z/)_ %/dl‘l

fo fo fo

t
y / dinCaltr, (1) (12) (7.64)
fo
where

mt) = (z(1))
Caltr, 1) = (82(11)82(12)) MY P 0 (11— 1) (7.65)

0z(t) = z(t) — m(¢)

Equation (7.64) is a general identity for a Gaussian stochastic process charac-
terized by its average m(¢) and the time correlation functions C,(¢1,#). In many
applications the stochastic process under study is stationary. In such cases (z) = m
does not depend on time while C,(#1,#) = C.(t; — t2) depends only on the time
difference.

7.4.4 A digression on cumulant expansions

The identities (7.63) and (7.64) are very useful because exponential functions of
random variables of the forms that appear on the left sides of these identities are
frequently encountered in practical applications. For example, we have seen (cf.
Eq. (1.5)) that the average (e®?), regarded as a function of «, is a generating function
for the moments of the random variable z (see also Section 7.5.4 for a physical
example). In this respect it is useful to consider extensions of (7.63) and (7.64)
to non-Gaussian random variables and stochastic processes. Indeed, the identity
(compare Problem 7.8)

(€ = expla(z) + (1/2)a*((82))] (7.66)

that holds for a Gaussian distribution is a special case of the so-called cumulant
expansion (valid for any distribution)

(€)= expla(z)c + (1/2)a (Z%)e + -+ (1/m)a" 2" e + -1 (7.67)

where the cumulants (z").can be expressed in terms of the moments (z") such that
the cumulant of order # is given by a linear combinations of moments of order n
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and lower. For example, the first three cumulants are given by

z2)

23)

(z)? = (82%) (7.68)
3(z)(z?) +2(z)?

(z2) —
c ( -
and for a Gaussian distribution all cumulants of order higher than 2 can be shown to
vanish (which leads to Eq. (7.66)). For further discussion of cumulant expansions

see Appendix 7C.

Problem 7.9. Use the procedure described in Appendix 7C to express the
fourth cumulant (z*), in terms of the moments (z");n = 1,2,3,4. Show that
the third and fourth cumulants of the Gaussian distribution function P(z) =

V(o)) exp[—azz];z = —09,...,00 vanish.

7.5 Harmonic analysis

Just as a random variable is characterized by the moments of its distribution, a
stochastic process is characterized by its time correlation functions of various
orders. In general, there are an infinite number of such functions, however we
have seen that for the important class of Gaussian processes the first moments and
the two-time correlation functions, simply referred to as time correlation functions,
fully characterize the process. Another way to characterize a stationary stochastic
process is by its spectral properties. This is the subject of this section.

7.5.1 The power spectrum
Consider a general stationary stochastic process x(¢), a sample of which is observed
in the interval 0< ¢ < T'. Expand it in Fourier series

o
. 2
0= Y ;e w,=TF n=0l... (7.69)

n=—0o0

where x,, are determined from

T
1 .
o= / dtx(t)e "’ (7.70)
0
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If x(¢) is real then x, = x*,. Equation (7.69) resolves x(#) into its spectral
components, and associates with it a set of coefficients {x,} such that |x,|* is the
strength or intensity of the spectral component of frequency w,. However, since
each realization of x(¢) in the interval 0,..., 7T yields a different set {x,}, the
variables x,, are themselves random, and characterized by some (joint) probability
function P({x,}). This distribution in turn is characterized by its moments, and
these can be related to properties of the stochastic process x(¢). For example, the

averages (x,) satisfy
T

(xy) = % f dr (x(t)) e~ '’ (7.71)
0

and since (x(¢)) = (x) does not depend on ¢ (x(¢) being a stationary process), this
implies

T
(xp) = <1T> / dte™1CTDE — (x) 5,6 (7.72)
0

Note that from Eq. (7.70) xo = (1/7T) fOT x(¢) = xTis the time average of x(¢) for
any particular sampling on the interval 7'. For an ergodic process limz_, oo ¥/ = (x)

we thus find that xq I=g0 {(x0) = (x).

For our purpose the important moments are (|x,|?), sometimes referred to as
the average strengths of the Fourier components w,. The power spectrum / (w) of
the stochastic process is defined as the 7 — oo limit of the average intensity at
frequency w:

2
@)= tim (Z;EKglEﬂj>;

Wraw ={n|lw—Aw/2 < 2rn/T) < o+ Aw/2} (7.73)

where n € W, encompasses all n with corresponding frequencies w, = 27 /T)n
in the interval w, ...,® £ Aw/2. If T is large enough we can use frequency inter-
vals Aw that are large enough so that they contain many Fourier components
Aw/Q2m/T) = (T/27)Aw > 1, but small enough so that the strengths |x,|* do
not appreciably change within the interval. In this case the sum on the right-hand
side of (7.73) may be represented by (|x,|?)(7/27) Aw. This implies

@) = lim () of (7.74)
= lim —(|x,|°); n=— )
@ T—>0027T " ’ 27‘[

Note that, as defined, 7 (w) is a real function that satisfies I (—w) = I(w).
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Problem 7.10. Show that another expression for the power spectrum is

1) = Jim S (P =0 o= 20 (179

7.5.2 The Wiener—-Khintchine theorem

An important relationship between /(w) and the time correlation function C(¢) =
(x(T)x(t + 1)) = (x(0)x(t)) of x(¢) is the Wiener—Khintchine theorem, which states
that

(e.¢] o0

I(a)):% / dte ™'C(t) or C@) = f dwe™ I (w) (7.76)

—00 —0o0

If x is a complex function, this theorem holds for C(¢#) = (x*(0)x(#)). The proof
of this relationship is given in Appendix 7D. The power spectrum of a given
stochastic process is thus identified as the Fourier transform of the corresponding
time correlation function.

The power spectrum was defined here as a property of a given stochastic process.
In the physics literature it is customary to consider a closely related function that
focuses on the properties of the thermal environment that couples to the system
of interest and affects the stochastic nature of its evolution. This is the spectral
density that was discussed in Section 6.5.2. (see also Section 8.2.6). To see the
connection between these functions we recall that in applications of the theory of
stochastic processes to physical phenomena, the stochastic process x(¢) represents a
physical observable 4, say a coordinate or a momentum of some observed particle.
Suppose that this observable can be expanded in harmonic normal modes {u;} as
in Eq. (6.79)

AW =Y e Vuy(r) (7.77)
j

where ¢ are the corresponding weights. The correlation function Cyy(f) =

(A(1)A(0)) is therefore given by (cf. Eq. (6.88))

()2 o0
: 2UpT J
Caa(t) = kgT Y L5 cos(ejt) = =2 / Ao cosn (178)
F a)j T 4 w

where (cf. Eq. (6.92))
Ji(@) = 1g(@) (P ())?/ 2w) (7.79)
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was identified as the bath spectral density, and we have used the subscript 4 to
emphasize the fact that.J4(w) characterizes both the bath and the variable 4. Because
(cf. Eq. (6.93)) J4(—w) = —J4(w), Eq. (7.78) may be rewritten as

o0
kgT J .
Cu) = BL [ 474 i (7.80)
T w
—0
so that T J
I () = BT /4@) (781)
T w

The two functions /4 (w) and J 4 (w) are seen to convey the same physical information
and their coexistence in the literature just reflects traditions of different scientific
communities. The important thing is to understand their physical contents: we have
found that the power spectrum is a function that associates the dynamics of an
observable 4 with the dynamics of a reference harmonic system with density of
modes given by (7.81) and (7.79).

7.5.3 Application to absorption

More insight into the significance of the power spectrum/spectral function concept
can be gained by considering the rate at which a system absorbs energy from an
external driving field. Assume that our system is driven by an external periodic
force, F cos wt that is coupled to some system coordinate 4, that is, it is derived
from a potential —AF cos wt. Taking A again to be the superposition (7.77) of
system normal modes, the equation of motion of each normal mode is

iij = —a)jzuj + ¢;F cos wt (7.82)

To simplify notation we have removed the superscript (4) from the coefficients c;.
Consider the rate at which such mode absorbs energy from the external field. It is
convenient to assume the presence of a small damping term ni;, taking 1 to zero
at the end of the calculation. This makes it possible to treat the energy absorption
as a steady-state process. The equation of motion is then

il = —w}u; — nity + ¢;F cos (7.83)
Multiplying Eq. (7.83) by u; leads to
dE] .2 .
T —nu; + ¢jFuj cos wt (7.84)

where .
Ej = 5 (] + oju) (7.85)
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is the oscillator energy (see Eq. (6.76)). At steady state, the average oscillator energy
does not change in time, so Eq. (7.85) yields

dE;
dt
where the overbars represent time averages. The two terms on the right, the first
representing the time-averaged dissipation and the second corresponding to the
time-averaged pumping, must balance each other. The pumping rate expressed as

a function of the pumping frequency w is the contribution, L;(w), of the mode j to
the absorption lineshape. Thus,

=0= —m}_} + ¢jFi; cos (wt) (7.86)

Li(w) ~ nit? (7.87)

At steady state u; oscillates with the same frequency of the driving field. Its motion
is obtained from (7.83) by looking for a solution of the form u;(t) = Re(U;e'")
and solving for U;. We get?

cilk .
u;(t) = Re # ot (7.88a)
|0 —w +iwn ]
i iwciF ]
() = Re | —————e'' (7.88b)
| @j — o +iwn ]

Using cos?(wt) = sinz(a)t) =(1/2) and sin(wt) cos(wt) = 0, Eqgs (7.87) and
(7.88Db) yield
c]gF 2 an

2 (@F — )2+ (wn)?
When 1 < w; the absorption is dominated by frequencies w close to w; and we
may approximate (a)j2 —w?) = (wj — w)(wj + ) = 2w (w; — w). This leads to

Li(w) ~ ni = (7.89)

22 2712
ciF 2 o TciF
Liw) ~ -2 ”2/ S I S — o) (7.90)
4 (wj—w)?+(1/2) 4
Summing over all modes yields
TF*c* (w)
L) =) Liw) = — g~ 0*Li(w) (7.91)

J

We have found that up to constant factors, the absorption lineshape is determined
by the power spectrum that characterizes the coordinate that couples to the external

> The result (7.88) is most easily obtained by solving variants of (7.83) with driving terms
(1 /2)Ceri’“” then combining the corresponding solutions
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field. Note that this power spectrum is associated with the motion of this coordinate
in the absence of the driving field.

7.5.4 The power spectrum of a randomly modulated harmonic oscillator

Having found a relationship between the absorption lineshape associated with a
periodically modulated system variable and the power spectrum of this variable, we
now consider a specific example. Consider a harmonic oscillator which is randomly
perturbed so that its frequency changes in time as:

w (1) = wp + S (1) (7.92)

where Sw (?) is a stochastic process. This is a model for a system interacting with
its thermal environment, where we assume that this interaction is expressed by
Eq. (7.92). It is convenient to use the complex amplitude a(¢) defined in Eq. (6.38)

a(t) = x(6) + ——p(®) (7.93)
mw

so that the variables x and p can be replaced by a and a*. In what follows we will
calculate the power spectrum of these variables.*

Problem 7.11. Show that |a(t) |2 =2E/ (mw?), where E is the oscillator energy.

The equation of motion for a(¢) is
a(t) = —iw(t)a(t) (7.94)

whose solution is (putting ag = a(t = 0))
t

a(t) = agexp [—ifdt/w(t/)i| (7.95)
0

Since dw (¢) is a stochastic process, so are a(¢) and x(z) = (1/2)[a(?) + a*(®)].
Consider the time correlation function

t

(@ (0)a(t)) = <|ao|2exp [—i f dt’a)(t’)]> (7.96)

0

* Since x = (1/2)(a+a*) we have (x(0)x(t)) ~ 2Re({(a(0)a(t)) + (a*(0)a(t))). The term
(a(@a()) = ((a(0))?)(exp [—ifé dt’a)(t’)]) can be disregarded because (using Eq. (7.93) and assum-

ing thermal equilibrium at # = 0)((a(0))?) = 0. Therefore (x(0)x(#)) ~ 2Re ({a*(0)a(?))) and the
power spectra of x(¢) and of a(t) are essentially the same.
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The initial value a(0) is assumed independent of the process w(¢), so

t
% = <exp |:—i / dt’w(t’)]> = e 0l (1) (7.97)
0
where
t
d(t) = <exp [—i / dt’8w(t’)]> (7.98)
0

Once we evaluate ¢(¢) we can obtain the power spectrum of the randomly modulated
harmonic oscillator using the Wiener—Khintchine theorem (7.76)

L R v i PP
I, (w) = T (a (O)a(t))e dt = 7 ¢(t)e dt,
o =w+ wy (7.99)

We now assume that the stochastic frequency modulation dw(t) is a stationary
Gaussian process with (8w (f)) = 0 and (8w (f9)dw(fy + 1)) = (8w?)s(t), where
s(t) = s(—1) is defined by this relationship. The parameter (8w?) and the function
s(t) characterize the physics of the random frequency modulations and are assumed
known. From Eq. (7.64) we get

t
¢ (1) = <exp (—i / dr (Sw(t’))> = ¢~ /D06 Jodn Jydosti=n) (7 100)
0

The integral in the exponent may be transformed as follows:

1

t t t 1 t
1
E/dtI/dtZS(fl ) =/dt1/dl‘zs(t1 — 1) =/dt1/d‘[s(1’)
0 0 0 0 0 0

t
_ /dr(t— 7)5(1) (7.101)
0

The last equality is obtained by changing the order of integration as in the
transition from (7.127) to (7.128) in Appendix 7D. Equation (7.100) then becomes

t
o) =exp | —(8w?) / dt(t — 1) s(1) (7.102)
0
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The resulting physical behavior is determined by the interplay between two physical
parameters. First, Q@ = (8w?)!/? measures the amplitude of the random frequency
modulations. Second, 7. = [;° dt s(t) = (80?) ! [;° dt (8w (0)8w (1)) measures
the correlation time of these modulations. Depending on their relative magnitude
we can get qualitatively different spectra.

To see this in detail consider the simple model

s(t) = e !/ (7.103)

Using (7.103) in (7.102) results in

t
é(1) = exp [—az (r_ -1+ e’/fc>] (7.104)
C
where
o =1.0 (7.105)

In the limit « — 0o ¢(¢) vanishes unless ¢ is very small. We can therefore expand
the exponent in (7.104) in power of ¢ up to order 2. This leads to

$(1) = e 1/2ET (7.106)
and I,(w) is a Gaussian®
1T 1 2
; 1)
L(w)=— [ digp()e”™ = - 7.107

—o0

In the opposite limit, « — 0, the main contribution to the integral (7.99) will come
from large ¢. In this case ¢(f) may be approximated by

b (1) = exp (—a2%> = exp (—ICQZZ> (7.108)

c

and the spectral function (7.99) is a Lorentzian, (y /7)/(w? + y?), with y = 7.Q2.
We have seen in Section 7.5.3 that the power spectrum of a given system
is closely associated with the absorption lineshape in that system. The analysis
presented above indicates that the spectral lineshape of a stochastically modulated
oscillator assumes qualitatively different forms depending on the amplitude and
timescale of the modulation. We will return to these issues in Chapter 18.

> Equation (7.107) holds for w large relative to €2, but not in the asymptotic limit @ — oco. It can
be shown that the Fourier transform of (7.104) approaches asymptotically a @ —© behavior.
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Appendix 7A: Moments of the Gaussian distribution

Consider the n-dimensional Gaussian distribution (7.54). Here it is shown that this
distribution satisfies

(zj) = mj; (828zk) = [(A)'Ijx  (where 8z = z — (2)) (7.109)

The time ordering information in (7.54) is not relevant here. Equation (7.109)
obviously holds for n = 1, where W(z) = ce~(1/2atz=m)? gives (z) = m
and ((z—m)?) = —2(d/da)(In [ dze=(1/2e%y — 4=l 1In the general n-
variable case we introduce the characteristic function of n variables ®,(xy, ..., x,),
essentially the Fourier transform of the probability function

0 0
D, (x1...x,) = / dzy ... / dz,P, (21,22, .. .,2n) ¢! Li=1 %%
—0 —0

_ <e" P szj> (7.110)

The characteristic function can be used to generate the moments of the distribution
W, according to (compare Eqgs (1.5)—(1.7))

, a<1>n) ( 32 d, )
zj) = —i ; ZizZit) = — (7.111)
(f) ( axj 0 (] .]) ana)Cj/ —o

It is convenient to use a vector notation

z=1(21,...,2y); X = (X1,...,Xn); m= (my,...,my) (7.112)

define y = z — m. Using also (7.54), the characteristic function takes the form

o0 [e¢)
R B e A AIE)
—00

—00

Next we change variable y — u+-ib, where b is a constant vector to be determined
below. The expression in the exponent transforms to

—(1/2)y-A-y+ix-y+ix-m—
—(1/2)u-A-u—zu-1A'b+(1/2)?'A'b+lT'“—Xz'b‘i‘lx'm (7.114)
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Now choose b so that A-b = x orb = A~! - x. Then the terms marked 1 in (7.114)
cancel while the terms marked 2 give —(1/2)x - A~'x. This finally results in

o0
®(x) = eim~x—(1/2)x~A_1-xc / due—(1/2DwAu _ eim-x—(l/Z)X‘A‘Lx (7.115)

—00

The second equality results from the fact that W, = ce~1/2¥'AY is normalized to
unity. We found

q)(x) — <eix-z> — eim-x—(l/Z)x-A*I-x (7.116)
A Taylor expansion about x=0 yields

1 1 1
I+ix-(2) = X (22) X+ = 1+ix-m—§x.(mm)-x—EX-A—1 X4+ (7.117)

Here zz is a short-hand notation for the matrix Z;; = z;z;, and similarly for mm.
By equating coefficients of equal powers of x in (7.117) we find (see
also (7.109))
(z) = m, that is, z; = m;

and
(zz)y =mm +A~',  thatis, ((z; —m)(zy —mp)) = (A7Y);;  (7.118)

which is equivalent to (7.109).

Appendix 7B: Proof of Eqs (7.64) and (7.65)

Here we prove, for a Gaussian stochastic processes z(¢) and a general function of
time x(¢) the results (7.64) and (7.65). Our starting point is (cf. Eq. (7.63))

where the sums are over the » random variables. Noting that this relationship holds
for any set of constants {x;}, we redefine these constants by setting

xj — x(t)) At (7.120)

and take the limit A#; — 0 and » — oo in the interval 19 <#; <#; < --- < t,. Then

n t
> xi(z) — f dt'x(t') (z(1))
J=1 to
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and
n

n t t
>3 tgadn > [ [ dndnozeixe)

j=1 k=1 .

This immediately yields (7.64) and (7.65).

Appendix 7C: Cumulant expansions

Let z be a random variable and consider the function ¢**. The average (¢**) is a
generating function (see Eqgs (1.5)—(1.7)) for the moments (z"):

(€) = 1+alz) + (1/2)a*(Z%) + - + (1/n)a" (") + - -- (7.121)
The cumulants (z"). are defined by
() = expla(z)e + (1/2)a” () + -+ + (I/nha" (") + -] (7.122)

We can express the cumulant of order # as a linear combinations of moments of
order m < n by expanding the right hand side of Eq. (7.122) in a Taylor series, and
equating equal powers of « in the resulting expansion and in (7.121). This leads to

(2)e = (2)
(Z%)e = (%) — (2)? = (82%) (7.123)
(23)e = (23) = 3(2)(z?) + 2(z)°

We can generalize this to many random variables and even to a continuous array
of such variable s. Starting from the left-hand side of (7.64) and using a Taylor
expansion we have

t t t

<exp (i f dt/x(t/)z(t/)>> =1+i / dt'x(?') (z(1)) —% / dt’

fo fo fo

t
X / di"x()x(t") (z()z(t")) + - - - (7.124)
fo
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The cumulant expansion is defined in analogy to (7.122)

t ! ;
<exp (i/dt’x(t/)z(t/))> = exp (i/dt/x(t/)(z(ﬂ))c — % / dar’
to fo 0

t

X / dt”x(t/)x(t”)(z(t/)z(t”))c+---> (7.125)

fo

Again, expanding the exponent in (7.125) in a power series and comparing similar
orders of x(¢) in the resulting series with Eq. (7.124) we find

(z(0))e = (2(D))

(z(t)z(t"))e = (8z(t")éz(")); 8z(f) = z(t) — (z()) (7.126)

A common approximation is to truncate the cumulant expansion at some order,
usually the second. Comparing to Eqgs (7.63) and (7.64) we see that for a Gaussian
process this approximation is exact. In fact, it may be shown that for a Gaussian
process not only does the sum of all higher cumulants vanish, but every cumulant
higher than the second is zero.

Appendix 7D: Proof of the Wiener—Khintchine theorem

Starting from Eq. (7.70) we have

T T
<|xn|2> = %/dﬁ /dtz(x(lz)x(tl))e_iwn(fl—tz)

0 0
T 1 T

= %/dtl ( dtr + /dtz Cct — tz)e—iwn(ll—fz)
0 0 t
T n T T-n

= %/dtlfdtC(t)eiwnt+%/dtl / dtC(—t)en! (7.127)
0 0 0 0

Note that if x(¢) is a complex function the same relationships hold for C(¢) =
(x*(0)x(?)). The integration regions corresponding to the two integrals in (7.127)
are shown in Fig. 7.3, where the arrows show the direction taken by the inner
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X
x X=1

T f T f

Fic. 7.3 The integration regions and procedures taken for the two integrals in Eq. (7.127)

integrals. By changing the integration direction we can change the orders of these
integrations to get

T T

(lxnl?) = % / di(T — )C(t)e "'+ / dt(T — H)C(—t)e"n! (7.128)
0 0

Using the definition (7.74) of I(w), we get

T T
I(wy) = lim 1 / dt(T — t)C(t)e " + / dt(T — t)C(—1)e'n!
2n T

T—o0

0 0
(7.129)

assuming that the integrals [ dtC(t)e"'and [~ dt tC(t)e" " are finite, this yields

1 o0 o 1 0
[(w) = — / drC(t)e " + / diC(—t)e® | = — / diC(t)e ™" (7.130)
2 2
0 0 —00

This concludes the proof.

Further reading

See end of Chapter 8.



8
STOCHASTIC EQUATIONS OF MOTION

Never suppose the atoms had a plan,

Not with wise intelligence imposed

An order on themselves, nor in some pact
Agreed what movements each should generate.
No, it was all fortuitous...

Lucretius (c.99—c.55 BcE) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

We have already observed that the full phase space description of a system of
N particles (taking all 6N coordinates and velocities into account) requires the
solution of the deterministic Newton (or Schrédinger) equations of motion, while
the time evolution of a small subsystem is stochastic in nature. Focusing on the
latter, we would like to derive or construct appropriate equations of motion that
will describe this stochastic motion. This chapter discusses some methodologies
used for this purpose, focusing on classical mechanics as the underlying dynamical
theory. In Chapter 10 we will address similar issues in quantum mechanics.

8.1 Introduction
The time evolution of stochastic processes can be described in two ways:

1. Time evolution in probability space. In this approach we seek an equation
(or equations) for the time evolution of relevant probability distributions.
In the most general case we deal with an infinite hierarchy of functions,
Pzutn; zn—1ti—1; . . .;z1t1) as discussed in Section 7.4.1, but simpler cases
exist, for example, for Markov processes the evolution of a single func-
tion, P(z, t; zoty), fully characterizes the stochastic dynamics. Note that the
stochastic variable z stands in general for all the variables that determine the
state of our system.

2. Time evolution in variable space. In this approach we seek an equation of
motion that describes the evolution of the stochastic variable z(¢) itself (or
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equations of motion for several such variables). Such equations of motions
will yield stochastic trajectories z(¢) that are realizations of the stochastic
process under study. The stochastic nature of these equations is expressed by
the fact that for any initial condition zg at t = fo they yield infinitely many
such realizations in the same way that measurements of z(¢) in the laboratory
will yield different such realizations.

Two routes can be taken to obtain such stochastic equations of motions, of
either kind:

1. Derive such equations from first principles. In this approach, we start with the
deterministic equations of motion for the entire system, and derive equations
of motion for the subsystem of interest. The stochastic nature of the latter
stems from the fact that the state of the complementary system, “the rest of
the world,” is not known precisely, and is given only in probabilistic terms.

2. Construct phenomenological stochastic equations using physical arguments,
experimental observations, and intuition.

In this chapter we will usually take the second route (see Section 8.2.5 for an
example of first principle derivation).

In Chapter 7 we saw examples of evolution equations in probability space that
were constructed via the phenomenological route. Equation (7.3) for the nearest
neighbor random walk problem,

dP(n, 1)

ry kr(P(n—1,8) — P(n,1)) + ki(P(n + 1,1) — P(n, 1)) 8.1

which describes the time evolution of the probability distribution in terms of the
transition rates between different “states” of the system is one example. Another
is the diffusion equation (the three-dimensional analog of Eq. (7.8))

JdP(r,1)
ot

= DV?P(r,t) (8.2)

The fact that under these equations the probability distribution at time ¢ is fully
determined by the distribution at any earlier time implies that these processes are
Markovian.

Equations (8.1) and (8.2) should be solved under given initial conditions, P(n, 0)
and P(r, 0), respectively. If these are given by P(n,t = 0) = §,,, and P(r,t) =
3(r — rp) the resulting solutions are the conditional probabilities P(n, ¢ | ng, to) and
P(r,t|rg, 1) to be at n or r given that the system started at ng or ro, respectively.
In the present context these can be identified as the transition probabilities of the
corresponding stochastic processes—from ng to n or from rg to r. A Markovian
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process is completely determined by these transition probabilities. We can thus
rewrite Eq. (8.2), for example, in a more specific way as

OP(r,t|ro, o)

T = DV2P(r,t|ro,t0);  P(r,fo|ro, ) = 8(r —rg)  (8.3)

Problem 8.1. Show that for the initial condition P(r,f = ty) = 3(r — rp) the
solution of Eq. (8.2) is

_ 1 (r— ro)2 ; ,
P(r,t | Yo, %)) = (47‘[D(t _ to))3/2 exp (-m) ; t>t (84)

A stochastic process whose transition probability P(r, ¢ | ro, #o) satisfies Eq. (8.3)
is called a Wiener process. Another well-known Markovian stochastic process is
the Orenstein—Uhlenbeck process, for which the transition probability satisfies the
equation (in one-dimension)

AP (x,1 | x0,10) 9 92
——— = vV - (&P, 1] x0,t0)) + D P(x, 1] x0, ) (8.5)
ot dx ox

with y > 0. The solution of this equation (again with P(r, ty | 1o, f) = 8(r — ry))
is the Gaussian distribution

Y [ yx— aXO)Z]

T _ . — V=) (8¢
wmDl—-a) | T wpa—ay [T 4T (8.6)

P(xt | xot0) =

In the limit y — 0 this becomes a Wiener process. Both Egs (8.3) and (8.5) are
special cases of the Fokker—Planck equation(see Section 8.4).

Problem 8.2. Calculate the equilibrium correlation function (x(#)x(0)) for a
system undergoing the Orenstein—Uhlenbeck process.

Solution: The equilibrium distribution implied by Eq. (8.5) is the t — fp — oo
limit of Eq. (8.6). In this limit Eq. (8.6) becomes

Peq(x) = P(x,t — 00 | x0,10) = ,/ﬁexp{—yxz/az))] (8.7)



258 STOCHASTIC EQUATIONS OF MOTION

Therefore the equilibrium joint probability distribution for the stochastic variable
to take the value x at time ¢ and x’ at time ¢’ in equilibrium is (from Eqs (7.40)
and (8.7))

2 2 /
-2
Py(x, ;1) = P(x, 1| X, ) Peq(x) = X+ X" —2xx a]

%
—————exp |~y
27DV — a2 P [ 2D(1 — a?)
(8.8)

Here we may treat ¢ and ¢ on equal footing by taking a = e 71="l The
correlation function can be obtained from (cf. Eq. (7.42a))

(x(t)x(0)) = /dx / dx'xx' Py (x, t;x', 1) (8.9)
which yields after some algebra

(x(0)x(0)) = % = (x2)e 7= (8.10)

Equations (8.1) and (8.2) are two examples of equations that describe a
Markovian stochastic process in terms of the time evolution of its transition prob-
ability, P(n, t|ng, ty) or P(r,t | ro, tp) given the initial conditions P (n, to | no, ty) =
Snn and P(r, fy|ro, t9) = 8(r — ro). Apart from the actual form (that depends on
the physical nature of the process) they differ from each other in that the system
described by (8.1) has a discrete set of states {n} while in (8.2) the state space is
continuous. In correspondence P(n,t | ng, ty) is a probability, while P(r, ¢ | ro, fo)
is a probability density. As seen in Section 7.3.1 these equations may describe
the same physical process, with (8.2) obtained from a coarse-graining procedure
applied to (8.1). Many times however, the use of discrete distributions appears in
descriptions of physical processes in the space of the energy states of systems with
discrete spectra, while continuous distributions appear when describing processes
in position-momentum space. More important is to note that because continuous
formulations usually involve coarse-graining, that is, collapsing many observables
within the resolution window of our observation into a single coarse-grained vari-
able, it follows from the central limit theorem of probability theory (Section 1.1.1)
that the distributions involved are Gaussian, which is why modeling of physical pro-
cesses in terms of Wiener or Orenstein—Uhlenbeck processes is often useful. Even
when the process is not Gaussian, a continuous representation often leads to a time
evolution equation, called a Fokker—Planck equation (see Section 8.4), whose form
(a generalization of Eq. (8.5)) stems from the common situation where transitions
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involving a given state are dominated by states in its immediate neighborhood. A
more general description of time evolution in probability space is often referred
to as a master equation (Section 8.3). Before addressing these types of stochastic
equations of motion we consider in the next section an alternative description in
the space of the stochastic variable itself, the so called Langevin equation.

8.2 The Langevin equation

8.2.1 General considerations

Sometimes we find it advantageous to focus our stochastic description not on the
probability but on the random variable itself. This makes it possible to address
more directly the source of randomness in the system and its effect on the time
evolution of the interesting subsystem. In this case the basic stochastic input is
not a set of transition probabilities or rates, but the actual effect of the “environ-
ment” on the “interesting subsystem.” Obviously this effect is random in nature,
reflecting the fact that we do not have a complete microscopic description of the
environment.,

As discussed in Section 8.1, we could attempt to derive these stochastic
equations of motion from first principles, that is, from the full Hamiltonian of
the system+environment. Alternatively we can attempt to construct the equation of
motion using intuitive arguments and as much of the available physical inform-
ation as possible. Again, this section takes the second route. As an example
consider the equation of motion of a particle moving in a one-dimensional
potential,

PPERIAC)) (8.11)
m 0x

and consider the effect on this particle’s dynamics of putting it in contact with a
“thermal environment.” Obviously the effect depends on the strength of interaction
between the particle and this environment. A useful measure of the latter within
a simple intuitive model is the friction force, proportional to the particle velocity,
which acts to slow down the particle:

1oV
PP L) (8.12)
m ox

The effect of friction is to damp the particle energy. This can most easily be seen by
multiplying Eq. (8.12) by mx, using mx¥ + x(V (x)/0x) = (d/dt)[Ex + Ep] = E
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to get E = —2yEy. Here E, Ex, and Ep are respectively the total particle
energy and its kinetic and potential components. Equation (8.12) thus describes
a process of energy dissipation, and leads to zero energy, measured from a local
minimum on the potential surface, at infinite time. It therefore cannot in itself
describe the time evolution of a particle in thermal equilibrium. What is missing
is the random “kicks” that the particle occasionally receives from the surround-
ing thermal particles. These kicks can be modeled by an additional random force
in Eq. (8.12)

W14 |
i= 1@ e (8.13)
m 0x m

The function R(¢) describes the effects of random collisions between our subsystem
(henceforth referred to as “system”), that may sometimes be a single particle or a
single degree of freedom, and the molecules of the thermal environment (“bath”).
This force is obviously a stochastic process, and a full stochastic description of our
system is obtained once we define its statistical nature.

What can be said about the statistical character of the stochastic process R(#)?
First, from symmetry arguments valid for stationary systems, (R(#)) = 0, where
the average can be either time or ensemble average. Second, since Eq. (8.12) seems
to describe the relaxation of the system at temperature 7 = 0, R should be related
to the finite temperature of the thermal environment. Next, at 7 = 0, the time
evolution of x according to Eq. (8.12) is Markovian (knowledge of x and x fully
determines the future of x), so the system-bath coupling introduced in (8.12) is of
Markovian nature. This implies that the action of the bath on the system at time #
does not depend on history of the system or the bath; in particular, the bath has no
memory of what the system did in the past (see Section 7.4.2). The additional finite
temperature term R(¢) has to be consistent with the Markovian form of the damping
term. Finally, in the absence of further knowledge and because R is envisioned as
a combined effect of many environmental motions, it makes sense to assume that,
for each time ¢, R(¢) is a Gaussian random variable, and that the stochastic process
R(?) is a Gaussian process (Section 7.4.3).

We have already argued (Section 7.4.2) that the Markovian nature of the system
evolution implies that the relaxation dynamics of the bath is much faster than that
of the system. The bath loses its memory on the timescale of interest for the system
dynamics. Still the timescale for the bath motion is not unimportant. If, for example,
the sign of R(#) changes infinitely fast, it makes no effect on the system. Indeed,
in order for a finite force R to move the particle it has to have a finite duration.
It is convenient to introduce a timescale tg, which characterizes the bath motion,
and to consider an approximate picture in which R(¢) is constant in the interval
[¢,t + ], while R(#;) and R(#) are independent Gaussian random variables if
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|ty — 2] = (1/2)tB. Accordingly,
(R(t1)R(t1 + 1)) = CS(®) (8.14)

where S(¢) is 1 if || < (1/2)7B, and is 0 otherwise. Since R(#) was assumed to be
a Gaussian process, the first two moments specify completely its statistical nature.
The assumption that the bath is fast relative to the timescales that characterize the
system implies that 7 is much shorter than all timescales (inverse frequencies)
derived from the potential ¥ (x) and much smaller than the relaxation time y ~! for
dissipation of the system energy.

In Eqs (8.13) and (8.14), both y and C originate from the system—bath coupling,
and should therefore be somehow related to each other. In order to obtain this
relation it is sufficient to consider Eq. (8.13) for the case where V' does not depend
on position, whereupon

b= —pv+ —R() (8.15)
m

(v = x is the particle velocity). This equation can be solved as a first-order
inhomogeneous differential equation, to yield

t
1 ,
v(t) = v(t =0)e " 4+ — / dt' eV DR (8.16)
m
0

For long times, as the system reaches equilibrium, only the second-term on the right
of (8.16) contributes. For the average (u) at thermal equilibrium this gives zero,
while for (v?) we get

t t
1 / 4
W) = — / dt’ / dt"e 7 DY o — 1) (8.17)
m
0 0

Since the integrand is negligible unless |’ — "| < 13 < 1/y, (v?) in Eq. (8.17)
can be approximated by

t t
1 / 1
<V2> — ﬁ / dt/e—zy(f—t)fdl//cs(t/ _ l//) — 2m2yC‘L’B (818)
0 0

To get the final result we took the limit # — oo. Since in this limit the system
should be in thermal equilibrium we have (v?) = kT /m, whence

Co 2mykpT

B

(8.19)
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Using this result in Eq. (8.14) we find that the correlation function of the
Gaussian random force R has the form

(RUDR(ty + 1)) = 2mkaT¥ B2 oy kpT5(t) (8.20)
B

For the system’s motion to be Markovian tg has to be much shorter than the
relevant system’s timescales. Equation (8.20) indicates that its actual magnitude is
not important and the random force may be thought of as §-correlated. The limiting
process described above indicates that mathematical consistency requires that as
g — 0 the second moment of the random force diverge, and the proper limiting
form of the correlation function is a Dirac § function in the time difference. Usually
in analytical treatments of the Langevin equation this limiting form is convenient.
In numerical solutions however, the random force is generated at time intervals
At, determined by the integration routine. The random force is then generated as a
Gaussian random variable with zero average and variance equal to 2my kT / At.

We have thus seen that the requirement that the friction y and the random force
R(¢) together act to bring the system to thermal equilibrium at long time, naturally
leads to a relation between them, expressed by Eq. (8.20). This is a relation between
fluctuations and dissipation in the system, which constitutes an example of the
Sfluctuation—dissipation theorem (see also Chapter 11). In effect, the requirement
that Eq. (8.20) holds is equivalent to the condition of detailed balance, imposed
on transition rates in models described by master equations, in order to satisfy the
requirement that thermal equilibrium is reached at long time (see Section 8.3).

8.2.2 The high friction limit

The friction coefficient y defines the timescale, y ~! of thermal relaxation in the

system described by (8.13). A simpler stochastic description can be obtained for a
system in which this time is shorter than any other characteristic timescale of our
system.! This high friction situation is often referred to as the overdamped limit.
In this limit of large y, the velocity relaxation is fast and it may be assumed to
quickly reaches a steady state for any value of the applied force, thatis, v = % = 0.
This statement is not obvious, and a supporting (though not rigorous) argument is
provided below. If true then Eqs (8.13) and (8.20) yield

a1 (—d—V +R<r)> LR =0 (ROR®) = 2myksTS(t)
dt  ym dx
(8.21)

! But, as discussed in Section 8-2.1, not relative to the environmental relaxation time.
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This is a Langevin type equation that describes strong coupling between the system
and its environment. Obviously, the limit y — 0 of deterministic motion cannot
be identified here.

Why can we, in this limit, neglect the acceleration term in (8.13)? Con-
sider a particular realization of the random force in this equation and denote
—dV /dx + R(t) = F(t). Consider then Eq. (8.13) in the form

b=yt LF @) (8.22)
m

If F is constant then after some transient period (short for large y) the solution of
(8.22) reaches the constant velocity state

y=_— (8.23)

The neglect of the v term in (8.22) is equivalent to the assumption that Eq. (8.23)
provides a good approximation for the solution of (8.22) also when F' depends
on time. To find the conditions under which this assumption holds consider the
solution of (8.22) for a particular Fourier component of the time-dependent force

F(t) = Fe'! (8.24)

Disregarding any initial transient amounts to looking for a solution of (8.22) of
the form

V(t) = vpe'® (8.25)
Inserting (8.24) and (8.25) into (8.22) we find

F,/m _F, 1

— =2 - 8.26
Yo io+y myl+io/y ( )
which implies
F(@)
v(t) = — (1 4+ O(w/y)) (8.27)
my

We found that Eq. (8.23) holds, with corrections of order w/y . It should be emphas-
ized that this argument is not rigorous because the random part of F'(¢) is in principle
fast, that is, contain Fourier components with large w. More rigorously, the trans-
ition from Eq. (8.13) to (8.21) should be regarded as coarse-graining in time to get
a description in which the fast components of the random force are averaged to zero
and velocity distribution is assumed to follow the remaining instantaneous applied
force.



264 STOCHASTIC EQUATIONS OF MOTION
8.2.3 Harmonic analysis of the Langevin equation

If R(¢) satisfies the Markovian property (8.20), it follows from the Wiener—
Khintchine theorem (7.76) that its spectral density is constant

Ir(w) = constant = Iy (8.28)
[e.e]
CMﬂ:/de@@ﬁﬂﬂwm (8.29)
—0oQ0
ksT
Ip = 2VRB (8.30)
T

Equation (8.28) implies that all frequencies are equally presented in this random
force spectrum. A stochastic process of this type is called a white noise.

From the spectral density of R(¢) we can find the spectral density of stochastic
observables that are related to R via linear Langevin equations. For example,
consider the Langevin equation (8.13) with V' (x) = (1/2)ma)8x2 (the so called
Brownian harmonic oscillator)

x s e 8.31)
—_— —_— wpX = — .
dt? ydt 0 m

and apply the Fourier expansion (7.69) to R, x, and v = dx/dt

o o0
R@®) = Z R, x(t) = Z xpe'

n=—o0 n=—oo
o
v(t) = Z Vet v, = iwpXy, (8.32)
n=—00

Using these expansions in (8.31) yields

1 iwy
Ry; Vn =

Xp =

R,  (833)

(a)(z) — a),zl + ia)ny) m (a)g — a),2, + iwny) m

The power spectrum of any of these stationary processes is given by Eq. (7.74).
Therefore, Eq. (8.33) implies a relation between these spectra

1 I 1 I
L) = ) > 1O (8 340)
‘a)é —w?+ iya)‘ m (a)g — a)z) +y2p? M
2
I
L(w) = - 2(@) (8.34b)

(w(Z) _ wz)z + 22 m2
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In the absence of an external potential (free Brownian motion; wg = 0) Eq. (8.34b)
becomes

I(w) = Ig() (8.35)

m2 (a)z + yz)
In the Markovian case Ig(w) = I is independent of w.> Together with Eq. (8.30)
these are explicit expressions for the corresponding power spectra.

As an application consider the velocity time correlation function for the simple
Brownian motion. Using Eqs (7.76), (8.30), and (8.35) we get

oo
i [R iw(thy—11) 1
Culty = 1) = (ve)v(n)) = — / do e 7
—00

iR e Vin—nl — kBTe—VIfl—tzl
2
mey m

(8.36)

—an exponential decay with a pre-exponential coefficient given by the equilibrium
value of (v?), as expected. Similarly, for the harmonic Brownian motion, we get
using Eqgs (7.76) and (8.34a)

1
(0)5 _ w2)2 + y2w2

o0
I .
Cu(t) = (R(O)x(0)) = / do & (8.37)
m
—00
This integral is most easily done by complex integration, where the poles of the

integrand are w = £(i/2)y &+ w] with w] = ,/a)(z) — y2/4. It leads to

I
Gty = = (cosa)lt + sinwﬂ) e fort >0 (8.38)
mey wy 2w

Fort = 0 we have (x?) = J'r]R(mzya)(Z))_1 and using (8.30) we get ma)(z) (x?) = kpT,
again as expected.

8.2.4 The absorption lineshape of a harmonic oscillator

The Langevin equation (8.31), with R(#) taken to be a Gaussian random force that
satisfies (R) = 0 and (R(0)R(¢)) = 2mykpTé(t), is a model for the effect of a
thermal environment on the motion of a classical harmonic oscillator, for example,
the nuclear motion of the internal coordinate of a diatomic molecule in solution.

% It is important to note that Eq. (8.31), with a constant y, is valid only in the Markovian case. Its
generalization to non-Markovian situations is discussed in Section 8.2.6.
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A standard experimental probe of this motion is infrared spectroscopy. We may
use the results of Sections 7.5 and 8.2.3 to examine the effect of interaction with
the thermal environment on the absorption lineshape. The simplest model for the
coupling of a molecular system to the radiation field is expressed by a term —p - €
in the Hamiltonian, where u is the molecular dipole, and £(¢) is the oscillating
electric field (see Section 3.1). For a one-dimensional oscillator, assuming that
w is proportional to the oscillator displacement from its equilibrium position and
taking £(¢) ~ cos(wt), we find that the coupling of the oscillator to the thermal
environment and the radiation field can be modeled by Eq. (8.31) supplemented by
aterm (£ /m) cos(wt) where F' denotes the radiation induced driving force. We can
use the resulting equation to compute the radiation energy absorbed by the oscillator
following the procedure of Section 7.5.3. Alternatively, Eq. (8.31) implies that our
oscillator can be described as a superposition of normal modes of the overall system
including the bath (see Sect. 8.2.5). In this sense the coordinate x that couples to the
radiation field is equivalent to the coordinate 4 (Eq. (7.77)) used in Section 7.5.3.
This implies, using Eq. (7.91), the absorption lineshape

w? yvkpT
(@f — @) + (yw)? 7m

In the underdamped limit y < @y, which is relevant for molecules in condensed
phases, L(w) is strongly peaked about w = wg. Near the peak we can approximate
the denominator in (8.39) by (w% — )+ (wy)? = 4a)(2)(a) —wo)*+ a)(z)yz, so that

1 v
7 (@0 — @) + (v/2

This is a Lorentzian lineshape whose width is determined by the friction. The lat-
ter, in turn, corresponds to the rate of energy dissipation. It is significant that the
normalized lineshape (characterized by its center and width) does not depend on
the temperature. This result is associated with the fact that the harmonic oscillator is
characterized by an energy level structure with constant spacing, or classically—with
and energy independent frequency.

In Section 6.2.3 we have seen that a simple quantum mechanical theory based
on the golden rule yields an expression for the absorption lineshape that is given
essentially by the Fourier transform of the relevant dipole correlation function
(e (0)(t)). Assuming again that w is proportional to the displacement x of the
oscillator from its equilibrium position we have

L(w) ~ 0’ L(w) = (8.39)

L(w) = L(w)/ / - doL(w) = (8.40)

o0

L) =« / dte™ " (x(0)x (1)) (8.41)

—0o0

that, using (7.76) and (8.37) leads again to the result (8.40).
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Another point of interest is the close similarity between the lineshapes associated
with the quantum damped two-level system, Eq. (9.40), and the classical damped
harmonic oscillator. We will return to this issue in Section 9.3.

Problem 8.3. Show that

- 7 5 -1 - .
L(w) = L(w)/ / doL(w) = (271 <x >> / dre™ ™ (x(0)x (1)) (8.42)

Problem 8.4.

(1) Ifz(¢)isareal stationary stochastic process sothat (z(¢1)z(%2)) = C.(t1—12)
show that z(w) = [0 dte™'z(t) satisfies

(z(wz(@2)) = 27é(w1 + @2)C;(w2) (8.43)
C.(0) = / dte ' C,(1) = C.(—w) = CH(w) (8.44)

In particular, verify that (R(w1)R(w2)) = 4wmkpTy (w1 + wy).
(2) For the position correlation function of a harmonic oscillator use these
results together with (cf. Eq. (8.33))

m~'R(w)
o) = o o (8.45)
0 14
to show that "
Colw) = sl /m (8.46)

(@] — ©)? + (0y)?
This is another route to the corresponding absorption lineshape.

8.2.5 Derivation of the Langevin equation from a microscopic model

The stochastic equation of motion (8.13) was introduced as a phenomenological
model based on the combination of experience and intuition. We shall now attempt
to derive such an equation from “first principles,” namely starting from the Newton
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equations for a particular microscopic model.®> In this model the “system” is a
one-dimensional particle of mass m moving in a potential ¥ (x), and the bath is a
collection of independent harmonic oscillators. The Hamiltonian is taken to be

2
H= f—m + V() + Hyatn + Hing (8.47)

with the bath and system—bath interaction Hamiltonians given by

2
0 (8.48)

The “interaction” that appears in (8.48) contains, in addition to a linear coupling
term x Zj cjqj, also a “compensating term” Zj (cjx)2 / (ija)jz) that has the effect
that the minimum potential experienced by the particle at any point x along the
x-axis is V/(x). This minimum is achieved when all bath coordinates g; adjust to the
position x of the particle, that is, take the values —[c;/ (mja)jz)]x.

The equations of motion for the “system” and the bath particles are

1 .
Hypath + Hiny = 5 Z mj ‘1]2 + wf (‘11' + i)z
J 77

= ’j 5 qj (8.49)
m 0x m “— Hor
J
and
. 2 Cj
qj = —wjqj — —X (8.50)
m;

Equation (8.50) is an inhomogeneous differential equation for g;(¢), whose solution
can be written as

q;(t) = Q;(1) + g () (8.51)
where
Q;(1) = gjo cos (wjt) + % sin (wjt) (8.52)
J

* For the equivalent quantum mechanical derivation of the “quantum Langevin equation” see
G. W. Ford and M. Kac, J. Stat. Phys. 46, 803 (1987); G. W. Ford, J. T. Lewis, and R. F. O’Connell,
Phys. Rev. A 37, 4419 (1988).
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is the solution of the corresponding homogeneous equation in which g;o and g;o
should be sampled from the equilibrium distribution of the free bath, and where g;(¢)

is a solution of the inhomogeneous equation. A rather nontrivial such solution is*

t

- i ¢ .
gi(t) = ———=x() + —— /dr cos (w;(t — 1)) x(7) (8.53)

Using (8.51)—(8.53) in (8.49) now leads to

t

PR AN /dTZ(t — D) + lR(t) (8.54)
m o0x m
0
1 cf
Z(@t) = — 2}: ma? cos(wjt) (8.55)
R(t) = — Z ¢ (qjo cos(w;t) + % sin(a)jt)) (8.56)
Jj ]

The following points are noteworthy:

1. The function R(¢), which is mathematically identical to the variable 4 of
Section 6.5.1,° represents a stochastic force that acts on the system coordinate
x. Its stochastic nature stems from the lack of information about g;o and g;o.
All we know about these quantities is that, since the thermal bath is assumed to
remain in equilibrium throughout the process, they should be sampled from

* Egs. (8.52) and (8.53) imply that the initial state of the bath modes is sampled from a thermal
distribution in presence of the system. To check that (8.53) satisfies (8.50) write it in the form

i

~ C
5 = ——L5x( + —5
mjw m]wj

t
ReF; F = ei“’ft/dre—iwffic(r)
J 0

so that q~] = —(¢/ (mjwf))(jé — ReF),and prove the identityﬁ = iwF+X. This, together with the fact
that x and its time derivatives are real lead to[jj = (cj/(mjwf))Re(iij). Using also F= iwiF + X

leads toiij = —(c¢j/mj)ReF, which (using the equation that relates g; to Rel” above) is identical
to (8.50)
> See Egs (6.79), (6.81a), where the mass weighted normal coordinates u; was used instead of g;.
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an equilibrium Boltzmann distribution,® that is, they are Gaussian random
variables that satisfy

(gj0) = (gjo) =0
(1/2)mi{gjogy0) = (1/2)mje} {gjogyo) = (1/2)ksT8;
(gj0dj0) =0 (8.57)

2. The system—bath interaction term in (8.48) is xf, where f = Zj cjqjis the
force exerted by the thermal environment on the system. The random force
R(1), Eq. (8.56) is seen to have a similar form,

RH=)" ch]@ (t) (8.58)

J

where q(O) (t) = gjocos(w;t) + wj_lr']jo sin(w;t) represents the motion of a
free batﬁ mode, undisturbed by the system.
3. Using Egs (8.56) and (8.57) we can easily verify that

(ROO)R(t)) = mkpTZ(t) (8.59)

Comparing Eqs (7.77)—(7.79) we see that Z(¢) is essentially the Fourier trans-
form of the spectral density associated with the system—bath interaction. The
differences are only semantic, originating from the fact that in Eqs (7.77)—
(7.79) we used mass renormalized coordinates while here we have associated
a mass m; with each harmonic bath mode ;.

Equation (8.54) is a stochastic equation of motion similar to Eq. (8.13). However,
we see an important difference: Eq. (8.54) is an integro-differential equation in
which the term yx of Eq. (8.13) is replaced by the integral fot dtZ(t — 1)x(1). At
the same time the relationship between the random force R(¢) and the damping,
Eq. (8.20), is now replaced by (8.59). Equation (8.54) is in fact the non-Markovian
generalization of Eq. (8.13), where the effect of the thermal environment on the
system is not instantaneous but characterized by a memory—at time ¢ it depends
on the past interactions between them. These past interactions are important during
a memory time, given by the lifetime of the memory kernel Z(t). The Markovian
limit is obtained when this kernel is instantaneous

Markovian limit: Z(t) = 2y§(t) (8.60)

® This is in fact a subtle point, because by choosing the solution (8.53) we affect the choice of
g;(0) and g;(0). For further discussion of this point see P. Hanggi, in Stochastic Dynamics, edited by
L. Schimansky-Geier and T. Poschel (Springer Verlag, Berlin, 1997), Lecture notes in Physics Vol.
484, p. 15.
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in which case Eqs (8.13) and (8.20) are recovered from Eqgs (8.54)
and (8.59).

8.2.6 The generalized Langevin equation

As discussed in Section 8.2.1, the Langevin equation (8.13) describes a Markovian
stochastic process: The evolution of the stochastic system variable x(¢) is determ-
ined by the state of the system and the bath at the same time ¢. The instantaneous
response of the bath is expressed by the appearance of a constant damping
coefficient y and by the white-noise character of the random force R(z).

The microscopic model described in the previous section leads to Eqs (8.54)—
(8.56) as precursors of this Markovian picture. The latter is obtained in the limit
where the timescale for relaxation of the thermal environment is short relative to
all characteristic system times, as expressed mathematically by Eq. (8.60). This
limit, however, is far from obvious. The characteristic times in molecular systems
are associated with electronic processes (typical timescale 10~1°—-10~16 s), vibra-
tional motions (10~'4—~10~13 s), librations, rotations, and center of mass motions
(>10712'5). This should be compared with typical thermal relaxation times in con-
densed phases that can be estimated in several ways. The simplest estimate, obtained
from dividing a typical intermolecular distance (10~8 cm) by a typical thermal velo-
city (10* cm s™!) give a result, 10712 s that agrees with other estimates. Obviously
this timescale is longer than characteristic vibrational and electronic motions in
molecular systems. A similar picture is obtained by comparing the characteristic
frequencies (spacing between energy levels) associated with molecular electronic
motions (1-4¢eV) and intramolecular vibrational motions (~0.1 eV) with char-
acteristic cutoff (Debye) frequencies that are of order 0.01-0.1 eV for molecular
environments. One could dismiss electronic processes as unimportant for room tem-
perature systems in the absence of light, still intramolecular motions important in
describing the dynamics of chemical reaction processes are also often considerably
faster than typical environmental relaxation times.

The Markovian picture cannot be used to describe such motions. The generalized
Langevin equation

t

%= _Lrm /dtZ(t — )x(t) + lR(t) (8.61)
m 0x m

0

with R(¢) being a Gaussian random force that satisfies
(R) = 0; (ROOR(1)) = mkpTZ (1) (8.62)

is a useful model for such situations. While its derivation in the previous section
has invoked a harmonic model for the thermal bath, this model is general enough
for most purposes (see Section 6.5). The simple damping term —yx in Eq. (8.13)
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is now replaced by the non-Markovian friction term — fot dtZ(t — t)x(t) with the
memory kernel Z(¢) that satisfies Eq. (8.62). The time dependence of Z character-
izes the memory of the bath—the way its response is affected by past influences.
A characteristic “memory time” can be defined by

1 o0
Tmem = o> / dtZ(t) (8.63)
0

provided this integral converges.

It is important to point out that this does not imply that Markovian stochastic
equations cannot be used in descriptions of condensed phase molecular processes.
On the contrary, such equations are often applied successfully. The recipe for a
successful application is to be aware of what can and what cannot be described
with such approach. Recall that stochastic dynamics emerge when seeking coarse-
grained or reduced descriptions of physical processes. The message from the
timescales comparison made above is that Markovian descriptions are valid for
molecular processes that are slow relative to environmental relaxation rates. Thus,
with Markovian equations of motion we cannot describe molecular nuclear motions
in detail, because vibrational periods (10~'4s) are short relative to environmental
relaxation rates, but we should be able to describe vibrational relaxation processes
that are often much slower, as is shown in Section 8.3.3.

Coming back to the non-Markovian equations (8.61) and (8.62), and their
Markovian limiting form obtained when Z(¢) satisfies Eq. (8.60), we next seek to
quantify the properties of the thermal environment that will determine its Markovian
or non-Markovian nature.

Problem 8.5. Show that Eq. (8.55) can be written in the form

Z0 = = / d0” cos(or) (8.64)
am w
0
where
T = = i 5 8.65
(‘”)—E;mjwj (0 — ) (8.65)

is the spectral density associated with the system—bath interaction.”

7 Note the difference between Eqs (8.65) and (6.90) or (7.79). The mass m; appears explicitly in
(8.65) because here we did not use mass weighted normal mode coordinates as we did in Chapters 6
and 7. In practice this is just a redefinition of the coupling coefficient c;.
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The relaxation induced by the bath is seen to be entirely determined by the
properties of this spectral function. In particular, a Ohmic bath is defined to have
the property

J(w) = nw (8.66)

where 7 is a constant. For such a bath Eq. (8.64) gives Eq. (8.60) with y = n/m.

In reality, the Ohmic property, J(w) ~ w can be satisfied only approximately
because from (7.80) it follows that fooo dw(J(w)/w) has to be finite. A practical
definition of Ohmic spectral density is

J(w) = nwe™ ! (8.67)
from which, using (8.64), it follows that

Z(l‘)zz—n we /T

T (ol (8.68)

w represents a cutoff frequency beyond which the bath density of modes falls
sharply. It is equivalent to the Debye frequency of Section 4.2.4, whose existence
was implied by the discrete nature of atomic environments or equivalently by the
finite density per unit volume of bath modes. Here it represents the fastest timescale
associated with the thermal environment and the bath characteristic memory time
(indeed Egs (8.63) and (8.68) yield tmem = 7/2w:). The Markovian requirement
that the bath is fast relative to the system can be also expressed by requiring that
w, is larger than all relevant system frequencies or energy spacings.

Problem 8.6. Show that the power spectrum (Section 7.5.1) of the stochastic
process R(¢) is Ip(w) = kpTJ (w) /(T w).

8.3 Master equations

As discussed in Section 8.1, a phenomenological stochastic evolution equation can
be constructed by using a model to describe the relevant states of the system and the
transition rates between them. For example, in the one-dimensional random walk
problem discussed in Section 7.3 we have described the position of the walker
by equally spaced points nAx; (n = —00,...,00) on the real axis. Denoting by
P(n,t) the probability that the particle is at position n at time ¢ and by 4, and k;
the probabilities per unit time (i.e. the rates) that the particle moves from a given
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site to the neighboring site on its right and left, respectively, we obtained a kinetic
Eq. (7.3) for the time evolution of P(n, t):

dP(n,t)

rya k(P(n—1,t) — P(n,t)) + kk(P(n + 1,t) — P(n,1)) (8.69)

This is an example of a master equation.® More generally, the transition rates can
be defined between any two states, and the master equation takes the form

oP(m, t
% = kP, ) = 3 kP (m, 1) (8.70)
n n
n#Em n#Em

where &, = ki<, is the rate to go from state # to state m. Equation (8.70) can be
rewritten in the compact form

oP(m,t) . oP
— = zn:Km,,P(n, f); thatis, 5 =KP (8.71)
provided we define
Kyun = kyp form # n; Kyum = — Z knm (8.72)
n
n#Em

Note that (8.72) implies that ), K, = 0 for all n. This is compatible with the fact
that >, P(m,t) = 1 is independent of time. The nearest neighbor random walk
process is described by a special case of this master equation with

Kinn = klan,m—i-l + krgn,m—l (8-73)
In what follows we consider several examples.

8.3.1 The random walk problem revisited

The one-dimensional random walk problem described by Eq. (8.69) was discussed
in Section 7.3. It was pointed out that summing either side of this equation over

8 Many science texts refer to a 1928 paper by W. Pauli [W. Pauli, Festschrift zum 60. Geburtstage
A. Sommerfelds (Hirzel, Leipzig, 1928) p. 30] as the first derivation of this type of Kinetic equation.
Pauli has used this approach to construct a model for the time evolution of a many-sate quantum
system, using transition rates obtained from quantum perturbation theory.
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all n from —oo to oo yields zero, while multiplying this equation by # or n? then
performing the summation yields (cf. Eqs (7.11), (7.12))

d (n) _
o= k. — ki (8.74)
and
0 <n2)
a7 =2k —k)+k+k (8.75)

For the initial conditions (n) (t = 0) = (nz) (t = 0) = 0, that is, for a particle
that starts its walk from the origin, n = 0, these equations lead to (cf. (7.13), (7.15))

(n); = (ky — k)t = (pr — pDN (8.76)

(6n%) = (n?) =} = Gk + ko)t = (@ + pON (8.77)

for a walker that has executed a total of NV steps of duration Az during time t = N At,
with probabilities p, = kAt and p; = k; At to jump to the right and to the left,
respectively, at each step.

More can be achieved by introducing the generating function, defined by’

F(s,)= Y Pmns"s 0<ls <1 (8.78)

n=—0o0

which can be used to generate all moments of the probability distribution

according to:
a\* .
|:<S—8S> Fs, z)l:1 - <n > (8.79)

We can get an equation for the time evolution of /' by multiplying the master
equation (8.69) by s” and summing overalln. Using > o2 s"P(n— 1,1) = sF(s)
and Y 02 s"P(n+1,1) = F(s)/s leads to

OF (s,0)
ar

sF(s,t) + k[lF(S, 1) — (ke + k)F (s, 1) (8.80)
s

whose solution is
F(s,t) = A kst /)= A-kp) e (8.81)

° Note that (8.78) is a discrete analog of Eq. (1.5) with s = ¢*.
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If the particle starts from n = 0, that is, P(n,t = 0) = §,,0, Eq. (8.78) implies
that (s, = 0) = 1. In this case the integration constant in Eq. (8.81)is 4 =1. It
is easily verified that using (8.81) in Eq (8.79) with £ = 1,2 leads to Eqgs (8.76)
and (8.77). Using it with larger k£’s leads to higher moments of the time-dependent
distribution.

Problem 8.7. Equation (8.81) implies that F'(s = 1,#) = 1 for all z. Using the
definition of the generating function show that this result holds generally, not
only for the generating function of Eq. (8.69).

8.3.2 Chemical kinetics

. . . . k .
Consider the simple first-order chemical reaction, A —> B. The corresponding
kinetic equation,

d (4)

— = k) S ) () = 4) ¢ =0 (8.82)

describes the time evolution of the average number of molecules 4 in the system.'”
Without averaging the time evolution of this number is a random process, because
the moment at which a specific 4 molecule transforms into B is undetermined.
The stochastic nature of radioactive decay, which is described by similar first-order
kinetics, can be realized by listening to a Geiger counter. Fluctuations from the
average can also be observed if we monitor the reaction in a small enough volume,
for example, in a biological well.

Let P(n,t) be the probability that the number of 4 molecules in the system at
time ¢ is n. We can derive a master equation for this probability by following a
procedure similar to that used in Section 7.3.1 to derive Eq. (7.3) or (8.69):

P(n,t + At) =P(n,t) + k(n+ DHP(n+ 1,1) At — knP(n,t) At
dP(n,t)
ot

Unlike in the random walk problem, the transition rate out of a given state n depends
on n: The probability per unit time to go from n+1 to n is k (n+1), and the probability
per unit time to go from n to n — 1 is kn. The process described by Eq. (8.83) is an
example of a birth-and-death process. In this particular example there is no source
feeding 4 molecules into the system, so only death steps take place.

=k(n+ DPn+1,t) — knP(n,t) (8.83)

1% For detailed discussion and more examples see D. A. McQuarrie, 4 Stochastic Approach to
Chemical Kinetics, J. Appl. Probability 4, 413 (1967).
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Problem 8.8. How should Eq. (8.83) be modified if molecules A4 are inserted into
the system with the characteristic constant insertion rate k, (i.e. the probability
that a molecule 4 is inserted during a small time interval At is k, At)?

The solution of Eq. (8.83) is easily achieved using the generating function
method. The random variable # can take only non-negative integer values, and
the generating function is therefore

o0

F(s,ty=)_s"P(n,1) (8.84)

n=0

Multiplying (8.83) by s” and doing the summation leads to

0F(s,0) _oF O -9k (8.85)
at as as as
where we have used identities such as
> 3
> s"'mP(n, 1) = s5-F G0 (8.86)
n=0
and
Y S+ DPn+ 1,0 =Y " 'aP(n,t) = — (8.87)
n=0 n=1 ds

If P(n,t = 0) = S, then F(s,t = 0) = ™. It is easily verified by direct
substitution that for this initial condition the solution of Eq. (8.85) is

Fs,t) = [1 ¥ (s 1)e—’“]"° (8.88)
This will again give all the moments using Eq. (8.79).
Problem 8.9. Show that for this process
(n); = nge™ " (8.89)

(8n%); = nge M (1 — &) (8.90)

The first moment, (8.89), gives the familiar evolution of the average 4 popula-
tion. The second moment describes fluctuations about this average. It shows that
the variance of these fluctuations is zero at ¢ = 0 and ¢ = oo, and goes through a
maximum at some intermediate time.
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8.3.3 The relaxation of a system of harmonic oscillators

In this example the master equation formalism is applied to the process of vibrational
relaxation of a diatomic molecule represented by a quantum harmonic oscillator.!!
In a reduced approach we focus on the dynamics of just this oscillator, and in fact
only on its energy. The relaxation described on this level is therefore a particular
kind of random walk in the space of the energy levels of this oscillator. It should
again be emphasized that this description is constructed in a phenomenological
way, and should be regarded as a model. In the construction of such models one
tries to build in all available information. In the present case the model relies on
quantum mechanics in the weak interaction limit that yields the relevant transition
matrix elements between harmonic oscillator levels, and on input from statistical
mechanics that imposes a certain condition (detailed balance) on the transition rates.

We consider an ensemble of such oscillators contained in a large excess of
chemically inert gas which acts as a constant temperature heat bath throughout the
relaxation process. We assume that these oscillators are far from each other and
do not interact among themselves, so that the energy exchange which controls the
relaxation takes place primarily between the oscillators and the “solvent” gas.

The most important physical inputs into the stochastic model are the transition
probabilities per unit time between any two vibrational levels. Naturally these
transition rates will be proportional to the number Z of collisions undergone by the
molecule per unit time. For each collision we assume that the transition probability
between oscillator states n and m is proportional to O, the absolute square of the
matrix element of the oscillator coordinate ¢ between these states,!? given by (cf.
Eq. (2.141)):

Qnm = an = |qnm|2 = |q01|2[n8n,m+1 + man,m—l] (891)

Finally, the transition probability between levels n and m must contain a factor
that depends on the temperature and on the energy difference between these states.
This factor, denoted below by f(E, — Ey,), conveys information about the energy
available for the transition, for example, telling us that a transition from a lower

1" This section is based on E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).

12 This assumption relies on the fact that the amplitude ¢ of molecular vibrations about the equi-
librium nuclear configuration xeq is small. The interaction V' (xeq + ¢, B) between the oscillator and
the surrounding bath B can then be expanded in powers of ¢, keeping terms up to first order. This
yields V' = C — Fg where C = V(xeq, B) is a constant and F = —(9V'/9q)4=0. When the effective
interaction —Fg is used in the golden rule formula (9.25) for quantum transition rates, we find that
the rate between states / and j is proportional to | gj; 2. This is true also for radiative transition
probabilities, therefore the same formalism can be applied to model the interaction of the oscillator
with the radiation field.
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energy to a higher energy state is impossible at zero temperature. The transition
probability per unit time between two levels n and m can now be written in the
form:

knm = ZQnmf(Enm)a Enm = En - Em (8-92)

These rates can be used in the master equation (8.70) for the probability P(n, t)
(denoted below P,(¢)) to find the oscillator in its nth level at time ¢:

OPu(t) B
. —an(kmnPn(z) Ko P (1)) (8.93)

Equation (8.91) implies that the transitions occur only between levels adjacent to
each other. More information about the rates (8.92) is obtained from the condition
of detailed balance: At thermal equilibrium any two levels must be in thermal
equilibrium with respect to each other. Therefore

K Pyt — ke Pyt = (8.94)
so that (since gm = Gmn)

fEm) _ Pn

el expl—B(E, — En)l; B = (kgT)™" (8.95)

If we assume that the probability of going down in energy does not depend on the
temperature (since no activation is needed) we can denote f(E, ,4+1) = « so that
S (Ens10) = ke PE where ¢ = fiw is the energy spacing between adjacent levels.
Using also Eqs (8.91) and (8.92) we can write

knn+1 = ZQo1k(n + 1) (8.96a)
kns 10 = ZQo1k (n + 1)e~P¢ (8.96b)
knm =0 unless m=n=x1 (8.96¢)

Using these rates in the master equation (8.93) we have

aP,
ot

= n,n-HPn—H + kn,n—lpn—l - kn+1,npn - kn—l,npn (897)

and redefining ZQp1xt = 7, we get

oP
rn = (n+ DPyy1 +ne PPy = [(n+ De P + nP, (8.98)
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Equation (8.98) describes the thermal relaxation of the internal nuclear motion
of a diatomic molecule modeled as a harmonic oscillator. It is interesting to note
that in addition to the physical parameter Se that appears explicitly in (8.98), the
time evolution associated with this relaxation is given explicitly in terms of only
one additional parameter, the product ZQy« that relates the time variable t to the
real physical time ¢.

The full solution of Eq. (8.98) is described in the paper by E. W. Montroll and
K. E. Shuler (see footnote 11). Here we focus on the time evolution of the first
moment (n)(z). Multiplying Eq. (8.98) by n and summing over all # between 0 and

oo leads to 5
U _ 44 o Pep (8.99)
ot

with

A=Y " (nn+ DPpy1 —1°Py) ==Y _ (n+ DPyy1 = —(n) (8.100)
n=0 n=0

and

B=) (P —n(+DPy) =) (1= DnPy_i +nPuy = n(n+1)Py)
n=0 n=0

=Y nPy1=(n)+1 (8.101)
n=0

Using (8.100) and (8.101) leads to

9 -
Am) _ —ky(n) + ¢ (8.102a)

0t
ky=1—e P, c=eF¢ (8.102b)

The solution of (8.102) for the initial condition (n) = (n)g at ¢ = 0 is easily
found to be

(n) = (n)()e_l_cvr + l_{i(l _ e—k‘,r)

v

= (n)pe M + 1;5(1 _ by (8.103)

14

where
kv = (1 —e ) Z0g1x (8.104)
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Noting that

c 1

is the equilibrium thermal population of the oscillator, we can write (8.103) in the

physically appealing form
(n), = (n)oe ™ + (n)eq(1 — &™) (8.106)

The relaxation to thermal equilibrium is seen to be exponential, with a rate given by
(8.104). It is interesting to note that in the infinite temperature limit, where &, = 0,
Eq. (8.102) describes a constant heating rate of the oscillator. It is also interesting
to compare the result (8.106) to the result (9.65) of the very different quantum
formalism presented in Section 9.4; see the discussion at the end of Section 9.4 of
this point.

For completeness we also cite from the same paper (see footnote 11) the
expression for the variance o () = (n?), — <”>¢2
0 (1) = Oeq + [00 — Tegle™ " + [(m)o — (M)eq][1 + 2(nheqle™™ (1 — ™)

(8.107)

where

Oeq = <n>eq(1 + (”l)eq) (8.108)

The result (8.107) shows that in the course of the relaxation process the width
of the energy level distribution increases (due to the last term in (8.107)) before
decreasing again. This effect is more pronounced for larger [(n)o — (n)eq], that is,
when the initial excitation energy is much larger than k7.

8.4 The Fokker—Planck equation

In many practical situations the random process under observation is continuous in
the sense that (1) the space of possible states is continuous (or it can be transformed
to a continuous-like representation by a coarse-graining procedure), and (2) the
change in the system state during a small time interval is small, that is, if the system
is found in state x at time ¢ then the probability to find it in state y # x at time
{ + 8t vanishes when 8¢ — 0.!3 When these, and some other conditions detailed
below, are satisfied, we can derive a partial differential equation for the probability
distribution, the Fokker—Planck equation, which is discussed in this Section.

' In fact we will require that this probability vanishes faster than 8¢ when 8t — 0.
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8.4.1 A simple example

As an example without rigorous mathematical justification consider the master
equation for the random walk problem

dP(n, 1)
at

=kP(n—1,0) + kP(n+ 1,1) — (kr + k)P (n, 1)
= —k(P(n,t) — P(n— 1,0)) — kj(P(n,t) — P(n+ 1,1))
= —k(1 — e~ PP, 1) — k(1 — /) P(n, 1) (8.109)

In the last step we have regarded » as a continuous variable and have used the
Taylor expansion

) P 1 ,3%P
APy =1+ g— + ~a*——~ +--- = P(n+a) (8.110)
on 2 on?
In practical situations # is a very large number—it is the number of microscopic steps
taken on the timescale of a macroscopic observation. This implies that 9¥P/dn* >
¥ 1P /g +1 14 We therefore expand the exponential operators according to

) 3 1d?
1 —eF@m — o — 8.111
¢ Ton 202 @110
and neglect higher-order terms, to get
aP(n, 1) AP(n,1) 3%P(n, 1)
=—4 B 8.112
ot on + on? ( )

where 4 = k, — kj and B = (k. + k;)/2. We can give this result a more physical
form by transforming from the number-of-steps variable # to the position variable
x = nAx where Ax is the step size. At this point we need to distinguish between
P,(n), the probability in the space of position indices, which is used without the
subscript z in (8.112), and the probability density on the x-axis, Py(x) = P, (n)/Ax,
that is used without the subscript x below. We omit these subscripts above and below
because the nature of the distribution is clear from the text. This transformation leads
to
2
oP(x,t) . oP(x,t) +D8 P(x, 1)
ot ox 0x2

(8.113)

14 Forexample if /' (n) = n® then 3f /dn = an® ! which is of order / /n. The situation is less obvious
in cases such as the Gausssian distribution f'(n) ~ exp((n — (n))2 /2(8 nz)). Here the derivatives with
respect to n adds a factor ~(n — (n))/(6n2) that is much smaller than 1 as long as n — (n) < (n)
because (8n2) is of order (n).
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where v = Ax4 and D = Ax?B. Note that we have just repeated, using a somewhat
different procedure, the derivation of Eq. (7.5). The result (8.113) (or (7.5)) is a
Fokker—Planck type equation.

As already discussed below Eq. (7.5), Eq. (8.113) describes a drift diffusion
process: For a symmetric walk, k. = &;, v = 0 and (8.113) becomes the diffusion
equation with the diffusion coefficient D = Ax%(k. + k;)/2 = Ax?/2t. Here 1
is the hopping time defined from t = (k, + k;)~!. When k. # k; the parameter v
is nonzero and represents the drift velocity that is induced in the system when an
external force creates a flow asymmetry in the system. More insight into this process
can be obtained from the first and second moment of the probability distribution
P(x,t) as was done in Eqs (7.16)—(7.23).

8.4.2 The probability flux
Additional insight can be obtained by rewriting Eq. (8.113) in the form:
oP(x,t)  9J(x,1)

ot 0x
oP(x, 1)

(8.114a)

J(x,t) =vP(x,t) — D (8.114b)
Equations (8.114a) and (8.114b) represent a simple example of the continu-
ity equation for conserved quantities discussed in Section 1.1.4. In particular
Eq. (8.114a) expresses the fact that the probability distribution P is a conserved
quantity and therefore its time dependence can stem only from boundary fluxes.

Indeed, from (8.114a) it follows that Puu(1) = [ ab dxP(x,t);a < b satisfies
dP.,(t)/dt = J(a,t) — J(b,t), which identifies J (x, t) as the probability flux at
point x: J(a, t) is the flux entering (for positive J) at a, J (b, t)—the flux leaving (if
positive) at 4. In one-dimension J is of dimensionality 7~!, and when multiplied by
the total number of walkers gives the number of such walkers that pass the point x
per unit time in the direction determined by the sign of J. Equation (8.114b) shows
that J is a combination of the drift flux, vP, associated with the net local velocity
v, and the diffusion flux, D9P/0dx associated with the spatial inhomogeneity of the
distribution. In a three-dimensional system the analog of Eq. (8.114) is

0P(r,1) v
o = V.- J(,t)
J(,t) = vP(r,t) — DVP(r,t) (8.115)

Now P(r,t) is of dimensionality [73. The flux vector J has the dimensionality
172t~ and expresses the passage of walkers per unit time and area in the J direction.
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It is important to emphasize that, again, the first of Eqs (8.115) is just a conservation
law. Integrating it over some volume €2 enclosed by a surface Sq and denoting

Po(t) = /dQP(r, ) (8.116)
Q

we find, using the divergence theorem of vector calculus, Eq. (1.36),

dPq(t)/dt = —/dS‘J(l‘,t) (8.117)
Sa

where dS is a vector whose magnitude is a surface element and its direction
is a vector normal to this element in the direction outward of the volume .13
Equation (8.117) states that the change in P inside the region 2 is given by the
balance of fluxes that enter and leave this region.

8.4.3 Derivation of the Fokker—Planck equation from the
Chapman—Kolmogorov equation

The derivation of the Fokker—Planck (FP) equation described above is far from
rigorous since the conditions for neglecting higher-order terms in the expansion of
exp(£9d/dx) were not established. Appendix 8A outlines a rigorous derivation of
the FP equation for a Markov process that starts from the Chapman—Kolmogorov
equation

P(x3t3 | x1t) = /dsz(X3t3 | X202)P (X212 | X111) >t >t (8.118)

In the most general case x = {x;;j = a, b, . . .} is amultivariable stochastic process.
This derivation requires that the following conditions should be satisfied:

(a) The Markov process is continuous, that is, for any € > 0

1
lim — / dxP(x,t + At | y,t) =0 (8.119)

Namely, the probability for the final state x to be different from the initial
state y vanishes faster then Az as At — 0.

15 The minus sign in (8.117) enters because, by convention, a vector (e.g. the flux) normal to a
surface that defines a closed sub-space is taken positive when it points in the outward direction.
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(b) The following functions
1
Ai(x,t) = lirno A f dz(z; — x;))P(z,t + At | x,t) (8.120a)
Bij(x,t) = 11rn —/dz(z, xi)(zj —x)P(z,t + At | x,t) (8.120b)

exist for all x. Note that the integral in (8.120a) is the average vector-distance
that the random variable makes during time A¢, which is indeed expected to
be linear in At for any systematic motion (it vanishes for pure diffusion). The
integral in (8.120b) on the other hand is expected to be of order (Af)? for
systematic motion, in which case B;; = 0, but can be linear in Az (implying
nonzero B; ;) for stochastic motion such as diffusion.

In Appendix 8 A we show that when these conditions are satisfied, the Chapman—
Kolmogorov integral equation (8.118) leads to two partial differential equations.
The Fokker—Planck equation describes the future evolution of the probability
distribution

d d
—PXtly,00) == ) —[4ix,HDP(x, 1]y, )]
ot - 0

Xi
+IZ Gl [B;i(x, )P (X, | Y, t0)] (8.121)
= —[B;(x X .
2 - BXiaxj y B s y,O

and the “backward” Fokker—Planck equation describes its evolution towards
the past

AP(X, 1|y, t) AP(x,1|y,10) 1 *P(x,1 |y, )
— T = ) Ay t) — T — =Y By, t) ———
Aty Xl: o dyi 2 %: ! 0yidy;

(8.122)

Each of Eqgs (8.121) and (8.122) is fully equivalent, under the conditions spe-
cified, to the Chapman—Kolmogorov equation. Furthermore, if the functions 4; and
B are time independent, the conditional probability P(x,? | y, f) depends only on
the time interval ¢ — # and therefore dP(x,? | y, ty) /0ty = —9P(X,t |y, f9)/0t. In
this case Eqs (8.121) and (8.122) relate to each other in the following way. Writing
the former in the form

d "
ap(xat | Yy, tO) = L(X)P(Xat | Y. [0) (81233)
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where the operator L(x) is defined by the right-hand side of (8.121), then
Eq. (8.122) is

0 .
Pty 10) = LT @) Pt ]y, o) (8.123b)
where the operator LT is the adjoint of L.

To gain some insight into the physical significance of these equations consider
the case where B;; = 0 for all i and j. Equation (8.121) then becomes

0 0
S POy 10) = =) (4%, OP(. 1| ¥, 10)] (8.124)

It is easily realized that this equation describes the completely deterministic motion
dx,- .
o = Ai@.0; Xt =1t) =Y (all i) (8.125)

To see this note that if (8.125) holds then
Ji = (dx;/d)P(x,t |y, t0) = Ai(x, )P(x,1 | y, 0)

is the probability flux in the direction x;.!¢ Equation (8.124) can therefore be
written as

M __ Z —J,(x 0 = (8.126)

which, as discussed above Eq. (8.115), is a statement on the conservation of prob-
ability. The one-dimensional analog to this is Eq. (8.114) for the case D = 0. In
that case xP(x, ) = vP(x, t) became the probability flux, and the rate of change of
P in time is given by (3/9x)[xP(x)] = v(3/9x)P(x, 1).

We may conclude that Eq. (8.124) is a probabilistic reformulation of the inform-
ation contained in the deterministic time evolution. This implies that not only
P(x,t9 |y, t) = §(x —y), but for a later time

P(x,t]y,to) =8(x —x(t]Yy,)) (8.127)

where x(t | y, #o) is the (deterministic) solution to Eq. (8.125). Under Eq. (8.124) the
conditional probability distribution P(X,? | y, ) remains a § function at all time.

16 For example, if X = (x1,x2,x3) denotes a position in space and P(x,? | y, #y) is the probability
to find a particle at this position given that it was at position y at time 7, then for a total particle
number N, N (dx;/dt)P(x,t | y, to) is the particle flux in the direction x; (number of particles moving
per second through a unit cross-sectional area normal to x;) which, when divided by N, yields the
probability flux in that direction.
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The stochastic spread of the distribution about the deterministic path results from
the B terms in Eqgs (8.121) and (8.122) in analogy with the D term in Eq. (8.113).

Problem 8.10. Show that P(x, ¢ | y, tp) given by Eq. (8.127) satisfies Eq. (8.124)

Problem 8.11. Let the vector x in (8.124) be (pV,r"), that is, a point in the
phase space of a Hamiltonian system with N particles, and let Eqs (8.125) be
the Hamilton equations of motion (this is a statement about the functions A4(x)).
Show that in this case Eq. (8.124) becomes the Liouville equation for the phase
space density 7(p", r"; 1), that is, (c.f. Eq. (1.104))

of eV, pVin) of 0H  dof OH
at — \ar¥apV  apV arV

(8.128)

8.4.4 Derivation of the Smoluchowski equation from the Langevin equation:
The overdamped limit

Another route to the Fokker—Planck equation starts from the Langevin equation.
Since the latter describes a continuous stochastic process, a Fokker—Planck equation
is indeed expected in the Markovian case. We note in passing that using general-
ized Langevin equations such as Eq. (8.54) as starting points makes it possible to
consider also non-Markovian situations, however, we shall limit ourselves to the
one-dimensional Markovian case. The general case, which starts from Eqs (8.13)
and (8.20), is taken up in the next section. Here we consider the simpler high friction
limit, where the Langevin equation takes the form (cf. Eq. (8.21))

L R Uy 8.129
E—y—m( & ) (8:129)

with
(RY=0.  (ROR®)) = 2myksT5(t) (8.130)

Our aim is to find the corresponding equation for P(x, ¢), the probability density to
find the particle position at x; the velocity distribution is assumed equilibrated on
the timescale considered. Note that in Section 8.1 we have distinguished between
stochastic equations of motion that describe the time evolution of a system in state
space (here x), and those that describe this evolution in probability space. We now
deal with the transformation between such two descriptions.
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The starting point for this task is an expression of the fact that the integrated
probability is conserved. As already discussed, this implies that the time derivative
of P should be given by the gradient of the flux xP, that is,

dP(x,t)
ot

a N
= —B—(J'CP) = QP (8.131a)
X

where, using (8.129), the operator Qis given by

Q:——LE-U}5K+RQO] (8.131b)
ym ox dx

The essence of the calculation that leads to the desired Fokker—Planck equation,
known in this limit as the Smoluchowski equation, is a coarse-grained average of
the time evolution (8.131) over the fast variation of R(¢). This procedure, described
in Appendix 8B, leads to

PO 0 (VAN p g ] 5132
or  Cax \Uax Tax ) = ksT ‘
ksT
D=2~ (8.133)
my

which is the desired Smoluchowski equation. When the potential V' is constant it
becomes the well-known diffusion equation. Equation (8.133) is a relation between
the diffusion constant D and the friction coefficient y, which in turn is related to
the fluctuations in the system via the fluctuation—dissipation relation (8.130). We
discuss this relation further in Section 11.2.4.

Next we consider some properties of Eq. (8.132). First note that it can be
rewritten in the form

oP(x,t) ad
= ——J(x,t 8.134
™ ax@) ( )

where the probability flux J is given by

J=-D (i + ,Bg> P(x,1) (8.135)
ox ox

As discussed above (see Eq. (8.114) and the discussion below it), Eq. (8.134) has
the form of a conservation rule, related to the fact that the overall probability is
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conserved.!” The three-dimensional generalization of (8.132)

dP(x,1)
at

=DV - (BVV + V)P(r,1) (8.136)

can similarly be written as a divergence of a flux

P _ gy (8.137a)
a1
J = —D(BVV + V)P(r, 1) (8.137b)

Again, as discussed in Section 8.4.2, Eq. (8.137a) is just a conservation law,
equivalent to the integral form (8.117)

dPq

—=—J -dS 8.138

— f ) (8.138)
S

where Pg, the probability that the particle is in the volume €2, is given by (8.116).

Second, the flux is seen to be a sum of two terms, J = Jp + Jg, where Jp =
—DoP/dx (or, in three dimensions, Jp = —DVP) is the diffusion flux, while
Jr = DB(—0dV /ax)P (or , in three dimensions, Jr = BD(—VV)P) is the flux
caused by the force F = —dV /dx (or F = —V V). The latter corresponds to the
term vP in (8.114b), where the drift velocity v is proportional to the force, that is,
Jr = uFP. This identifies the mobility u as

u=pBD = (my)”! (8.139)

Again, this relation is discussed further in Section 11.2.4.
Finally note that at equilibrium the flux should be zero. Equation (8.135) then
leads to a Boltzmann distribution.

P v
Pl —B EP = P(x) = const - e A7'™ (8.140)

7 If N is the total number of particles then NP(x) is the particles number density. The conservation
of the integrated probability, that is, /' dxP(x,¢) = 1 is a statement that the total number of particles
is conserved: In the process under discussion particles are neither destroyed nor created, only move
in position space.
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8.4.5 Derivation of the Fokker—Planck equation from the Langevin equation:
General case

Next consider the general one-dimensional Langevin Eq. (8.13)

xX=v

1oV 1
p= LD TR (8.141)
m 0x m

with a Gaussian random force R(¢) that again satisfies (8.130). Here x and v = x
are respectively the position and velocity of a Brownian particle. We now seek
an equation for P(x, v, t), the joint probability density that the particle position and
velocity at time ¢ are x and v, respectively. The starting point is the two-dimensional
analog of Eq. (8.131)

IP(x,v,0) D . a0 .
=S = (P — - GP) (8.142)

Again, this is just a statement about the conservation of probability. To show this
multiply both sides by the phase space volume element dxdv. On the left the term
a/0t[P(x,v)dxdv] is the rate of change of the probability that the particle occupies
this infinitesimal phase space volume. The two terms on the right represent the
two contributions to this rate from fluxes in the x and v directions: For example,
—x0P/0x x dxdv = —[xP(x + dx,v) — xP(x,v)]dv is a contribution to the change
in Pdxdv per unit time due to particles that enter (when v > 0) the element dxdv
at position x and exit the same volume element at position x + dx. Similarly,
—voP/ov x dxdv = [v(x,v)P(x,v) — v(x,v + dv)P(x,v 4+ dv)]dx is the change
per unit time arising from particles changing their velocity (see Fig. 8.1).
Using Eqgs (8.141) and (8.142) we now have

dP(x,v,t) A
—— = =Q@®P
ot
A 0 10V 9 0 1
QH=-—v—+——"——+ —(v——=R®)) (8.143)
ox mdx dv v m

which has a form similar to (8.131), only with a different operator () and can be
treated in an analogous way. Repeating the procedure that lead to Eq. (8.132) (see
further details in Appendix 8C) now leads to the Fokker—Planck equation

AP (x,v,t) [ 3 13V 9 ( | ksT 0
_— = —-y— \% R

- — — | | PCx,v, ¢t 8.144
ot 8x+m8x8v+y8v m 8\/)] S )
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Fic. 8.1 The probability that the particle is at the position range x, ...,x + dx and at the velocity
range v, . .., v+ dv (the shaded area of phase space shown in the figure) is P(x, v)dxdv. It is changing
by the four fluxes shown in the figure. The rate at which probability flows into the shaded area
through the left boundary is Jidv = vP(x, v)dv where J; is the flux entering (or leaving if v < 0)
at the left boundary. This change reflects particles changing their position near position x. Similarly
Jodv = vP(x + dx, v)dv is the rate at which probability flows by particles changing position near the
X + dx boundary. J3dx = v(x, v)P(x, v)dx is the rate at which probability flows by particles changing
their velocity near v, and J4dx = v(x,v + dv)P(x,v + dv)dx is the corresponding rate at v + dv.

Problem 8.12. Show that the Boltzmann distribution P ~ e #((1/ Dmv2+V (x))
satisfies Eq. (8.144) with 9P /dt = 0.

In order to understand the physical content of this equation consider first the
case where y vanishes. In this case the Langevin equation (8.141) becomes the
deterministic Newton equation x = v;v = —(1/m)dV /dx, and Eq. (8.144) with
y = 01is just Eq. (8.142), that is, an expression for the conservation of probability,
written for the deterministic Newtonian case. The reader may note that in this case
Eq. (8.142) is in fact the Liouville equation (1.104) for this one-dimensional single
particle system.

In the general case, the conservation of probability is still expressed by an
equation that identifies the time derivative of P as a divergence of a probability flux

OP(x,v,t d ol
Weov) g g 9, 9, (8.145)
ot dx av

where

Jy = VvP(x,v,t) (8.146)
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and
Jy = J‘?Wt _{_J‘?is (81473.)
10V
J™M = —— P (x,v,1) (8.147b)
m 0x
. kpT 0o
J‘?ls = —y <V + B__) Px,v,1) (8147C)
m ov

The flux in the x direction is associated with the particles velocity, as in the determ-
inistic case. The flux in the v direction consists of two parts. The deterministic
Newtonian part, JvnWt, results from the acceleration associated with the potential V',
and the dissipative part, Jvdis, results from the coupling to the thermal environment.

Note that this dissipative flux does not depend on the potential V.

Problem 8.13. Show that for the Boltzmann distribution P ~ e~ #((1/ mv4V (1))
the dissipative flux J%(x, v) vanishes at every position x.

8.4.6 The multidimensional Fokker—Planck equation

The above analysis was done for a single particle moving in one dimension, but
can be extended to higher dimensions using the same procedure. The starting point
is the multidimensional analog of Eq. (8.141), given by

I14E%0
m axj

Xj—

. 1
= ik + —R;(0)
7 m (8.148)

(Rj) =0, (Ri(O)R; (1)) = 2my;ikpT5(1)

Problem 8.14. Show that the second of Eqgs (8.148) is indeed the correct
relationship between fluctuation and dissipation for such a system.

(To do this consider the case in which /' =0, and use the transformation that
diagonalizes y;;.)

Note that the form of Eq. (8.148) expresses the possibility that the different
degrees of freedom x; are coupled to each other not only via their interaction poten-
tial ¥, but in principle also through their mutual coupling to the environment.
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Constructing the corresponding Fokker—Planck equation now proceeds as before.
A particularly simple model is the one in which the coupling between the vari-
ables {x;} through their interaction with the environment is neglected. In this case
Yjt = ;0 and a straightforward application of the procedure described above
leads to

aP(N VN, ¢ 0 19V 9 0 kgT 9
¥=Z|: 4+ -+ (Vj+B_—)i|P(xN,vN,t)
j

ot _vja_xj m 0x; dv; Vf'a_vj
(8.149)

8.5 Passage time distributions and the mean first passage time

We have already noted the difference between the Langevin description of stochastic
processes in terms of the stochastic variables, and the master or Fokker—Planck
equations that focus on their probabilities. Still, these descriptions are equivalent to
each other when applied to the same process and variables. It should be possible to
extract information on the dynamics of stochastic variables from the time evolution
of their probability distribution, for example, the Fokker—Planck equation. Here we
show that this is indeed so by addressing the passage time distribution associated
with a given stochastic process. In particular we will see (problem 14.3) that the
first moment of this distribution, the mean first passage time, is very useful for
calculating rates.

We consider a system described in terms of a stochastic variable x whose
probability distribution evolves according to

—BP();,tﬂxo) — L) P(x, tlxo) (8.150)
L(x) can be the Fokker—Planck operator, the difference operator in a master
equation, etc., and x, that may stand for a group of variables, represents a point
(state) in the state space of the system. P (x, f|xg) is the probability density to find
the system in state x at time ¢ given that it started in state x¢ at time t = 0. We seek
an answer to the following question: Given this initial condition (particle starts at
state xg att = 0), what is the probability T1(x1, t|xo)dt that it will reach the state x|
for the first time between times t and t+-dt? When the problem is multidimensional,
that is, when x represents several stochastic variables, the language should be modi-
fied somewhat: We will usually ask about reaching a surface, not a point in the space
of these variables. In what follows we focus for simplicity on the single variable
case and continue this discussion using the language of a particle moving along
the x-axis.
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For specificity we take x| > xo. Because the question involves the first time
of the particle arrival to x1, we may impose absorbing boundary conditions at this
point, that is, P(x1,¢) = 0 for all #. Given this boundary condition, the integrated
probability to make this first arrival at x; between times 0 and ¢ is equal to the
probability to remain in the interval (—oo, x1) at time ¢, that is,

t X1

/dt'l'[(xl,t/pco) =1- / dxP(x, t|x0) (8.151)

0 —o0

This in turn implies that
x|
0
IT(xy, t|xg) = — / dng(x,tlxo) (8.152)
—0o0

Note that for such absorbing boundary problem P(x,t — oo|xg) — 0 for x in
(_ 00, X1 ) .

Problem 8.15. Show that I'T(x, ¢|xo) isnormalized, that is, fooo dtT1(x1, t|xg) = 1.

Equation (8.152) is an expression for the passage time distribution IT(x1, #|x).
The mean first passage time t(x1, xp) is its first moment

o0
T(x1,x0) = /dttl'l(xl,tlxo) (8.153)
0
Inserting Eq. (8.152) and integrating by parts then leads to
X1 00
T(x1,x0) = / dx/dtP(x,t|x0) (8.154)
—00 0

Obviously, if P(x, t|xp) is known we can compute the mean first passage time
from Eq. (8.154). We can also find an equation for this function, by operating
with backward evolution operator LT (xo) on both sides of Eq. (8.154). Recall that
when the operator L is time independent the backward equation (8.122) takes the
form (cf. Eq. (8.123b)) 9P (x, t|x9)/d¢ = LT (xo)P(x, t]xo) where LT is the adjoint
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operator. Applying it to (8.154) leads to

X1

o0 X1
LT (xo)t(x1,x0) = / dx/dt%—f: / dx(—P(x,t =0)) = —1  (8.155)
0 —0o0

where we have used the fact that P(x, 7 = 0) is normalized in (—o00, x1). Thus we
have a differential equation for the mean first passage time

L (x0) T (x1,%0) = —1 (8.156)

that should be solved with the boundary condition 7 (x1,x9 = xl) =0.
As an example consider the following form for the operator L

Lx) = —% [a(x) — b(x)—] (8.157)

which, fora(x) = —BDJV /dx and b(x) = D is the Smoluchowski operator (8.132).
The equation for 7 (xy,xp) is
A dt(xy,x d dt (x1,x
£ o) (e1,0) = arg) TR0y (i TEELX0N) g5
dx dx dxo
This differential equation can be easily solved,!® or it can be checked by direct
substitution that its solution is

X0 x/
rmmm=—/w%Wyww{/wvws (8.159)

X

f(x) =exp / dx’

a(x"

b(x")

(8.159b)

where ¢; and ¢; are integration constants that should be determined from the bound-
ary conditions. In particular, the choice c; = x; has to be made in order to satisfy
the requirement that t should vanish ifxg = x1. ¢ is the point where dt (x1, xg) /dx|
vanishes. Note that f'(x) is the equilibrium solution of Eq. (8.150) with the operator
L given by (8.157).

Passage time distributions and the mean first passage time provide a useful way
for analyzing the time evolution of stochastic processes. An application to chemical
reactions dominated by barrier crossing is given in Section 14.4.2 and Problem 14.3.

'8 To solve this equation define y(x) = b(x)[d (x)/dx] and solve (a(x)/b(x))y(x) +dy(x) /dx = —1
by making the substitution y(x) = u(x) exp[— fx dax’'a(x’)/b(x")].
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Appendix 8A: Obtaining the Fokker—Planck equation from
the Chapman—Kolmogorov equation

We start from the Chapman—Kolmogorov equation
P(xst3 | x1t1) = /dxzp(xsl‘s | x20)P(x2t2 | x181) 3>t >t (8.160)

where in general x is a multivariable stochastic process. Recall that this is a general
property (in fact can be viewed as the definition) of Markovian stochastic processes.
We further assume that the following conditions are satisfied:

1. The Markov process is continuous, that is, for any ¢ > 0

1

lim — dx P(x,t + At | y,1) =0 8.161

Agomf XP(x,t+ At]y,1) ( )
[x—y|>e

Namely, the probability for the final state x to be different from the initial
state y vanishes faster than At as At — 0.
2. The following functions

1
A;(x,t) = lim — f dz(z; — x;))P(z,t + At | X, 1)
At—0 At
) 1
Bij(x,t) = Alzlr—r:o . / dz(zi — x;)(z; — xj)P(z,t + At | x,1)  (8.162)

exist for all x. Note that since the process is continuous, the contributions to
these integrals come from regions of z infinitesimally close to x. Also note
that higher moments of the form

1
Cijk = limo A / dz(zi — x;)(zj — xj) (zx — xp)P(z,t + At | x,1) (8.163)

At—
(and higher) must be zero. To show this define
C(a) =) aiajarCyjx (8.164)
ijk
Knowing C(a) we can get Cjj; from

1 93

——C 8.165
3! da;0a;0a; @) ( )

Cijr =
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We will show that C(a) = 0 for all a. This is because

1
C(a) = lim —/dz[(z—x)-a]3P(z,t+ At | X, 1)
At—0 At

1
< lim —fdzl(z—x)-a|((z—x)-a)zP(z,t+At|x,t)
At—0 At

1
<glal hmOK/dz((z—x) a)’P(z,t + At | x,1)  (8.166)

where ¢ —0 when At —0. In the last expression ¢ | a | is multiplied by
a - B - a which is finite, so C(a) is 0 for all a and therefore Cjz = 0. The
same argument holds for any moment of order 3 or higher.!®

The forward equation: The Fokker—Planck equation is now derived as the
differential form of the Chapman—Kolmogorov equation: For any function f'(x)

% / dzf @P(z.1 | y.10) = lim Ait f dzf @) [P(z,t + At | y,t0) — P(z,1 | y,10)]

= lim — {fdz/dxf(z)P(z t+ At x,H)P(x,t | y,ty)

At—0 A

— / dxf(x)P(x,t |y, to)} (8.167)

In the first integral replace f'(z) by its Taylor expansion about x,

f@ f()+Z f()(z,— l>+228 g[ zi—x)(E—x)  (8.168)

We have seen above that higher-order terms do not contribute. The term arising from
f(x) and the last integral in (8.167) cancels because fdzP(z, t+ At x,t) =1,

9 In Eq. (8.161) we could write 4;(x,1) < Alimo % ] dz | z; — x; | P, but we cannot go further
t—

because both |z; — x;| and At are infinitesimal.
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so (8.167) becomes

0 . 1
E/dzf(z)P(z,t|y,to)=A1}gOE{/dz/dx

X Z (zi —xi) + Z (zi — xi (Zj )3 ;p

i

X P(z,t+ At | x,t) P(x,t | Y, f0)}
af 1 3%f

= d A,‘ — - Bi'
/ ’ Z Mox T2 %: i) 3o

Next we integrate the right-hand side of Eq. (8.169) by parts. Since f was an
arbitrary function we can assume that /" and its first and second derivatives vanish
on the surface of our system. Hence

P(x,t]Yy,%) (8.169)

i

) 0
5 / dxf (X)P(x,t |y, 1) = fdxf(x)[ - 2,: a[Ai(X, NPt |y, )]

+Zzza 7 [Byj(x, t)P(xtly,to)]]
(8.170)

So for a continuous Markov process,

d d
—P(x,t Ll = — — [A4; JHOP(x,t L 1
5, POty 10) zi:ax,.[’“‘”" |y, t0)]

1 2

+ 2 Z ax,-axj
LJ

[By(x,HP(x,1 | ¥, 10)] (8.171)

This is the Fokker—Planck equation that corresponds, under the conditions specified,
to the Chapman—Kolmogorov equation (8.118).

The backward equation. Now consider

]

Multiplying the first term on the right by 1 = f dzP(z,ty + Aty | y, tp) and writing
the second term in the form f dzP(x,t | z,tyg + Aty)P(z,t9 + Aty | ¥, to) yields the
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right-hand side of (8.172) in the form

1
li —_— dzP(z, t, At to) [P(x,t t At
At(l)rEOAt() {/ zP(z,tg + Aty | y, to) [P(X, 1 |y, to + Ato)

—P(x,t | z,to + Ato)]} (8.173)

Inside the square brackets we may put Afg = 0 and use a Taylor expansion to get

P, 1,
P(x,z|y,to)—P(x,z|z,to>=—2%”’)<zf—y»
PPy

——ZZ o3y . — Gy —y) —

(8.174)

This again leads to limits of the form

li 1/A P A = Vi
Jim 1/a0) [ dzPtato+ sn0 |y [, G-

that are evaluated as before. Using the definitions (8.162) and the fact that moments
of this kind of order higher than 2 vanish, we finally get the backward Fokker—
Planck equation

IP(x,t|y,t) 8P(xt| ,10) 82P(xl| ,10)

A —ZA (v, to) T —-ZB,,(y, f)
8}’13)7]

(8.175)

Appendix 8B: Obtaining the Smoluchowski equation from
the overdamped Langevin equation

Our starting point is Eqgs (8.129) and (8.130). It is convenient to redefine the
timescale

T =t/(ym) (8.176)
Denoting the random force on this timescale by p(r) = R(¢#), we have
(p(r)p(r2)) = 2mykgTé(ty — t2) = 2kpT5(t1 — 12). The new Langevin
equation becomes
d dv
e (8.177a)
dt dx

Py =0 (p0)p(r)) =2kpTé(7) (8.177b)
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The friction y does not appear in these scaled equations, but any rate evaluated
from this scheme will be inversely proportional to ¥ when described on the real
(i.e. unscaled) time axis.

In these scaled time variable Eqgs (8.131) take the forms

= Q(7)P
aT
A a [aV
Q(r) = F <§ — p(‘L’)) (8.178)

Integrate between 7 and T + At to get

T+AT
P(x,T + At) = P(x,T) + / duiQ(t)P(x, t1) (8.179)

T

The operator 2 contains the random function p (7). Repeated iterations in the
integral and averaging over all realizations of p lead to

T+AT
P(x,r+Ar>—P<x,r>=[ f dr(Q(m))

T+AT 71

+ f dr; / drz@m)@(rz»+---]P<x,r>

(8.180)

our aim now is to take these averages using the statistical properties of p and to
carry out the required 1ntegrat10ns keepmg only terms of order At. To this end we
note that € is of the form Q(t) = 4 + B,o (t) where 4 and B are the deterministic
operators d/9x(dV (x)/dx) and 9/9x, respectively. Since (o) = 0 the first term in
the square bracket is simply

. 14
anr= 2@ 0 (8.181)
ox ox

where the operator d/0dx is understood to operate on everything on its right. The
integrand in the second term inside the square brackets contains terms of the forms
AA, AB(p) = 0, and B*(p (1) p(12)). The double time integrals with the determin-
istic A4 integrand are of order At? and may be neglected. The only contributions
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of order At come from the BB terms, which, using Eq. (8.177b), lead to

T+AT T+AT )

32 32 3
/ dn /d'[z (‘51),0('52)) — = / dt1kpT— = kT — At (8.182)
x2 0x2 0x2

T

With a little effort we can convince ourselves that higher-order terms in the expan-
sion (8.180) contribute only terms of order A? or higher. Consider for example the
third-order term |’ THAT dry [[do [P dr3(Q(t1)(12)Q(13)) that yields integ-
rals involving AAA4, AAB, ABB, and BBB terms. The integral with the deterministic
AAA term is of order A3 and can be disregarded. The 44B and BBB terms lead
to results that contain (p) and (ppp) which are zero. The only terms that may
potentially contribute are of the type ABB. However, they do not: The integrands
that involve such terms appear with functions such as (o (z1)p(72)), which yields a
3-function that eliminates one of the three time integrals. The remaining two time
integrals yield a Ar? term and do not contribute to order At.

Similar considerations show that all higher-order terms in Eq. (8.180) may be
disregarded. Equations (8.181) and (8.182) finally lead to

+ kgT
ot B

oP(x,7) _ (8 dv 92
8 dx ax2

)P(x, 7) (8.183)

Transforming back to the original time variable t = ymt yields the Smoluchowski
equation (8.132) and (8.133).

Appendix 8C: Derivation of the Fokker—Planck equation from
the Langevin equation

Our starting point is Eq. (8.143)

oP(x,v,t) 4 oP 1dV a a 1
- =QP=—vVv—+ — —P — —R(¢
ot V8x+m8x8v av[( yv+ ()> ]

(8.184)

As in (8.178), the operator Q is of the form Q(r) = A+ fRR(t) in which 4 and
B are deterministic operators and R(¢) is a random function of known statistical
properties. We can therefore proceed in exactly the same way as in Appendix 8B.
In what follows we will simplify this task by noting that the right-hand side of
(8.184) contains additive contributions of Newtonian and dissipative terms. The
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former is just the Liouville equation

oP t oP 19V 0
( (o, v, )) _ e, (8.185)
9t wt ox m 0x 0v

The dissipative part (terms that vanish when y = 0, including the R(¢) term) does
not depend on the potential /', and we should be able to derive its contribution to the
Fokker—Planck equation for a system in which V' is constant, that is, 0V /dx = 0.
In this case we can focus on the Langevin equation for the velocity

1
V= —yv+ —R() (8.186)
m

and look for an equation for the probability P (v, ¢) associated with this stochastic
differential equation. In analogy to (8.131) we now have

aP(v,1) _ i —_i B l
( ot )dis__av[vp]_ av [( VV+mR<f>)P(v,t)} (8.187)

that we rewrite in the form

Q) = 9 (yv - lR(r)) (8.188)
av m

Integrating between ¢ and ¢ + A¢ and iterating leads to

t+At t+At
P(v,t+ At) = P(v, 1) + / dn Q)P 1) = |1 + / dnQ(n)

t t
At 5]

+ /dtlﬁ(tl)/dtzﬁ(tz)—i—--- P(v,1) (8.189)
t

t

The rest of the calculation is done in complete analogy to the transition from (8.178)
and (8.180) to (8.183). In the present case we get

kgT 92
YEBZ O At) P 1)
m  ov?

dis m 9y

0
P, t+ A1) = (1 + a—(yv)At +
v

at P
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which is the dissipative part of the time evolution. The full Fokker—Planck equation
is obtained by adding the Liouville terms (8.185), leading to Eq. (8.144).

Further Reading (Chapters 7 and 8)

C. W. Gardiner, Handbook of Stochastic Methods, 3rd edn (Springer, Berlin, 2004).

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics Il , 2nd edn (Springer, Berlin, 2003).

H. Risken, The Fokker—Planck Equation, 2nd edn (Springer, Berlin, 1989).

Z. Schuss, Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980).

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam,
1992).

R. Zwanzig, Non Equilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).

N. Wiener, J. Math. Phys. 2, 131-174 (1923) (on the foundations of the theory of stochastic processes
— for the mathematically oriented reader)



9

INTRODUCTION TO QUANTUM RELAXATION
PROCESSES

Since earth and water,

Air and fire, those elements which form

The sums of things are, all of them, composed
Of matter that is born and dies, we must
Conclude that likewise all the universe

Must be of mortal nature. Any time

We see that parts are transient substances

We know that their total is as fugitive,

And when the main components of the world
Exhaust themselves or come to birth again
Before our very eyes, we may be sure

That heaven and earth will end, as certainly
As ever they once began...

Lucretius (c.99—c.55 Bcg) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The first question to ask about the phenomenon of relaxation is why it occurs
at all. Both the Newton and the Schrodinger equations are symmetrical under
time reversal: The Newton equation, dx/dt = v;dv/dt = —dV /dx, implies that
particles obeying this law of motion will retrace their trajectory back in time after
changing the sign of both the time ¢ and the particle velocities v. The Schrodinger
equation, 0y /dt = —(i/h)]:hﬂ, implies that if (¥ (¢) is a solution then *(—¢) is
also one, so that observables which depend on |1/ |? are symmetric in time. On the
other hand, nature clearly evolves asymmetrically as asserted by the second law
of thermodynamics. How does this asymmetry arise in a system that obeys tem-
poral symmetry in its time evolution? Readers with background in thermodynamics
and statistical mechanics have encountered the intuitive answer: Irreversibility in a
system with many degrees of freedom is essentially a manifestation of the system
“getting lost in phase space”: A system starts from a given state and evolves in time.
Ifthe number of accessible states is huge, the probability that the system will find its
way back to the initial state in finite time is vanishingly small, so that an observer
who monitors properties associated with the initial state will see an irreversible
evolution. The question is how is this irreversible behavior manifested through the



A SIMPLE QUANTUM-MECHANICAL MODEL FOR RELAXATION 305

{l>}

Fic. 9.1 A model for quantum mechanical relaxation: A single zero-order level |1) is initially pop-
ulated. This level is coupled to, and energetically overlaps with, a continuous manifold of other
zero-order levels represented by the shaded area. This manifold (here {|/)} ) is sometimes denoted in
the text by the corresponding capital letter L.

reversible equations of motion, and how does it show in the quantitative description
of the time evolution. This chapter provides an introduction to this subject using the
time-dependent Schrodinger equation as a starting point. Chapter 10 discusses more
advanced aspects of this problem within the framework of the quantum Liouville
equation and the density operator formalism.

9.1 A simple quantum-mechanical model for relaxation

In what follows we consider a simple quantum-mechanical model for irreversibility.
In addition to providing a simple demonstration of how irreversibility arises in
quantum mechanics, we will see that this model can be used as a prototype of many
physical situations, showing not only the property of irreversible relaxation but also
many of its observable consequences.

We consider a Hamiltonian written as a sum

H=Hy+V ©.1)

and use the set of eigenstates of Hy as a basis. We assume that this set is given by a
single state |1) of zero-order energy E; and a manifold of states {|/)} (/ = 2,3,...)
with zero-order energies Ej, see Fig. 9.1. The set | 1), {|/) } is taken to be orthonormal,
that is, (1/1) = 1,(1|/) = 0 for all / and (/|/') = &,y for all / and /". These states
are coupled by the “perturbation” V. We consider a model in which V1 1 = V;; =0
for all /, however V7 ; # 0 so the state 1 is coupled to all states in the manifold {/}.
This information is contained in the following expressions for Hoand V:

ﬁo=E1|1><1|+;Ez|l><l|

X 9.2
V:Xl:(V1,zll)(l|+V1,1|l>(1|) 2
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Another way to express this information is by writing the matrix representation of
H in the given basis.

Er Vg Vizg Vig
Va1 E; 0 0

H=]|"1 0 E3 0 .- 9.3)
Var 0 0 E; O
. : : 0

We want to solve the time-dependent Schrédinger equation

dy@ _ i
—= =) (94

under the assumption that the system is initially in state |1). In particular, we want
to evaluate the probability Py (¢) to find the system in state 1 at time ¢.

Before setting to solve this mathematical problem, we should note that while
the model is mathematically sound and the question asked is meaningful, it cannot
represent a complete physical system. If the Hamiltonian was a real representation
of a physical system we could never prepare the system in state |1). Still, we shall
see that this model represents a situation which is ubiquitous in molecular systems,
not necessarily in condensed phase. Below we outline a few physical problems in
which our model constitutes a key element:

1. Consider the generic two-level model, Eq. (2.13), with the levels now denoted
g and s with energies E; > E, . An extended system that includes also the environ-
ment may be represented by states that will be denoted |s, {e}), |g, {e}) where {e}
defines states of the environment. A common phrase is to say that these molecu-
lar states are “dressed” by the environment. Now consider this generic molecule in
state s and assume that the environment is at zero temperature. In this case {e} = {e},
is the ground state of the environment. Obviously the initial state |s, {e}¢) is ener-
getically embedded in a continuum of states |g, {e},) where {e}, are excited states
of the environment. This is exactly the situation represented in Fig. 9.1, where level
|1) represents the state |s, {e},) while levels |/) are the states |g, {e},) with different
excited state of the environment. An important aspect common to all models of
this type is that the continuous manifold of states {|/)} is bound from below: State
lg, {e}g) s obviously its lowest energy state.

2. The generality of this picture is emphasized by the observation that even for a
single atom or molecule in vacuum the ever present radiation field constitutes such
an environment (see Section 9.2.3 below). Any excited molecular state is coupled
to lower molecular states dressed by photons.

3. In an isolated large molecule, each excited electronic state is coupled to a
dense manifold of vibrational levels associated with lower electronic states. This
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can lead to the appearance of radiationless relaxation (no photon emitted) in single
isolated molecules (see Section 9.2.2).

All these physical examples can be described by the model of Fig. 9.1 and
Eq. (9.2). Let us now return to this simple model and address the probability P (¢)
to find the system in state 1 at time ¢ given that P;(t = 0) = 1.

We start by writing the general solution of the time-dependent Schrédinger
equation in the form

v =0+ Y Gl 9.5)
l
Insert (9.5) into (9.4), then multiply the resulting equation by (1| or (/| to get
h%q = —iE|C] — izl: V1.C) (9.6)
h%Cl = —iE;C; —iV;1Cy; for each / 9.7)

This set of equations should be solved under the initial condition C{(t = 0) = 1;
C;(t = 0) = 0 for all /. We want to find the probability P;(¢) = |C| (1)|? that the
system is still in state 1 at time ¢.

Equations (9.6) and (9.7) constitute a linear initial value problem that can con-
veniently be solved using Laplace transforms as described in Section 2.6. The
formal answer to our problem has already been obtained, Eqs (2.60) and (2.61),
which imply

(0,0)
1 .
Ci(t) = — / dEe Gy |(E + ig); g — 0+ (9.82)
—o0
1
Gi11(2) = <1|Z_—H|1) (9.8b)

This is a Fourier transform of the diagonal 1,1 matrix element of the Green’s
operator G(E + ie) where

A 1 1
G(z) = — = - ~ 9.9)
z—H z—Hy—-V
A convenient way to evaluate this matrix element starts by defining also
Go(z) = (9.10)

z — Hy
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so that (Go)11 = (z — EN)™Y, (Go)iy = (z — En)~'8;y, and (Go)1y = 0. G(2)
satisfies the so-called Dyson identities.'

G(z) = Go(2) + Go(2)V G(z) = Go(z) + G2)V Go(2) 9.11)

Starting from the first identity in (9.11) we take its 1,1 and /, 1 matrix elements,
that is, G1,1 = (Go)1,1 + (GoV' G)1,1 and G;;; = (GoV G);,1. Using the resolution
of the identity operator

D+ I =1 9.12)
I
leads to
Gri = (Go)11 + (Go)11 Y V14Gl (9.13)
]
Gr1 = (Go)1V11G1 (9.14)

Inserting (9.14) into (9.13) and using the identities below (9.10) it follows that

o=+ L (g 9.15)
L1tz " z—E, z-—E - z—E L1tz '

that is, (putting z = £ + ie and taking the limit € — 0),

1
G1,1(E) = lim

9.16
s—>OE+i8—E1—ZI|V1,[|2/(E—E]+i8) ( )

This is the function to be Fourier transformed according to Eq. (9.8).

Before continuing with this task we make the following observation: Our prob-
lem deals with Hamiltonian whose spectrum spans infinitely many energy levels,
however the physics of interest focuses on a small local (in energy) part of this
infinite Hilbert space—the energetic neighborhood of the initially prepared level
|1) , that affects its future evolution. The Green function element G| contains the
information on level |1) in an explicit way, while the effect of all other (infinitely
many!) levels appears only in a sum

V1l
l

' For example, starting from Ga '= G147 and multiplying it by G from the left and by Go
from the right yields the second identity of Eq. (9.11).
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that is often characterized (as will be seen below) by just a few parameters.

Focusing on the interesting subspace of an overall system and attempting to
characterize its behavior while discarding uninteresting information on the rest
of the system has been a repeating motif in our discussions. Mathematically, this
is often done by “projecting” the dynamics encoded in our equations of motion,
here the Schrodinger equation, onto the interesting subspace.? Techniques based
on projection operators are very useful in this respect. In Appendix 9A we repeat
the derivation of Eq. (9.16) using this technique.

As a prelude to evaluating the Fourier transform (9.8) let us consider first the
function B (F) and assume that the manifold {/} constitutes a continuum of states.
In this case the summation over / corresponds to the integral

> [ deouen ©0.18)

/

where p7 (E) denotes the density of states in the {/} manifold. Note that the fact that
we took the integration limits to be (—o0 . . . 00) does not necessarily mean that the
eigenvalues {E;} extend between these limits. The actual information concerning
this eigenvalue spectrum is in the density of states p (E;) that can be zero below
some threshold. Equation (9.17) now takes the form

VPepcED 1 ]odE I (&) (9.19)

E—_E +ie 2n "E_E tis

0.¢]
By(E) = / dE;
—00 —0o0
where (|V1])E is the average of the squared coupling over all continuum levels /
that have energy E,> and where

T1(E) =2 (V111 EpL(E) (9.20)

Consider first the particularly simple case where the manifold {|/)} extends in
energy from —oo to oo and where I' (£) does not depend on E. In this case

BI(E) = (T2 ood L e Ood EoxoiE g9
1<>—<1/”>/xm—<1/”)/xm ©-21)

2 Much like projecting forces acting on a given body onto the direction of interest.
P A formal definition is (IVy;%r = Y, IVuPS(E — EN/Y,8E — E) =
(oLEN™' X VulPS(E — Ep).
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The real part vanishes by symmetry and, using ffooo dxe/(x* + &2) = 7, we get
1.
Bi(E) = _EZFI (9.22)

Using this with (9.16) in (9.8) yields* (see Sections 1.1.6 and 2.6)

oo . .
C) 1 / JE e~ i(E+ie)t/h B 025)
= —— —e ‘
1 i | CEZE + /i
—0
So finally
Ci(t) = C1(0) exp(—iEt/h — (1/2)I"1t/h), (9.24a)
and

IC1(0))? = e /1 = o=ht (9.24b)

Our model assumptions lead to exponential decay of the probability that the system
remains in the initial state, where the decay rate & is given by the so-called Fermi
“golden rule” formula,

27‘[—2
kl=—= 7|V1,l| oL (9.25)

Note that k1 has the dimension [time] ! while I'y is of dimensionality [energy].

It is important to emphasize that the assumptions that |V'|?p is a constant and
that the {/} manifold extends from —oo to co are not essential for irreversibility but
only for the simple single exponential decay (9.24). In fact, as discussed above, the
spectrum {£;} never extends to —oo because it is bounded from below by the ground
state. A more general evaluation starts from and uses the identity (cf. Eq. (1.71))

1 1
_ 0% pp _in8(E — E)) (9.26)
E—E +ie E—E

where PP is the principal part of the integral (Section 1.1.6). This identity is
meaningful only inside an integral. Using it in (9.17) or (9.19) leads to

Bi(E) = A1(E) — (1/2)iT"((E) (9.27)

* Note that the infinitesimal term ie in Eq. (9.16) can be disregarded relative to (1/2)iT;.
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where A (£) and A (E) are the real functions

C(E) =21 3 WLIRS(E — Ep =27 (Vs P (ED)sms (9.28)
[
and

V2 [ WP

1./ LI“PL\L]
A1 (E) = PP d = PP dE,—————— 9.29
1(E) XI:E—EI / i E_ £ (9.29)

—00

The structure of the integrand in Eq. (9.8), as implied by Eqs. (9.16), (9.17) and
(9.27), suggests that A corresponds to a shift in the unperturbed energy £, while
the presence of an imaginary term in the denominator of this integrand is the origin of
the resulting relaxation behavior. A strong dependence of these functions on £ will
lead to a relaxation process characterized by a nonexponential decay. In practice,
exponential decay is observed in many situations, suggesting that assumptions
similar to those made above are good approximations to reality.

More insight into the nature of the result obtained above may be gained by
making the following observation: The Green function element

1
G11(E) = lim - (9.30)
’ e—~0FE +ie —E; — Bi1(E)

was seen to be an instrument for studying the time evolution in the subspace of the
Hilbert space spanned by the state | 1) — starting from |1), the probability amplitude
to remain in this state is given by (9.8). When |1) is an eigenstate of the Hamiltonian
(i.e. when Vo= 0), B1(E) = 0 and Gy,1(E) is really a property of the state |1)
alone. When this is not so the function Bj(E) is seen to represent the effect of
the rest of the Hilbert space on the time evolution within the 1 subspace. This
function is referred to as the self energy associated with the level 1. In particular,
we have seen that when it is approximately independent of £, the real part of B
contributes a shift in £, while its imaginary part represents the decay rate of the
probability that the system remains in this state. In a sense the complex number
E; + Re(B)) + ilm(B)) = E; — (1/2)il’'1 may be thought of as a renormalized
(complex) energy eigenvalue associated with the state |1). Indeed, from the point
of view of the “interesting state” |1), the effect of adding the coupling ¥ to the

> One of these assumption was that the continuum {/} extends from —oo to co. This is often a good
approximation to the situation where the edge(s) of the continuum is(are) far from the energetic region
of interest, in this case the energy E;. In the solid state physics literature this is sometimes referred
to as the wide band approximation.
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Hamiltonian Ay was to affect the following change on the corresponding Green
function element

1 1
— = = ;
E —E) +ie E —E1 + (1)2)iT)

(e — 0) (9.31)

We will see in Section 9.3 that in addition to representing a decay rate of state |1),
"1 also defines an energy width of this state.

9.2 The origin of irreversibility

Did the analysis in Section 9.1 demonstrate irreversibility? It should be emphasized
that while the dynamics of the system is completely reversible, as implied by the
underlying equations of motion, the appearance of irreversibility has resulted from
the particular question asked. This section focuses on understanding this and other
aspects of quantum irreversibility.

9.2.1 Irreversibility reflects restricted observation

By their nature, the dynamics governed by either the Newton or the Schrodinger
equations are fully reversible. The fact that the probability (9.24b) to find the
system in the initial state | 1) decays with time reflects the restricted character of the
observation. In many situations such restricted observations are associated naturally
with the physics of the system: We are interested in the state of a small part of a large
system, and the evolution of this small part appears irreversible. We often use the
term “system” to denote those degrees of freedom that we are specifically interested
in, and the term “bath” for the rest of the (much larger) system. In a classical analogy,
a small subsystem at temperature 77 in contact with a large “thermal bath” with
temperature 7, will relax irreversibly until 77 becomes equal to 7>, while a state
of the overall system given in terms of the position and momentum of every atom
will evolve in a systematic (and reversible) way.

9.2.2 Relaxation in isolated molecules

We are quite used to these observations in macroscopic phenomena. What may
appear as a surprise is that such situations are also encountered in microscopic
systems, including single molecules. For example, an optical transition of a large
molecule into an excited electronic state is often followed by relaxation of the elec-
tronic energy due to coupling to nuclear (vibrational) levels associated with lower
electronic states, in a way which appears to be “radiationless” (no photon emitted)
and “collisionless” (take place on a timescale shorter than collision times at the
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given pressure). Figure 12.3 shows a schematic example. In Fig. 9.1 level 1 can
represent one of the vibronic levels in the excited electronic state 2 of Fig. 12.3,
while the manifold {/} corresponds to the manifold {|1, v)} of vibronic states associ-
ated with the ground electronic state 1 of that figure. In a large molecule the density
of such levels can be enormous (see Section 12.4.1 and Problem 12.2), making this
manifold an effective continuum.

Another relaxation process encountered in isolated molecules is the phenomenon
of intramolecular vibrational relaxation. Following excitation of a high-lying vibra-
tional level associated with a particular molecular mode, the excitation energy can
rapidly spread to other nuclear modes. This is again a case of an initially prepared
single state decaying into an effective continuum.

In both cases, because of restrictions imposed on the excitation process (e.g.
optical selection rules), the initially excited state is not an exact eigenstate of the
molecular Hamiltonian (see below). At the same time, if the molecule is large
enough, this initially prepared zero-order excited state is embedded in a “bath” of a
very large number of other states. Interaction between these zero-order states results
from residual molecular interactions such as corrections to the Born Oppenheimer
approximation in the first example and anharmonic corrections to nuclear potential
surfaces in the second. These exist even in the absence of interactions with other
molecules, giving rise to relaxation even in isolated (large) molecules. The quasi-
continuous manifolds of states are sometimes referred to as “molecular heat baths.”
The fact that these states are initially not populated implies that these “baths” are
at zero temperature.

Problem 9.1. In the analysis that led to the result (9.24) for the decay of the
initially prepared state | 1) we have used the representation defined by the eigen-
states of Hy. In the alternative representation defined by the full set of eigenstates
{lj)} of H the initial state is given by

Ve=0=[1)=Y Cli> =] (9.32)
J

Show that in terms of the coefficients C; the probability P () that the system
remains in the initial state is given by

00 2

Pi(t) = f dE (o7 E))IC;P) gy~ 11 9.33)

—00
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where p; (E)) is the density of states in the manifold of eigenstates of H and where
(07 (EDICi1%) E=£ = L(E) is a coarse-grained average (see Section (1.4.4)) of
pJ(Ej) |Cj|2 in the neighborhood of the energy £. What can you infer from this

result on the functional form of the function L(£). Can you offer a physical
interpretation of this function?

9.2.3 Spontaneous emission

Even the excited states of a single atom are embedded in a continuum of other
states. As discussed in Section 3.2.3 this continuum corresponds to the states of
the radiation field sitting on lower atomic states. Casting that discussion in our
present notation we have (cf. Egs (3.21)—(3.24)) Hy = Ay + Hr, H = Hy+ Hyr,
where HM and HR are the Hamiltonians of the molecule and of the free radiation
field, respectively, and fIMR 1s their mutual interaction. The Hamiltonian ﬁR
was shown to represent a collection of modes—degrees of freedom that are
characterized by a frequency w, a polarization vector o, and a wavevector Kk,
which satisfy the relations ¢ - k = 0 and w = ck with ¢ being the speed of
light.

To simplify our notation, we will suppress in what follows the polarization
vector o, that is, the vector k will be taken to denote both wavevector and polar-
ization. The time evolution of a mode k of frequency wy is determined by a
harmonic oscillator Hamiltonian, izk = hwk&lt&k, and its quantum state—by the
corresponding occupation number 7y , the numbers of photons in this mode. The
state of the radiation field is determined by the set {nk} of occupation numbers
of the different modes, and the ground (“vacuum”) state of the field is given by
{n} = {0} = (0,...,0). The eigenstates of f]o may be denoted |j; {n}) where
the index j denotes the molecular state. We refer to such states as “dressed,” for
example the state |j; (0,...,0, 1,0, ...,0)) is the molecular state j dressed by one
photon in mode k. Again, to simplify notation we will often represent such one-
photon states by |j; 1x) or |j; k), and sometimes, if our concern is only the photon
frequency, by |j; w). The corresponding zero-photon state |j; {0}) will usually be
written simply as |/).

The model of Fig. 9.1 may thus represent the decay of an excited molecular state
with no photons, |1) = |x, {0}), to the continuum of states {|/)} = {|g, 1k)} that
combine the ground molecular state with a continuum of single photon states of the
radiation field. The relaxation |1) — {|/)} is then the process of spontaneous emis-
sion, and the rate will then yield the radiative relaxation rate of the corresponding
excited molecular state, as discussed in detail in Section 3.2.3.
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9.2.4 Preparation of the initial state

An important ingredient in our analysis was the characterization of the initial state
of the system |1) as a nonstationary state. Otherwise, if |1) was an eigenstate of H,
its time evolution would satisfy ¥ (1) = e~/ (0) = e=E1%/7|1), and |C1 (1) |* =
|(1le~1/7|1)|2 = 1. How can the system be put into such a nonstationary
state?

The answer is not unique, but a general statement can be made: A short time
external perturbation exerted on a system in a stationary state (i.e. an eigenstate
of the system's Hamiltonian) will generally move the system into a nonstationary
state provided that the duration of this perturbation is short relative to i/ AE, where
AE is a typical spacing between the system s energy levels in the spectral range of
interest. In what follows we describe a particular example.

Consider a molecule in its ground state ¥z, an exact eigenstate of the molecular
Hamiltonian, subjected to the very short external perturbationM 8(?) (suchas caused
by a very short radiation pulse, in which case Mis proportional to the dipole moment
operator). From Eq. (2.74) truncated at the level of first-order perturbation theory

t

V(1) = vr(0) - %/dfl Vr(t)W(0) (9.34)
0

we find, using also Wy (¢) = exp(iI:IMt /AW (1) (see Eq. 2.70) that®

) i~
W (t) = e~ W/MHw! <¢g - %M‘/fg>
T (9.35)
= e /MEsty, £e_(l/h)HMtM¢-g; (t > 0)

Therefore, the excited component in the resulting state arises from M Vg. Now, if,

because of selection rules, (1 IM lg) # 0 but (/ |M |g) = 0 for all /, the excited state
of the system following this sudden excitation will be the non stationary state |1).

® A reader keen on technical details may wonder about an apparently missing factor of %, since
fooo dts(t) = 1/2. However the proper integral to take starts infinitesimally below zero, since we want
the state obtained after the system that started in ¥z before the onset of the pulse, has experienced
the full pulse.
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9.3 The effect of relaxation on absorption lineshapes

A very important result of the theory of quantum dynamics is the connection
between the time evolution in a given spectral region and the absorption lineshape
into the same region. That such a connection exists is to be expected, because
the time evolution is determined by the distribution of initial amplitudes among
exact eigenstates according to Eq. (2.6), while the absorption process, in principle,
prepares these initial amplitudes in the spectral region of interest.

To see this connection in more detail we extend the model of Figs 9.1 and
Eq. (9.2) to include two discrete states, the ground state |g) and an excited state
|s), and a continuum of states {|/)} that may represent the ground state dressed by
environmental or radiation field states. We assume that |s) is the only excited state
in the relevant spectral region that is radiatively coupled to the ground state |g)
so it can be initially prepared as explained in Section 9.2.4. In the subspace that
encompasses the state |s) and the continuum {|/)}, the former plays the same role
as state |1) in Fig. 9.1. We now focus on the excitation from g to s; specifically we
pose the question: What is the corresponding absorption lineshape?

The molecular model, shown in Fig. 9.2, is now given by

Ay =Hom +V (9.362)
Hor = Eglg) (gl + Esls)(s| + Y EflI){I] (9.36b)
/
V=" (Vaals) Il + Vigll)(sD) (9.36¢)
/

It should be stated at the outset that the models of Figs 9.1 and 9.2 are too simple
for most cases of interest for the simple reason that, following the excitation of any
system, at least two relaxation channels are available. We have already argued that
every excited molecular state can interact with the continuum of photon-dressed
states associated with lower molecular states, leading to spontaneous emission.
This is a radiative relaxation channel. In addition there are usually several nonradi-
ative channels where the molecule relaxes to lower states by transferring energy to
nonradiative modes such as intramolecular and intermolecular nuclear motions.’
We will see (see Problem 9.2 below) that extending the model of Fig. 9.1 to more
relaxation channels is a simple matter as long as different relaxation processes are
independent of each other. We consider first the simple, single channel model, but

7 However, for excited atoms in collisionless conditions only the radiative relaxation channel is
open. Here “collisionless” means that the time between collisions is much longer than the radiative
relaxation time.
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{l>}

Is>

lg>_*t

Fic. 9.2 The model of Fig. 9.1, extended to show how a state |s) (equivalent to |1) in Fig. 9.1)
may be prepared from the ground state |g) by optical excitation. ﬁMR, the molecule—radiation field
interaction is assumed to couple states |g) and |s) but not states |g) and |/). 14 couples between |s) and
states in the manifold {|/)} so that if |s) was initially prepared the ensuing time evolution is obtained
from the formalism of Section 9.1.

keep in mind that the |s) — {|/)} relaxation can describe different type of relaxation
depending on the physical nature of the manifold {|/)}.

Coming back to the model of Fig. 9.2, we already know that the coupling v
between the state |s) and the manifold {|/)} leads to the decay of |s) following an
initial preparation of the system in this state. We are also given that the ground
state |g) is coupled radiatively only to |s) but not to {|/)}, that is, {(s|it|g) # O
and (/|i|g) = 0, where & is the molecular dipole moment operator. When such
situations arise, the state |s) is sometimes referred to as a doorway state.

The complete system under consideration now comprises both the molecule and
the radiation field, and the corresponding Hamiltonian is

]2I=1A‘10M+IA/+IA{R+1:IMR=]:IQ—I—I7+1€IMR; ]A{0=1:10M+1f[R (9.37)

As was indicated above, a state of the radiation field is defined by specifying
population of each mode, and in particular single photon states (one photon in
mode k of frequency w, no photons in other modes) will be denoted by |1k) , |k),
or |w) as will be convenient. We will sometimes use |vac) = |0,...,0,0,0...) to
denote the “vacuum” or ground state of the radiation field, that is, the state with no
photons.

The absorption lineshape corresponds to the photon-energy dependence of the
rate at which the photon is absorbed by the molecule. We consider absorption under
conditions where it is a linear process, that is, where the rate at which the molecular
system absorbs energy from the radiation field at frequency w is proportional to the
radiation intensity (number of photons) at this frequency.® Under such conditions it
is enough to consider the rate of absorption from a single photon state and to use the

8 This is the condition of validity of the Beer—Lambert law of absorption.
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basis of zero and one-photon eigenstates of the Hamiltonian 1% = I:IOM + I:IR. In
particular we are interested in the rate at which the initial 1-photon state |0) = |g, k)
(the molecule in the ground state and the radiation field in the state |k)) of energy

Eo = Eg + haxy (9.38)

disappears due to coupling via Ay to the state |s, vac), the excited molecular
state s with no photons.” For simplicity of notation we will use |s) both for the
excited molecular state (eigenstate of H()M) and as a shorthand notation for |s, vac)
(eigenstate of Ho HOM + HR) the distinction between these entities should be
clear from the text.

The full Hamiltonian for the process of interest, written in the dressed state
basis is

H=Hy+V + Hur (9.39a)
Hy = Eol0){0] + Esls){s| + ) Ell){I| + Hr (9.39b)
!
V=" Waals) il + ViglhsD) (9.39¢)
/
Hyr = ar(iLsgls) (0] + g s10)(s]) (9.39d)

and the corresponding level scheme is shown in Fig. 9.3. In Eq. (9.39d) we have
used the fact that matrix element of Ay between the dressed states 0) = |g, k)
and |s, vac) are proportional to matrix elements of the molecular dipole moment
operator i between the corresponding molecular states |g) and |s), and have written
o for the proportionality coefficient. Also for simplicity we disregard the vector
nature of [i.

Note thatin Fig. 9.2 |s) represents a molecular state, while in Fig. 9.3 it stands for
the dressed state |s, vac). Note also that the physical nature of the continuum {|/)}
and the coupling V;; depends on the physical process under consideration. In the
dressed state picture of Fig. 9.3 this continuum may represent the radiative channel
{lg,k)} or a nonradiative channel, for example, {|g,Vv; vac)} of vibrational levels
v associated with the electronic ground state g. In the former case the coupling

oI, alternatively, we take |0) = |g,ny), a state with n; photons in the mode k, then |s) is a state
with one less photon than in |0). n is a measure of the intensity of the incident beam. One can then
show, using Egs (3.1), (3.70), and (2.157), that o in Eq. (9.39d) is proportional to ,/7, so that the
rate of absorbing photons, Eq. (9.40), is proportional to 7. Keeping this in mind it is sufficient to
consider the transition from one-photon ground state to zero-photon excited state.
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{i=}

o e Yy

Fic. 9.3 Same as Fig. 9.2, now cast in the dressed states (eigenstates ofﬁIM —I—I:IR) form. |0) = |g; k)
corresponds to the molecule in the ground state with a single photon of mode k. |s) describes the
molecule in an excited state and the radiation field in its vacuum state. The coupling between |0) and
|s) is proportional to the dipole matrix element g s between the corresponding molecular states.

V is identical to I:IMR.IO The exact nature of {|/)} is however unimportant for the
continuation of our discussion.

We are interested in the rate at which the dressed state |0) = |g, k), or rather the
probability that the system remains in this state, decays because of its coupling to
the state |s, vac) and through it to the continuum {|/)}. The absorption lineshape is
this rate, displayed as a function of w = kc. This rate is evaluated in Appendix 9B
and leads to the following expression for the absorption lineshape

azlﬂg,s|2(rs/2)
(Eq + ho — Eg)? + (I/2)2

L(o) « (9.40)

This is a Lorentzian centered at a shifted energy of the state s, E, = E, + Ag,
whose width at half height is Iy, where Ay = A (Es) and I'y = I'i(E) are given by
Eqs (9.29) and (9.28), respectively (with the subscript 1 replaced by s everywhere).

Problem 9.2. Consider the model where the doorway state |s) is coupled to two
different continua, R and L (see Fig. 9.4).

Show that under the same model assumptions used above the absorption
lineshape is Lorentzian and the decay rate of state |s) after it is initially prepared is
exponential. Also show that the decay rate is I's /% and the width of the Lorentzian
is I'y with

Ty = Tyr + Do = 27[|Vsr? o + | Vsr*0L1E, (9.41)

' Note the subtle difference between this radiative coupling which is a sum over all modes of
the radiation field, and the coupling (9.39d) which involves only the particular mode that enters in
state |0).
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Fic. 9.4 Sameas Fig. 9.2, except that the doorway state |s) is now coupled to two relaxation channels

represented by the continua L and R.

where R and L stand for the corresponding manifolds and where [],, has the
same meaning with respect to each manifold as in Eq. (9.28).

Also show that, under these conditions, the yield of the “L product” is

s
Y = ————— 9.42
FS,L + FS,R ( )

We end this discussion by noting the following points:

1. The simple exponential decay and Lorentzian lineshape obtained above result

from the simple model assumptions used, in particular the infinite energy
extent of the continuum {|/)} and the weak dependence on the energy £ of
['i(E) and Ag(E).

. In the procedure (Appendix 9B) to evaluate the lineshape (9.40) we use the

representation defined by the states {|/)} that diagonalize the Hamiltonian in
the (]s), {|/)}) subspace. Of course any basis can be used for a mathematical
analysis. It was important and useful to state the physical problem in terms
of the zero-order states |s) and {|/)} because an important attribute of the
model was that in the latter representation the ground state |g) is coupled by
the radiation field only to the state |s), which therefore has the status of a
doorway state. This state is also referred to as a resonance state, a name used
for the spectral feature associated with an underlying picture of a discrete
zero-order state embedded in and coupled to a continuous manifold of such
states.

. For the initial value problem with ¢ (t = 0) = |s) we got an exponential

decay with the characteristic relaxation rate ks = ['g/A. For the absorp-
tion lineshape into state |s) we got a Lorentzian with linewidth given by the
same I's. There appears to be a fundamental relationship between the lifetime
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and linewidth associated with such resonance state. More specifically, these
results, Eqs (9.25) and (9.40), have the characteristic of the Heisenberg uncer-
tainty principle: The lifetime (k;)~! of a level (in a sense the minimum
uncertainty in the time at which it may be observed) and the linewidth I'g
associated with this level (the minimum uncertainty in its energy) are related
by (ky)~'Ts = A.

. Is the last observation an inherently quantum-mechanical result? A negat-
ive answer is obtained from the calculation (Section 8.2.4) of the lineshape
associated with a classical underdamped harmonic oscillator. The normalized
lineshape is obtained (see Eq. (8.40) in the form

y/m

Ty — VT
(@) (wo — w)* + y?

(9.43)

where y, the linewidth in this classical result is the friction coefficient, that is,
the rate at which the oscillator loses energy by friction with it environment. In
both quantum and classical systems the linewidth is seen to be just the inverse
of the relaxation time. In fact, the only quantum element seen in Eq. (9.40)
is the association of the energy £ with the frequency w through the Planck
relationship, £ = #Aw. Otherwise these systems have common characterist-
ics, and intuition obtained from classical harmonic oscillator problems is
often useful for the corresponding quantum two-level problems. This useful
analogy breaks when the dynamics of the two-level system involves satura-
tion, a common situation in pumped two-level systems that does not have an
equivalent in the harmonic oscillator case.

. We have seen (Section 6.2.3) that a Lorentzian lineshape corres-
ponds to an exponentially decaying dipole autocorrelation function.
For the Hamiltonian of Eqs (9.36) and (9.39) this correlation func-
tion is Cu(t) = (gle"™" e/ jig) = el g|pe= M plg) =
Yo e E T (gl ulj) P = (gl tls) 1P X 1(s1j) | 2e/Fe =R, where the states
/) are exact eigenstates of Hyy. The reader may attempt to show that the same
conditions that lead to exponential relaxation of state |s) after it is initially
prepared also imply that |C,(¢)| is an exponentially decaying function, both
with the same decay rate [y /4.

The quantum relaxation problems discussed above correspond to zero
temperature situations. This is seen from the fact that the initial population
of level |s) was not obtained thermally, otherwise the levels {/} in the same
energy neighborhood would be equally populated. The fact that these levels
carry zero probability at # = 0 is a manifestation of zero temperature. In the
next section we consider another quantum relaxation problem, the relaxation
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of'a quantum oscillator coupled to a thermal bath of similar oscillators, where
finite temperature effects are taken into account.

9.4 Relaxation of a quantum harmonic oscillator

We next consider another example of quantum-mechanical relaxation. In this
example an isolated harmonic mode, which is regarded as our system, is weakly
coupled to an infinite bath of other harmonic modes. This example is most easily
analyzed using the boson operator formalism (Section 2.9.2), with the Hamiltonian

H = hwoa'a +h Z wjl;jlgj +nh Z {uj&TZ;j + u]*&l;;} (9.44)
J J

The first two terms on the right describe the system and the “bath”, respectively,
and the last term is the system—bath interaction. This interaction consists of terms
that annihilate a phonon in one subsystem and simultaneously create a phonon
in the other.!! The creation and annihilation operators in Eq. (9.44) satisfy the
commutation relations:

[a,a1=1; [aa=o0; [af,af1=o; (9.452)
a,a" commutes with all 13, bt

Lot . Th R . Rt gt .

[bj,b;1=1; [bj,b;]=0; [b;,b;]=0; (9.45b)

)i IA)]T commutes with all lA;j/, IA)JT, forj #j'

The Heisenberg equations of motion,fél = (i/h)[[:I ,;1] for the Heisenberg-
representation operators a(f) and b(¢) are derived using these commutations

" Transforming to coordinate and momentum operators using Egs (2.152), the interaction term
in (9.44) is seen to depend on the momenta. A more standard interaction expressed in terms of the
coordinates only, say x1x,, when transformed into the creation and annihilation operator representation

will contain the four products a}La2, ajy a;r, aIa;, and ajajy. Theneglect of the last two terms in Eq. (9.44)
is known as the rotating wave approximation (RWA). (See also Section 3.2.2 and the derivation of
Eq. (3.28).) It is justified for weak coupling by the observation that such terms cannot conserve
energy in low order. The use of this approximation in the present context should be exercised with
caution: It can be shown that for small w the lowest eigenvalues of this Hamiltonian imply imaginary
frequencies. Still, the treatment presented here should serve as an introduction to the somewhat more
involved treatment needed if the RWA is avoided (see K. Lindenberg, and B. J. West, Phys. Rev. A,
30, 568-582 (1984) and G. W. Ford, , J. T. Lewis, et al., Phys. Rev. A, 37, 4419-4428 (1988). These
references treat the same problem without resorting to the RWA).
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relations. We get:

a(t) = —iwa(t) — i y_ uib;(1) (9.46a)
j
bi(t) = —iaw;b;(t) — iuta(r) (9.46b)

The initial conditions at ¢ = 0 are the corresponding Schrodinger operators. This
model is seen to be particularly simple: All operators in Eq. (9.46) commute with
each other, therefore this set of equations can be solved as if these operators are
scalars.

Note that Eqs (9.46) are completely identical to the set of equations (9.6)
and (9.7). The problem of a single oscillator coupled linearly to a set of other
oscillators that are otherwise independent is found to be isomorphic, in the rotating
wave approximation, to the problem of a quantum level coupled to a manifold of
other levels. There is one important difference between these problems though.
Equations (9.6) and (9.7) were solved for the initial conditions Cyo(t = 0) = 1,
C;(t = 0) = 0, while here a(t = 0) and Ej(t = () are the Schrodinger repres-
entation counterparts of a(¢) and IA)J' (#). Still, Egs (9.46) can be solved by Laplace
transform following the route used to solve (9.6) and (9.7).

In what follows we take a different route (that can be also applied to (9.6)
and (9.7)) that sheds more light on the nature of the model assumptions involved.
We start by writing the solution of Eq. (9.46b) in the form

t
bi(t) = b;(0)e ™" — iu} / dre 1= D5(1) (9.47)
0

Inserting this into the equation for a yields

t
a(t) = —iwoa —i Y uh;(0)e ™" — > " juy|? / dre @05ty (9.48)
j j 0
which, by transforming according to a =ge oot , becomes
t

() = —i > by (0)e @m0 — / dta(t)S(wo, t — 7) (9.49)
J 0

with

S(wo,1) = Y _ uj?e™ @m0 (9.50)
J
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Note that interchanging the order of the finite integration and the, in principle,
infinite series S is permitted provided the latter converges, and we assume that it
does. In fact, we will assume that S(#) vanishes everywhere except near t = 0 and
that this range near ¢ = 0 is small enough so that (1) in (9.49) a(7) may be taken
as a constant, a(t), out of the integral and (2) the lower limit of integration can be
extended to —oo. This leads to

i) = —i " uh;(0)e ™m0 — () f dtS(wy,T) (9.51)
J 0

where we have further used fioo dtS(t —v) = [;°dtS(v).
What is the justification for the assumption that S(¢) vanishes unless # is very
close to zero? For an answer let us rewrite Eq. (9.50) in the form

o0 o0

S(wo, 1) = / dwe—i(w—wo)fZ|uj|23(w—wj)E / dwe @0 C(w)
—o0 J —00
o0
= / dwe'® C(wy — ) (9.52)
—0o0

The function S(wy, f) is seen to be the Fourier transform of the coupling density'?

Clo) =) Iyl — @) = lu@)*g(w) (9.53)
J

where |u(w)|> = (|uj|2)wj:w, with the bar denoting an average over intervals of w
that are large relative to the spacing between subsequent w;’s, and where g(w) is
the density of modes at frequency w, defined by Eq. (4.32). The second equality in
(9.53) becomes exact in the infinite bath limit where the spectrum of normal mode
frequencies is continuous.

Consider now Eq. (9.52). The behavior of S as a function of time depends on
the behavior of C(w) about wg. If C(w) was constant in all range —co < w < 00
we could take it out of the integral in (9.52) to get S(wp,?) = 27 Cé(¢). This
constitutes the wide band approximation. In reality C(w) may be different from
zero, and approximated by a constant, only in some finite frequency interval about

2 In Section 6.5.2 we introduce the closely related spectral density function, J(w) =
g (@) )/ 2w).
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wo characterized by a width w,. This leads to a function S(wy, ) that vanishes only
beyond some finite value of ¢, of order wc_l . For example, if C(w) ~ e~ (@=w)/w)

then S(wy, 1) ~ e~ @t/ 22, Therefore, to be able to approximate a(t) in (9.49) by
a(t) we need to assume that a(tr) does not change appreciably during the time
interval of order (w.)~'. What helps at this point is the fact that we have already
eliminated the fast oscillations e ~“?’ by the transformation @ — &. The remaining
time dependence of a(¢) stems from the relaxation induced by the bath of » modes,
so what we assume in effect is that this relaxation is slow relative to (w.) ~'—a weak
coupling approximation. When this assumption holds, Eq. (9.49) may indeed be
approximated by (9.51).
Next consider the function

o0 o
F(wp) = / dtS(wy, 7) = / er|uj|2e*"<%*w0>f (9.54)
0 0 /

J

Since the integrand is strongly peaked about T = 0, we may multiply it by a factor
e~ " with a very small positive n without affecting the result. This, however, makes
it possible to perform the t integral before the summation, leading to (in analogy
to the treatment that leads from (9.17) to (9.27)—(9.29))

. |uj)? . 1
Flwg) = 1 — V=5 - 9.55
(o) nf%)(l;wo—wﬂrin idwo + v (9.55)
where
2
5wy = PP / 4o E@) (9.56)
wy — W

is the principal part integral defined in Section 1.1.6 and where
y = 27C(0) = 27 (Ju(@)]*g(@))w=awy (9.57)

Equation (9.52) now becomes

G(t) = (—idwy — (1/2)yXa(t) — izujiaj(O)e—i(wf—wO” (9.58)

J

which is equivalent to (putting @y = wg + Swg)

a(ty = —i(@o — (1/2)iy)at) —i y_ ujb;(0)e™™ (9.59)
j
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We have found that the linear coupling of the mode wyq to the continuum of modes
{w;} leads to a shift wy in wg as well as to an imaginary contribution, (1/2)iy to
this frequency. The latter amounts to a damping effect. In addition the coupling
leads to an inhomogeneous time-dependent term in the equation of motion for a()
that brings in the effect of the free time evolution of all the bath modes. These three
effects: A frequency shift, damping, and a time-dependent function of the free bath
motion (to be later interpreted as “noise” exerted by the bath) constitute the essence
of the effect of coupling to the bath on the motion of our system. We have seen
(Section 8.2) that similar effects characterize the behavior of the equivalent classical
system in a formalism that leads to the Langevin equation for the evolution of a
system interacting with its thermal environment. Indeed, Eq. (9.59) is an example
of a quantum Langevin equation.

Using the solution of y(f) = —ky + f(¢) in the form y(¢) = y(O)e_kt +
I dr' e *1=1 1 (1) we get the solution of Eq. (9.59)

—iwgt—(1/2)yt _ efi(q/-t R

op—y bj(0) (9.60a)

El(t) — e—id)ot—(l/2)yt&(0) + Zu]e
J

and, taking the complex conjugate

oidot—(1/2)yt _ yiw;

t
o
F—y Ty bl (0) (9.60b)

at () = 9 =U/2viaT () 4 Zu}"
J
This is our final result. In comparison with the result obtained for the decay of a
prepared state, Eq. (9.24a), we see that the essential difference lies in the fact that in
that problem the initial condition C;(¢ = 0) = 0 was naturally used and therefore
did not appear in the final result, while here, equally naturally, b;(f = 0) # 0.

Problem 9.3. Show that a(r) and a'(f) give by Equations (9.60) satisfy the
commutation relations (9.45a)

To see the significance of this result, consider the time evolution of the aver-
age population of the system oscillator, (n(¢¥)) = (af(t)a(t)). In the spirit of
the Heisenberg representation of time-dependent quantum mechanics, this aver-
age is over the initial state of the system. From Eqs (9.60) we see that four
averages are encountered. First (aT(t = 0)b;(t =0)) = (b]T(t =0)a(t=0) =0
express an assumption that initially the system and bath are uncorrelated, so that,
for example, (a'(z = 0)b(t = 0)) = (af(t = 0))(b(t = 0)) = 0. (The equalities
(b(t = 0)) = (bT(t = 0)) = 0 reflect the fact that the bath is initially at thermal



RELAXATION OF A QUANTUM HARMONIC OSCILLATOR 327
equilibrium (see Eq. (2.197)). Second, (af(t = 0)a(t = 0)) = no where ny is the
initial state of the system oscillator. Finally, (b}r (t =0)bj(t = 0)) = (nj)r, where

1
()7 = (@)1 = G (9.61)

also expresses the model assumption that the bath is initially at thermal equilibrium.
Using Eqs (9.60) we now get

|luj|>(nj) 7
(@0 — wj)> + ((1/2)y)?

(n(0)) =noe " + Y
J
x (14+e77" =2~ VD7 cos[ (@ — wj)t]) (9.62)

Consider first the t — oo limit. In this case

|uj|? (n))
(@0 — )% + ((1/2)y)?
y/2n
(@ — w)? + ((1/2)y)?
y /2w

= (n(@o))T/dw@o o2 1 (22 (n(@wo))r
1

= ohdo/ksT) _ | (9.63)

(n(t - 00)) =Y

J

= / dwj(n(w;))

In the last steps we have again used the assumption that y is small so that the
Lorentzian in the integrand is strongly peaked about wy.
The same approximation can be applied to the second term in Eq. (9.62). Using

[ee)

/2 _ —(/2yl
/ dww2 T (1/2)7)2 cos(wt) = e (9.64)

then leads to

(n(t)) = npe "' + (n)r(1 — e 7" (9.65)
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We have found that due to its coupling with the thermal bath our system relaxes
to a final thermal equilibrium at temperature T irrespective of its initial state. The
relaxation process is exponential and the rate is given by y, Eq. (9.57). Note that
in the model studied this rate does not depend on the temperature.

It is remarkable that with relatively modest theoretical tools we have been able to
account for the problem of thermal relaxation from a microscopic approach. Still,
one should keep in mind the approximations made above when trying to relate
these results to the real world. Our main assumption (made in the paragraph above
Eq. (9.54)) was that C(w) is finite and fairly constant in a sizable neighborhood
about wg. In particular, we have assumed that y is much smaller than the extent of
this neighborhood. C(w) in turn is dominated by the mode density g(w) which in
crystals can be quite structured as a function of w. Our theory will fail if wy is very
close to 0 or to a sharp feature in g(w).

A most important observation for molecular vibrational relaxation is the fact that
molecular frequencies are usually larger than the upper cutoff wp beyond which
2(w) and subsequently C(w) vanish (see Section 4.2.4). The existence of such a
cutoff, which is a direct consequence of the discrete nature of matter, implies that
by the theory presented above the relaxation rates of most molecular vibrations in
monoatomic environments vanish.'# Indeed, it is found experimentally that relax-
ation processes in which the “system” frequency is smaller than the host cutoff
frequency are much faster than those in which the opposite is true. However, it is
also found that the rate of the latter processes is not zero. This implies the existence
of relaxation mechanisms not described by the model presented by Eq. (9.44). We
will come back to this issue in Chapter 13.

Finally, itis also interesting to compare the result (9.65) to the result (8.106) of the
very different semiclassical formalism presented in Section (8.3.3). If we identify
y of the present treatment with the factor ZQgix Eq. (8.96)!° the two results are
identical for € = Aw > kpT. The rotating wave approximation used in the model
(9.44) cannot reproduce the correct result in the opposite, classical, limit. Most
studies of vibrational relaxation in molecular systems are done at temperatures con-
siderably lower than ¢ /kp, where both approaches predict temperature-independent
relaxation. We will see in Chapter 13 that temperature-dependent rates that are
often observed experimentally are associated with anharmonic interactions that
often dominate molecular vibrational relaxation.

1> This holds as long as i > kgT. In the opposite, classical, limit the rotating wave approximation
invoked here cannot be used. This can be seen by comparing Eq. (9.65) to Eqs (8.104) and (8.106).

14 Polyatomic solids have of course high frequencies associated with their intramolecular motions.

15 Indeed, both represent, in their corresponding models, the zero temperature transition rate from
level n = 1 to level n = 0 of the harmonic oscillator.
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9.5 Quantum mechanics of steady states

Both experimentally and theoretically, the study of dynamical processes can pro-
ceed along two main routes. We can either monitor the time evolution of a system
after it starts at £ = 0 in some nonequilibrium state and follow its relaxation to equi-
librium, or we can observe the system under the influence of some force (or forces)!6
and monitor fluxes that develop in response to these forces. Equation (9.24) is an
answer to a problem of the first kind, mathematically a solution to a given initial
value problem. Even though not formulated in this way, Eq. (9.40) is an answer to
a problem of the second kind, giving the flux going from the ground to an excited
molecular state that results from driving by an external electromagnetic field. The
purpose of this section is to formalize the treatment of quantum dynamical problems
of the second kind.

9.5.1 Quantum description of steady-state processes

The time-dependent Schrodinger equation can be evaluated to yield stationary
solutions of the form

W (r, 1) = Y (r) exp(— (/W Ext) (9.66)

leading to the time-independent Schrodinger equation for the eigenfunctions v, and
the eigenvalues E£j. Alternatively, it can be solved as an initial value problem that
yields ¢ (r, t) given ¢ (r, t = 0). In both cases the solutions are obtained under given
boundary conditions. Note that the word “stationary” applied to Eq. (9.66) does not
imply that this solution is time-independent, only that observables associated with
it are constant in time. For closed systems in the absence of external forces, another
important attribute of the states is that they carry no flux. Both attributes also
characterize classical equilibrium states.

In classical physics we are familiar with another kind of stationary states,
so-called steady states, for which observables are still constant in time however
fluxes do exist. A system can asymptotically reach such a state when the bound-
ary conditions are not compatible with equilibrium, for example, when it is put in
contact with two heat reservoirs at different temperatures or matter reservoirs with
different chemical potentials. Classical kinetic theory and nonequilibrium statist-
ical mechanics deal with the relationships between given boundary conditions and
the resulting steady-state fluxes. The time-independent formulation of scattering
theory is in fact a quantum theory of a similar nature (see Section 2.10).

16 A “force” should be understood here in a generalized way as any influence that drives the system
away from equilibrium.
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In addition to studying actual steady-state phenomena, it is sometime useful
to use them as routes for evaluating rates. Consider, for example, the first-order
reaction 4 — P and suppose we have a theory that relates A(¢) to A(¢ = 0). A rate
coefficient can then be defined by k() = —t'In{[4(t = 0)]7'4(1)}, though its
usefulness is usually limited to situations where k is time-independent, that is, when
A obeys first-order kinetics, A(¢) ~ exp(—kt) , at least for long times. In the latter
case we may consider the steady state that is established when 4 is restricted to
be constant while P is restricted to be zero (these restrictions may be regarded as
boundary conditions), implying that a constant current, J = kA, exists in the system.
A theory that relates the constants 4 and J in such a steady state is therefore a route
for finding k. The approximate evaluation of the rate associated with the Lindemann
mechanism of chemical reactions (see Section 14.2) is a simple example of such a
procedure. Less trivial applications of the same idea are found in Section 14.4.

What is the quantum mechanical analog of this approach? Consider the simple
example that describes the decay of a single level coupled to a continuum, Fig. 9.1
and Eq. (9.2). The time-dependent wavefunction for thismodel is ¥ (t) = C1(¢)|1)+
> Ci(»)|1), where the time-dependent coefficients satisfy (cf. Eqs (9.6) and (9.7))

d . :
h—C1 = —iEiCi =i > o ruc

y I (9.67)
hECI = —iE;C; — iV 1Cy; all /

The result (9.24) is obtained by solving this as an initial value problem, given that
Ci1(t = 0) = 1. Alternatively, suppose that the population in state |1) remains
always constant so that C1(¢) = c1 exp(—(i/h)E1?). In this case the first equation
in (9.67) is replaced by Eq. (9.68a) below, where we have also supplemented the
second equation by an infinitesimal absorbing term, so that

d
h=Ci=—iE\C1 = Ci(1) = c1exp(~(/WE10) (9.68a)

d
hECl = —iE;C; —iV;1C1(t) — (1/2)nC;

= —iE;C; — iVic1exp(—=(i/h)Ert) — (1/2)nC; (9.68b)

n will be put to zero at the end of the calculation. Equation (9.68b) admits a steady-
state solution of the form

Ci(t) = cje”W/ME (9.69)
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where
Viiel

= > 9.70
E\—E +in/2 ©.70)

c
This steady-state solution results from the balance in Eq. (9.68b) between the
“driving term” V7 1c1 exp(—(i/A)E1t) that pumps the amplitude of state / and the
term (1/2)nC; that damps it. Note that at steady state it is the observable |C/|2,
not the amplitude C;(¢), which remains constant in time. The total flux through the
system in this steady state can be calculated by observing that it must be equal to
the rate at which population disappears in the continuum

/]
J =/ S 1GE = GRS 7P i
(n/ )p I’ =1ci] ;' L o e
n—0 227( 2
— |C1l 7;|Vz,1| S(Ey — E) (9.71)

This flux corresponds to the steady-state rate

J

27 2n ——
= G = L WPsE — E) = S (ViaPps=s, = T1/h - ©72)
!

This simple steady-state argument thus leads to the same golden rule rate expression,
Eq. (9.25), obtained before for this model.

Let us now repeat the same derivation for the slightly more complicated example
described by the Hamiltonian

H=Hy+7V (9.73)

Hy = Eol0)(0] + E1[1) (1] + D _ED( + Y Erlr(r] (9.74)
/ r

V' =Vo1l0) (1 + Viol1)(O] + > (Va Il (1] + Vi g11)(1)
!

+ ) Vel (U + Va1 (9.75)

Here it is the level |0) that is taken as the “driving state,” and the flux is carried
through another level |1) coupled to two continua, L = {/} and R = {r}. Looking
for a solution to the time-dependent Schrodinger equation of the form

Y@ = Co®I0) + i) + ) GO+ Cmlr)  (9.76)
/ r
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the equations equivalent to (9.67) are

hC() = —iEyCy — iVp,1Cq
hCy = —iE | Cy —iV1,0Co — iZl Vi,Cr — in V1,-Cr

; : , (9.77)
hC) = —iE,C; — iV;1Cy
hC, = —iE,C, — iV, 1C)
while those corresponding to (9.67) are
hCy = —iEgCy = Co(t) = coe /ME0! (9.78a)
hCl = —iFE|C| — l'Vl’oCoe*(i/h)Eot — iz V.G — iz Vi,Cr (9.78b)
l r
HC) = —iE;C; — iV11C1 — (n/2)C (9.78c¢)
WC, = —iE,C, — iV, 1Cy — (7/2)C (9.78d)

At t — oo we again reach a steady state where the amplitudes are C;(r) =
cjexp(—(i/mEpt) (j = 0,1,{l},{r}), and the coefficients c; satisfy

0=i(Eo—Eer —iVigco— iy Viger—i Y Vige, (9.79a)
/ r
0=i(Ey— Epc; —iViic1 — (n/2)¢c (9.79b)
0=i(Ey— E)c, — in,lcl —m/2)¢r (9.79¢)
The solution of (9.79¢)
Viic
= 9.80
= Eo—E +in/2 (9-80)

is now substituted in the last term of (9.79a). Repeating procedures from Section 9.1
(compare (9.17), (9.19), (9.27)—(9.29)), we have

—1 Z Vircr = —iB1r(Eo)cy (9.81)
B = tim Y — sy i)
104~ E—E, +in/2
Tir(E) = 27|V, 2 pr(E, —
1R(E) = 27 (| V1, |* pR(E}))E,=E 9.82)

o0

A1R(E):PP/dEr

—0o0

V112 or(E)
E—E,
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B1r(E) is the self energy of level |1) due to its interaction with the continuum R.
Similar results, with L, / replacing R, , are obtained by inserting the solution for ¢;
from Eq. (9.79b) into (9.79a), leading to an additional contribution By (E) to the
self energy of this level due to its interaction with the continuum L. Using these
results in (9.79a) leads to

V1i0co
el = 0 (9.83)
Ey — Ey + (i/2)T1(Eo)
where
Fi(E) =T12(E) + T1r(E) (9.84)
and
Ey = E\(E) = E1 + AR(E) + A1 (E) (9.85)
Using (9.83) in (9.79b) and (9.79¢) now yields
V1 l? V1012 col?
ler|? = 1G> = 4 (9.86)

" (Eo—EN?+ (n/2)% (Ey — E1)? + (T1(Ep) /2)2

Equation (9.86), and the equivalent expression (with r replaced by / everywhere)
for |¢;|? = |Cy|? give the steady-state population of individual levels, 7 and /, in the
continua. This steady state was obtained by assigning to each such level a decay
rate 1. Therefore, the total steady-state flux out of the system through the continuum
(channel) R is, in analogy to (9.71)

2 1—0 V10l "1z (Eo) o2
(Eo — ED? + (T1(Eg)/2)* K

Josr = (/B Y le/] (9.87)

and the corresponding steady-state rate is Jo_g/|co|?. Again similar results are
obtained for the channel L, so finally

Jo—k _ V1002 I'ix (Eo)
o> (Eo— En? + (T1(Ep)/2)2 B

Kok = K=LR (9.88)

Problem 9.4. Using Eq. (9.78d) to derive an equation for (d/dt)|C,|>. Show that
the flux Jy_, p is also given by

2
Josr = Elm (2’; Vrlc;kcl)
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The result (9.88) gives the decay rates of a state |0) that is coupled to two
relaxation channels L and R via an intermediate state |1). Viewed as functions of
the initial energy Ey, these rates peak when this energy is equal to the (shifted)
energy E; of the intermediate state. In the present context the intermediate level
[1) is sometimes referred to as a resonance level. Note that the decay rates I' in
these expressions are defined at the energy Ey of the driving state, not £ of the
resonance state.

9.5.2 Steady-state absorption

The model (9.73)—(9.75) was presented as an initial value problem: We were inter-
ested in the rate at which a system in state |0) decays into the continua L and
R and have used the steady-state analysis as a trick. The same approach can be
more directly applied to genuine steady state processes such as energy resolved
(also referred to as “continuous wave”) absorption and scattering. Consider, for
example, the absorption lineshape problem defined by Fig. 9.4. We may identify
state |0) as the photon-dressed ground state, state |1) as a zero-photon excited
state and the continua R and L with the radiative and nonradiative decay channels,
respectively. The interactions V1 and Vj, correspond to radiative (e.g. dipole)
coupling elements between the zero photon excited state |1) and the ground state
(or other lower molecular states) dressed by one photon. The radiative quantum
yield is given by the flux ratio Yz = Jor/(Jo—r +Jo—1) = T'1r/(TC1g + '11).

Note that in such spectroscopic or scattering processes the “pumping state” |0)
represents a particular state of energy £y out of a continuous manifold. In most cases
this state belongs to one of the manifolds R and L. For example, in the absorption
lineshape problem this photon-dressed ground state is one particular state of the
radiative (R) continuum of such states.

9.5.3 Resonance tunneling

Consider a one-dimensional tunneling problem where a particle coming from the
left encounters a double barrier potential as seen in Fig. 9.5. This is a potential scat-
tering problem, usually analyzed in terms of scattering functions that are naturally
traveling waves. However, when the tunneling process is dominated by resonance
state(s) in the barrier region, or in other words the scattering is dominated by quasi-
bound states in the scattering region, it is sometimes advantageous to formulate the
problem in terms of basis states that are confined to different regions of space.!’
In this “local basis” approach the zero-order problem is defined in terms of
states localized on the left side of the barrier (the L continuum), the right side (the

7" Such an approach to quantum tunneling was first formulated by Bardeen, Phys. Rev. Letters, 6,
59 (1961).
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V(x)

(@)

L R .

(b)

5

Fic. 9.5 A double barrier model of resonance tunneling. Starting from state |0) on the left, our
problem is to compute the fluxes into the continua L and R, defined in terms of basis states that are
restricted to the left and right sides of the barrier, respectively. Below the barrier energy such states
can be taken as eigenstates of a particle moving in the potentials (a) and (b) respectively, which are
shown on the right. The basis is supplemented by state |1), taken as the bound eigenstate of a particle
in the potential (c)

R continuum), and in the intermediate well. For example, for energies lower than
the top of the barrier these can be taken as eigenstates of Hamiltonians defined
with the potentials (a), (b), and (c) shown on the right of Fig. 9.5. The results
obtained above then correspond to the case where direct coupling between the L
and R states can be disregarded and where it is assumed that the intermediate well
between the two barriers can support only one state |1). Jo—.r, Eq. (9.87), and Jo_. 1.
(Eq. (9.87) with L replacing R everywhere) are then the transmitted and reflected
fluxes, respectively, associated with one state |0) in the L continuum.'8-1°

Before turning to analyze the solution , it is important to keep in mind that this
is not a general solution to the scattering problem represented in Fig. 9.5. Rather,
we are interested in the tunneling flux in energy regions where it is dominated

18 The eigenstates of the Hamiltonians defined by the potentials (a), (b), and (c) in Fig. 9.5 constitute
in fact a non-orthogonal basis, because they are derived from different Hamiltonians. The time-
dependent Schrodinger equation can be easily represented with such a basis and it may easily be
verified that Equ(9'792 remain of the same form, except that each Vj; is replaced by I7l~j = Vij — ESjj,
where Vi; = (i|H|j) (H being the full Hamiltonian) and Sj; = (i|j). With this substitution all results
obtained in this section can be extended to this more general case.

' Readers familiar with scattering theory may be confused by the lack of distinction between the
so-called incoming and outgoing states. Indeed, the present formulation of the transmission problem
is expressed in terms of states that are localized on the two sides of the barrier, essentially standing
waves that cannot be labeled as incoming or outgoing but are combinations of both. This local state
representation is convenient for resonance transmission problems because it allows for a natural
description of the resonance state as a state that is localized on the barrier in the zero-order level of
description. Note, however, that this formulation is useful only for energies well below the barrier
where the localized basis states provide a good physical starting point.



336 INTRODUCTION TO QUANTUM RELAXATION PROCESSES

by a particular resonance state. We can then limit ourselves to energies close to
the zero-order energy of this state (the eigenvalue of the corresponding bound
state of the potential (c) in Fig. 9.5). When this state is well below the barrier
top, the corresponding continuum states (eigenfunctions of Hamiltonian with the
potentials (a) and (b) in Fig. 9.5) are well localized on their respective sides of the
barrier, and the local basis approach provides a useful description of the tunneling
problem.

Consider then the transmitted flux Jo— g, given by Eq. (9.87) or (9.88) with
K = R. The flux per unit initial energy is obtained by multiplying it by o7 (Eo)—the
density of states in the L continuum. Using

T12(Eo) = 27 |V1 0> pL(Eo) (9.89)

we get the transmission flux per unit energy in the form

dJi—r(E) _ b 2
(d—E>E:EO = 5 L E0leol 20
with
T(E) _ FIL(E)FIR(E) (9.91)

(E — E\(E))? + (' (E)/2)?

To see the physical significance of the function 7 (E) return to Eq. (9.87) which
expresses the transmitted flux associated with a single state of energy Eo and
momentum pg = «/2mEy where m is the mass of the transmitted particle. The
incident flux per particle is pg/2mL where L is the normalization length of the
single particle wavefunction (so that L~ is the corresponding single particle dens-
ity). The factor two in the denominator reflects the fact that in the standing wave
representation that is used here only half the particles of energy Eg move in the
direction of the barrier. Now, Eq. (9.87) can be written in the form

Jok = (incident flux) x T (Eg) = |co]* LT (Eo) 9.92)
2mL
To see this note that pg/(2mL) can be cast in terms of the one-dimensional density
of states in the form (from Eq. (2.96) using E = p?/2m)

PO = @uhpy(Ee) ! (9.93)
2mL
Using (9.89), (9.91), and (9.93) in (9.92) indeed leads to (9.87). Equation (9.92)

implies that 7 (Ey) is the transmission coefficient (ratio between transmitted and
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incident fluxes) at energy Ey. This coefficient is seen to be symmetric in both
directions, as required by microscopic reversibility.
Some more observations can be made at this point:

1. The transmission coefficient at energy £ has been expressed in terms of this
incident energy, the (shifted) energy of the intermediate barrier state |1), and
the widths associated with the decay rates of that barrier state into the left
and right sides of the barrier. It is interesting to note that these widths should
be calculated not at energy £ (that will normally be used in calculating the
decay rate of this resonance state if initially prepared) but at the incident
energy Fj.

2. For asymmetric barrier I'j; = "1z Eq. (9.91) shows that the maximum trans-
mission, obtained on resonance (Ey = E 1), is 1, irrespective of the coupling
strengths that determine I'1; and I'1z. These couplings, in turn, determine
the linewidth of the peak observed when the transmission is monitored as a
function of Ey.

3. The population |co|?> of the state that pumps the system does not appear
in the rate expression (9.88), however it determines the observed flux
through Eqns (9.90) or (9.92). In the particular application (Section 17.2.2)
to the problem of electronic conduction, when the left and right continua
represent the free electron states of metal electrodes |co|? will be identi-
fied as the Fermi—Dirac equilibrium occupation probability at energy Eo,
f(Ey) = [exp((Eo — n)/kpT) + 117!, where p is the chemical potential of
the corresponding electrode.

4. The transmission problem analyzed above is one-dimensional: Incident and
transmitted states were characterized only by their energy. In three dimensions
these states may be characterized in terms of the total energy £y and by the
wavevectors ky,, Kk in the directions perpendicular to the incident (x) direction,
so that the incident energy and the magnitude of the momentum in the incident
direction are

Ey = Eog— (B*/2m)(k} + k2);  py = /2mE;, (9.94)

A particular transmission event at energy £y can involve the incident states Eo, ky, k;
and the transmitted state Ej, k)’,, Kk, (referred to as channels in the present context.
Note that any such channel corresponds to the continuum of kinetic energy states
associated with motion in the x direction). In Appendix 9C it is shown that the
total transmitted flux per unit energy between all possible channels is again given
by Eq. (9.90) where I'17(F) and I'1g(E) are, as before, the decay rates of the
resonance state | 1) into the left and right (three-dimensional) continua. Also derived
in Appendix 9C is a generalization of the present treatment to the situation where
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transmission is promoted through N barrier states. The result is again of the form
for the transmitted flux density, however with a generalized expression for the
transmission coefficient

T(E) = T[T PE)GBTE R (E)GP (E)] (9.95)
where the barrier Green’s operator is
GB(E) = (EI® — By~ (9.96)

In (9.96) I® isan N x N unit matrix and A® is the barrier Hamiltonian, an
N x N matrix defined by Hn(fq)/ = H, + By, where B = B® 4+ B® is the self
energy matrix, a generalization of the function B1g(E) + Bir(E) (e.g. Eq. (9.82))
now defined by Eq. (9.133), and where ['®) = —2ImB®) K = L,R.

Problem 9.5. Show that the barrier Hamiltonian can be written in the form 4® =
PHP + B where B is defined as above and P is a projection operator on the
subspace of the barrier, that is, P = ZnNzl |n)(n| where |n), n=1,...,Nisa
basis that spans the barrier’s subspace.

Appendix 9A: Using projection operators

The mathematical analysis of the dynamics of systems interacting with encom-
passing reservoirs, whose detailed dynamics is of no direct interest, is facilitated
by the use of projection operators or projectors. A simple example is provided by
the use of such projectors to rearrange a system of linear equations. Let

ayl ... ain X1 ui
A= ; x=|: ; u=|: (9.97)
aNiy ... GannN XN uy
be and N x N matrix and N-vectors. Consider the system of linear equations

AX =1 (9.98)

and define the projector matrices

1, 0 ' (0, 0
P=<0 ONn)’ Q_(O an> (9.99)
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where 1, is an n x n identity matrix (and similarly 1y_, isan (N — n) x (N — n)
identity matrix). P projects onto the upper left n x n part of A while Q projects
onto the lower right (N — n) x (N — n) part. Obviously the relationship P+Q =1
(the N x N identity matrix), P> = P,Q*> = Q, and PQ = 0 are all satisfied. We
can use identities such as

x=((P+Q)x (9.100)
for a vector x, and
A=P+QAP+Q) (9.101)

for a matrix A to separate the set of coupled linear equations (9.98) into two
distinct sets

PAP - Px + PAQ - Qx = Pu (9.102)

QAP - Px + QAQ - Qx = Qu (9.103)

We may now formally solve Eq. (9.103) for Qx and insert in (9.102). This leads
to a set of equations in the “P subspace.” A common situation is where u is in the
P subspace, that is, Qu = 0.2 In this case we find Qx = —(QAQ) 'QAP - Px
which leads to

Px = (PAP — PAQ(QAQ) 'QAP) !Pu (9.104)

Since we have explicit forms for all terms on the right, Eq. (9.104) provides an
explicit solution for the “interesting” part, P-part, of our system.

Problem 9.6. Show that a matrix A can be formally written in the form

PAP PAQ
A= (QAP QAQ) (9.105)

20 The mathematical problem was to find the vector x given the vector u. The physical problem
may have identified the subspace P as the “interesting subspace” because the initial information u is
given in that space (i.e. Qu = 0) and information about x is needed also in that space (i.e. we require
only sPx).
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Problem 9.7. Show that
(A")pp = PA™'P = (App — Apq(Aqq) 'Agp) ! (9.106)

To show this use the identity AA~! = 1 in the form

App APQ) ((A_l)PP (A" Hpg >: 1
(AQP Ao/ \(A™Hor  (A™Daq ' G190

Equation (9.107) constitutes a set of the four equations. Two of them are

Arp(A™")pp + ApQ(A™gp = 1p (9.108)
Aqr(A™"pp + AgQ(A™)gp = 0 '

Solving these for PA™!P yields (9.106).

As an example of an application of this formalism consider again the problem
of the decay of an initially prepared level |1) coupled to a continuum {|/)} as in
Eqs (9.2)~(9.7) and Fig. 9.1. Let

A

P=I)(1;  Q=1-P=) [ (9.109)
/

so that (Ho)pq = (Ho)qp = 0 and Vpp = Vg = 0. Let A = EI — Hy — ¥/, so that
A~' = G is the Green operator. Use Eq. (9.106) to obtain

1 —1

Using (9.109) this may be written explicitly

1

- — (9.111)
E—E =Y ViyE—E) Vi,

G,

which is what was found before (see Eq. (9.16)). Note that we now have a more
general and powerful way to obtain the Green function for any given subsystem,
because P and Q can be chosen in more general ways.
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Appendix 9B: Evaluation of the absorption lineshape for the model of
Figs 9.2 and 9.3

The model under consideration is given in the dressed state representation in
Fig. 9.3. It comprises a level |0) coupled to a level |s) which in turn is coupled
to a continuum {|/)}. As far as the relaxation of |0) is concerned the representation
used for the subsystem of states (|s), {|/)}) is immaterial; we could equally well use
a basis of states {j}, each a linear combination of |s) and {|/)} states, that diagonalize
the Hamiltonian in this subspace. Explicitly

I} = Gsls) + ; Gall)

. N (9.112)
(Ho + M)lj) = Ejlj)

The calculation of the decay rate of |0) in this representation amounts to repeating

the problem represented by the model of Fig. 9.1 and Eq. (9.2), where states 1 and

{l} are now replaced by 0 and {;}, respectively. One needed element is the coupling

between states |0) and |j). Using (9.112) and the fact that (Olﬁl |l) = 0 we find that

(OIF)j) = apig sCis (9.113)

where the constant o was introduced in Eq. (9.39d).

As discussed in Section 9.1, the required decay rate is obtained under certain
conditions as (—) the imaginary part of the self energy By (£y) of the state |0). The
latter is defined from

1 1
= 0) =
E—H +ie E —Eo — Bo(E)

Goo(E) = (0] (9.114)

An approximate expression for Bg(E) is found using the Dyson equation (9.11)
and the coupling scheme of Fig. 9.3. Noting that the Dyson equation is valid for
any separation of the Hamiltonian to two additive contributions, we now use the
separation

H = [H — (11,510 (s] + 115gls) (OD] + (pag 510} 5] + prsgls) (O] (9.115)

and use the term in square bracket as “H(” and the last term on the right as the
“coupling,” to write

Go.o = Goo + GootfigsGso (9.116a)

GS,O = Gs,saﬂs,gGO,O (9.116b)
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Here G = [E — (H — a (g s|0)(s| + psgls)(0]) + ie]~! is the Green’s function
associated with the Hamiltonian without the term (9.39d) that couples the molecule
to the incident mode of the radiation field. Eliminating G, from (9.116) we get

1
E—FEy— a2|ﬂg,s|2(_;s,s(E)

Goo(E) = (9.117)

It is easily realized that Gy here is the same as G,,s defined by Eqs (9.30) and
(9.27) (where state 1 plays the same role as state s here). This implies that, if the
assumptions leading to Eq. (9.31) hold then,

azlﬂg,slz
Eo — Eg 4 (1/2)iT

Bo(Eo) = (9.118)

Recalling that £y = E + /iw we find that the absorption lineshape is given by

a2|ﬂg,s|2(rs/2)

L —ImBy(Ey) = =
(w) 0(Eo) (Ey + o — Eo)? + (Ty)2)?

(9.119)
which is Eq. (9.40).

Appendix 9C: Resonance tunneling in three dimensions

Here we generalize the transmission problem of Section 9.5.3 to three dimensions
and to many barrier states. Consider first the three-dimensional problem with a
single barrier state. The barrier is taken to be rectangular and of a finite width
in the transmission (x) direction, so it divides our infinite system into two semi-
infinite parts, right (R) and left (L). The transmission is again assumed to result
from interactions between free particle states in the L and R subspaces and a single
state |1) localized in the barrier, as seen in Fig. 9.5. These free particle states are
plane waves in the y and z directions, and can be characterized by the total energy
E( and by the wavevectors k,, k;, so that the incident energy and the magnitude of
the momentum in the direction x normal to the barrier are

Ec = Eg— (B*/2m)(k} + K2);  px = v/2mE, (9.120)
With these notations, Eq. (9.87) can be rewritten in the form

V10 e ) | LirEo) o
(Eo — E1)? + (T1(Ep)/2)2 A

J ey ke Ep) >R = (9.121)

This is an expression for the steady-state rate of population transfer from a driving
state in a particular one-dimensional channel (ky,K:, Eo) on the left of the barrier



APPENDIX 9C 343

into the right (now three-dimensional) continuum. The corresponding density of
such one-dimensional states is py(Ey) = mL/(whp,). The flux per unit energy
associated with this channel is thus?!

(ky k;)
1 (Eo)T"1r(Eo) ’
Jk, k., Ep)— ROx (Ex) = lcol (9.122)
o bx ) = G (T )27
where
Kk, .k,
U (Eo) = 271V g i 20 (Ex) (9.123)

Finally, the total flux from all channels of total energy Ej is obtained by summing
over all k, k; for which E of Eq. (9.120) is nonnegative. This yields the total flux
per unit energy at energy £y in a form similar to (9.90)

dJL—>R(E)) 1 1L (Eo)T1r(Eo) )
HLoRE) - e
( E )y, = 2en O = e B Ert (@2
(9.124)
where
FiEo) = Y Ty (Eo) (9.125)
Ky k

is the leftward decay rate of state |1) into the left continuum, here expressed as sum
of rates of decay into the individual one-dimensional channels. Note that "1z can
be expressed in a similar way, though we did not need to use it in the derivation
above.

Further insight into the structure of this solution may be obtained by denote
these channels by the collective indices « so that Eq. (9.125) takes the form

T(E) = Zr (E)  (and same for I'1z) (9.126)

This implies that

Ti(Eo) = ) Too (Eo) (9.127)

2l We assume that all states of energy E are associated with the same probability |co 12, as expected
if the continua represented bulk system at thermal equilibrium.



344 INTRODUCTION TO QUANTUM RELAXATION PROCESSES

where

_ % (E)M%(E)
(E — E\(E))? + (T'1(E)/2)?

To o (E) (9.128)

Expressions such as (9.124) are sometimes called “all to all” microcanonical trans-
ition rates (or, in this case, differential transition fluxes), since they express that
total flux due to all states of energy E.

Next we generalize these results to the case where transmission is induced by
many barrier-localized states, |1), |2),..., |N). The transition under consideration
is then between a left manifold of states {/} and a right manifold {r} due to their
mutual coupling with barrier states {n},n = 1,2,..., N. These states are not neces-
sarily eigenstates of the Hamiltonian, so in the derivation below we will encounter
matrix elements such as H,, ,; = (nlI:l |n’). We will however assume for simplicity
that all states are orthogonal to each other, (n|n’) = §,, (see footnote 18 about
the more general case). Again we consider a driving state |0) that couples to the
barrier states, and the fluxes following from this into the left and right continua.
The generalization of Eqgs (9.78) into the present case reads

hCn = _iHn,nCn - iHn,OCO(Z) —1 Z Hn,n/cn’ - iZHn,lCl - iZHn,rCr;
r

n'#n /
nn=1,...,N
(9.129a)
N
hCy = —iHCy — Y iHiaCo — /DCh; k=17 (9.129b)
n=1

with Co(#) = coexp(—(i/h)Ept). Again we look for steady-state solutions of
the forms C;(1) = cjexp(—(i/h)Ept) (j = {n},{l},{r}), and get the equations
equivalent to (9.79)

0=i(Ey— Hn,n)cn - iHn,OCO —1 Z Hn,n/cn/

n#n (9.130a)
—iZHn’lcl—iZchr nn=1,...,N
/ r
N
0=1i(Ey — Hip)cr — Zin,ncn —(n/2)ck; k=1Lr (9.130b)

n=1
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Equation (9.130b) yields

_ ZnNzl Hk,ncn .
Eo— Hii +i(n/2)

and inserting this into (9.130a) leads to

Ck k=1r (9.131)

0 =i(Eo — Hyn)cn — iHppco — i Z Hn,n/cn/ - iZBn,n’(EO)Cn/ (9.132)

n' #n n
with
L R
Byw(E) = BY)(E) + BY (E)
H, Hy v 1
BO@E) =Y A A® ) - Sir®)E);  K=LR
5 E — Hk,k + ”,,/2 nn o nn

keK
P)E) = 2w (HypHiw ok E)pp: k€K, K=LR

Hn,ka,n/pK (Ek) .
E—E; ’

kekK, K=L,R

o8}

A% (E) = PP / dE)
—0o0

(9.133)

Note that the self energy defined above, Eq. (9.82), has now become a non-diagonal
matrix.

We now define an effective Hamiltonian matrix A® in the subspace of the
barrier states (a N x N matrix)

H") = Hyy + By (9.134)
and a corresponding barrier Green’s operator
GB(E) = (EI® — FB)~! (9.135)

and obtain a solution for the coefficients ¢, (n = 1, ..., N) in the form (j B is an
N X N unit matrix)

cn=0c0 Yy Gl Hyy (9.136)

Using this in (9.131) yields, for example, for the R continuum

S S HenGro iy
Cr = — €o (9.137)
Eo — Hr,r +i(n/2)
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The flux through the R continuum is now obtained in the form (compare (9.87))

0 _
Josr =(/M) Y lerl? > 17 eo
r
N N N N
B
x Y 28(Eg—H) Y Y DY Ho,anf? >jl Hyy v Hy yGE) Hy

N
= |eo)? Z ZZZ o ;B)jlr,gf)nc;fjfl (9.138)

ni= lnl_l n=1n'=1

Finally, repeating the steps that lead from (9.121) to (9.124) we now find

W1—r(E) lcol? L BT p® B
( dE E:EOZZJThZZZZanI nnFl’lll’lGnn

ni=1 ’_1n 1n/'=1

'CO' SOE O 80) 6O B PO E 6P ED) (9,139

where the trace operation denotes a sum over barrier states {n} of the diagonal
elements of the matrix '@ GIT® G, This is a product of four N x N matrices,
all defined in the subspace of the barrier states. This concludes our derivation of
Eqgs (9.90) and (9.95) for the present model.
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THE QUANTUM MECHANICAL DENSITY OPERATOR
AND ITS TIME EVOLUTION: QUANTUM DYNAMICS
USING THE QUANTUM LIOUVILLE EQUATION

Surely the atoms never began by forming

A conscious pact, a treaty with each other,

Where they should stay apart, where they come together.
More likely, being so many, in many ways

Harassed and driven through the universe

From an infinity of time, by trying

All kind of motion, every combination,

They came at last into such disposition

As now establishes the sum of things...

Lucretius (c.99—c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The starting point of the classical description of motion is the Newton equations
that yield a phase space trajectory (r"(¢),p"(¢)) for a given initial condition
(rV (0), pV (0)). Alternatively one may describe classical motion in the framework
of the Liouville equation (Section (1.2.2)) that describes the time evolution of the
phase space probability density (", p"; ). For a closed system fully described
in terms of a well specified initial condition, the two descriptions are completely
equivalent. Probabilistic treatment becomes essential in reduced descriptions that
focus on parts of an overall system, as was demonstrated in Sections 5.1-5.3 for
equilibrium systems, and in Chapters 7 and 8 that focus on the time evolution of
classical systems that interact with their thermal environments.

This chapter deals with the analogous quantum mechanical problem. Within
the limitations imposed by its nature as expressed, for example, by Heisenberg-
type uncertainty principles, the Schrodinger equation is deterministic. Obviously
it describes a deterministic evolution of the quantum mechanical wavefunction.
The analog of the phase space probability density £ (r", p"; ¢) is now the quantum
mechanical density operator (often referred to as the “density matrix”), whose time
evolution is determined by the quantum Liouville equation. Again, when the system
is fully described in terms of a well specified initial wavefunction, the two descrip-
tions are equivalent. The density operator formalism can, however, be carried over
to situations where the initial state of the system is not well characterized and/or
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a reduced description of part of the overall system is desired. Such situations are
considered later in this chapter.

10.1 The density operator and the quantum Liouville equation

10.1.1 The density matrix for a pure system

Consider a system characterized by a given Hamiltonian operator H , an orthonormal
basis {¢,} (also denoted {|n)}) that spans the corresponding Hilbert space and a time
dependent wavefunction W (#)—a normalized solution of the Schrodinger equation.
The latter may be represented in terms of the basis functions as

W)=Y Calt)pn (10.1)

The normalization of W (¢) implies that ) _, |C,, |> = 1. When the state of the system
is given in terms of such wavefunction we say that the system is in a pure state.

Consider also a dynamical variable A that is represented by an operator A. Tts
expectation value at time ¢ is given by

() = (WO ©O) =D CrOCrOAnw = pwa®Any  (102)

The coefficients p, s in (10.2) define the matrix elements of the density operator
0 in the given basis. For a pure state p can be written explicitly as

p) = V(Y1) = ZCn(t)C;"/(Z)In)(n/I (10.3)
so that indeed
P (1) =(Pn| 6 (1) 10w )=Cpn () Cpy (1) (10.4)

Using the completeness of the basis, that is, ), |n)(n| = 1, Eq. (10.2) is seen to
be equivalent to
(4); = Tr[pA] (10.5)

which is the quantum analog of Eq. (1.100) if p is perceived as a quantum analog
of the distribution function /. Another element in this analogy is provided by the
equivalence

[a [apsapin=1 & TA=om=1 (09

which follows from (10.3).
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The time evolution of the density operator can be found from the time evolution
of W (¢) and the definition (10.3):

dA(z)—d(\Ilt )| = d\lft )|+ |W () d\IJt
7P _E| ) ()I)—(EI ()))( |+ 1 ><E< ()I)

=— %ﬁnw»(\v(m + %wm)wanﬁ (10.7)

or
d . P .
Sh(0) = —%[H,pm] = —iLp(D) (10.8)

where £ = ™! [I:I ,] is the quantum Liouville operator.

Equation (10.8) may be compared with the Heisenberg equation of motion (2.66)
for the Heisenberg representation Ile(t) = exp((i/ h)ﬁl t);l exp(—(i/ h)ﬁ t) of the
operator A

%AH(z) = }i_L[H,AH(t)] = iLAu (D) (10.9)
We see that the density operator o(¢), the quantum analog of the classical phase
space distribution f(rN,p";?), is different from other operators that represent
dynamical variables. The same difference in time evolution properties was already
encountered in classical mechanics between dynamical variables and the distribu-
tion function, as can be seen by comparing Eq. (10.8) with (1.104) and Eq. (10.9)
with (1.99). This comparison also emphasizes the correspondence between the
classical and quantum Liouville operators.

Two other properties of the density operators follow from its definition (10.3).
First, it is Hermitian, that is, 7 (1) = p(¢). Second it is idempotent, that is, satisfies
the property

P2 =p (10.10)

10.1.2 Statistical mixtures

As defined above, the density operator provides an alternative but equivalent
description of the information contained in a pure quantum mechanical state. Its
real advantage emerges when we encounter systems whose state is not known
completely. For example, we may know the probabilities P, = |C,|? to be in the
different states n (defined in terms of some basis set {¢,}), without knowing the
actual state Y = ), C,¢, that requires knowledge of the phases of the complex
numbers C,. In the extreme case of such ignorance all phases are equally possible
and should be averaged upon in any calculation. In this case Eq. (10.4) becomes

Pnn’ = |Cn|28n,n’ = Pnan,n’ (10~11)
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We refer to such a state as a statistical mixture. An example is a system in thermal
equilibrium whose eigenfunctions constitute the basis {¢,}. The probabilities P,
are then given by the Boltzmann distribution and all microscopic states compatible
with these probabilities (i.e. all phases of the complex coefficients C,,) are assumed
to be equally probable.

It should be obvious that a pure state and the statistical mixture with the same
|Cy| are not equivalent. For example, the average value of an observable 4 in the
pure state is (Y |A|v) = > onw CuCudpw, where 4,y = (n|4|n’), while in the
corresponding statistical mixture (4) = >, Pydpn =), |Cp > 4.

Above we have contrasted the pure state with a statistical mixture represented
by a diagonal density matrix. We now make these statements more general:

1. In the representation defined with a basis {¢,}, ¢ is a matrix with elements
Pnn- The diagonal elements, p,, = P,, are the probabilities that the system
is in states n. In the pure state = ), C,¢, we found that

Py =|Cyl* and p, = C,CH (10.12)

2. Inthe statistical mixture the last equality is not satisfied. This does not neces-
sarily mean that in a statistical mixture p has to be diagonal. If it is diagonal in
the basis {¢,,}, thatis, 5 = >, Pn|d,) (¢n], Wwe can go to another representation
{x} such that ¢, = >, ank ¥y in which p takes the non-diagonal form

P= Pu Y amdi i)Wl =Y puwl¥e) (| (10.13)

n ek k&'

where ppr = Y, Pranidly, .

3. Sohow is a pure state different from a mixed state? In the former the elements
of the corresponding density matrix are related to each other in a specific
way, Eq. (10.12), resulting from their association with the amplitudes of the
expansion of the pure state in terms of the given basis. In a mixed state such
a relationship does not exist.

4. An operational statement of the difference between a pure state and a stat-
istical mixture can be made with respect to their diagonal representations. In
such representation the pure state density matrix will have only one nonzero
element on its diagonal, that will obviously take the value 1. A diagonal dens-
ity matrix representing a statistical mixture must have at least two elements
(whose sum is 1) on its diagonal.
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An important observation is that several, but not all, properties of the pure state
density operator remain also in mixed states:

1 o is Hermitian and its diagonal elements p,, are real and positive. These

hdl

elements represent the average probabilities to find the system in the
corresponding state (see also 6 below).
Trp = 1.

. For any observable represented by an operator A

(4) = Tr(pA) (10.14)

This follows from the fact that this relation has to hold for the diagonal
representation and from the fact that the Trace operation does not depend on
the representation used.
The time evolution of the density operator is described by the Liouville
equation

i

h
To show that this remains true for mixed states consider the diagonal repres-
entation of the initial state, p(r = 0) = ), Pu|u)(¥,|. This describes
a mixed state in which the probability to be in the pure state i, is P,.
In the following time evolution each pure state evolves according to the
time-dependent Schrodinger equation so that W, () = exp(—(i/ h)I:I HYr,(0)
and therefore P, also represents the probability to be in state W, (¢) at time ¢.
It follows that p(¢) = ), Pn|W, (1)) (W, (?)] so that

d A
Eﬁ(t) = ——[H,pO] = —iLp(t) (10.15)

p(t) = e~ WA ;) i/ M (10.16)

from which (10.15) follows. Eq. (10.16) is sometimes written as a formal
solution of Eq. (10.15), that is,

5(t) = e~ p(0) = e /M1 () /WA (10.17)

In general / does not satisfy p> = /. This identity holds only for a pure state.
Given that p is diagonal in the representation {1/;}, then for any state v
we have (¥ |p|y) = Zj Pj|(1/f|1pj)|2 > 0. p is therefore a positive operator.
(¥|p|yr) is seen to be the average probability to find the system in state .

10.1.3 Representations

The time evolution of the density operator, Eqs (10.15) and (10.16), stems from
the time dependence of the wavefunctions, and describes the time evolution of
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in the Schrodinger representation. (As usual, we omit the subscript “S” from the
Schrodinger o as long as its identity may be inferred from the text. Below, however,
we sometimes write this subscript explicitly). In the corresponding Heisenberg
representation

pu = ps(t = 0) = eV/MH j ()™ WIMHE — oL 5o (1) (10.18)

oH does not depend on ¢ just as the wavefunction vy does not. It will prove useful
to consider also the time evolution of the density operator in the interaction rep-
resentation associated with some suitable decomposition of H , H= flo + V. This
representation of p is defined by

pu(t) = Mot/ 5 (1)~ Hot /1 (10.192)
— eiﬂot/ﬁe—iﬁt/hﬁ(t — O)eililt/he—il:lot/ﬁ (1019b)
To obtain the corresponding equation of motion take time derivative of (10.19a):

dp (i/ ) Hyt [~ i, 7 dps| _umi
— = —H t) — —ps(t)H, — i/ R)Hot
= 7 0ps(1) hﬂS() ot ¢

e I A in i A PPy
= eI | = Hops (1) — < ps (D Ho — (ﬁHps(f) - E,OS(I)H>] e/

. N l N l R ~ (s 7 l A A
= eI ==V s (D) + 2 hs (D) V} e (I = — = 111(1), pr()]

(10.20)

Thus

dpp i o .
7 —ﬁ[VI(l‘),PI('f‘)] (10.21)

Note that an equation similar to (10.19a) that relates the interaction representation
of any other operator to the Schrédinger representation

Ax(1) = e/ Aot g o= (/W (10.22)
leads to
d;l[ I A~ =~
= Uy, A (10.23)

which is obviously different from (10.21). The origin of this difference is the fact
that in the Schrédinger representation A4g is time independent (unless A has intrinsic
time dependence) while ps(#) depends on time.

Table 10.1 summarizes our findings, as well as those from Sections 2.7.1 and
2.7.2, by comparing the different transformations and the corresponding equations
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Tasre 10.1 The Schrédinger, Heisenberg, and interaction representations of the quantum time

evolution.
Schrédinger representation Heisenberg representation Interaction representation
Us() = e MU =0) W) = T Us0) = W =0)  Wi() = e Mug(0)
IWg . N . . BAS . ~
= —(i/R)H Vs (time independent) rvale = (/RO
As =A@t = 0) Au() = e(i/h)ﬁr;lse—(i/mﬂr i) = e(i/n)ﬁozAse—(i/h)Hot

dAu() i s L TTC) N B

(time independent) ;t() = %[H,AH(t)] ;t() = %[HO,AI(t)]
ps() = M1 p(0) M fyy = QUM (1= G/ pr(a) = e/ syt
d ., ia s . . dp [P
Eps(l) = _E[H’ ps(0)] = p(¢ = 0) (time independent) o —%[Vl(l),pl Q)

of motion for the quantum mechanical wavefunction, the density operator, and
a “regular” operator (i.e. an operator that represent a dynamical variable) in the
absence of explicit time dependence, that is, in the absence of time-dependent
external forces.

Note that the time-dependent average of an operator A is the same in all
representations

(4); = Tr[pudn(0)] = Tr[ps()As] = Tr{pr() A1 ()] (10.24)

as of course should be.
Problem 10.1.

(1) Show that the trace of p? is 1 for a pure state and smaller than 1 for a
mixed state.

(2) Show that for a pure state Tr(52) cannot be larger than 1; that in fact if
Tr(p) = 1 and Tr(p%) > 1 then p has negative eigenvalues, that is, is
unphysical.

Problem 10.2. Let H = Hy + H,(¢t). Show by direct differentiation with
respect to ¢ that the solution to the Liouville equation (d/d)p(f) =

—(i/R)[Hy + Hi (1), p()] = —i(Lo + L£1(1))p(¢) may be written in the form
t

p(1) = e =L 510y — / di'e DR L (1) p(t) (10.25)
fo

(Hint: Multiply both sides by exp(itL¢) before taking derivative).
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10.1.4 Coherences

In a general representation p is non-diagonal. In terms of the basis {y;} that
diagonalizes p we may write

punt =Y _ Pyinly) (Wln') (10.26)
J

If |n) = Zj Cyj¥yj and |n') = Zj Cyj; we find

Ot = Z P;Cy:Crj = (CiiC) (10.27)
J

We see that the non-diagonal element p,,, of the density matrix is the averaged
product of cross terms between states n and n’. These elements, which appear in
calculations of interference effects between these states, are referred to as “coher-
ences.” If p,,y in Eq. (10.27) is found to vanish, the corresponding interference is
averaged out.

Problem 10.3. Show that in the basis of eigenstates of H

d d i
Epnn =0, Epnm = _ﬁ(En — Ew) onm (10.28)

Problem 10.4. Consider a system for which the HamAiltor}ian is H = IEIO -+ f/,
or, in the representation defined by the eigenstates of Hy, H = ) _,, E,|m)(m| +
D >om ~n Vmnlm)(n|. In the same representation the density operator is 0 =

> "> pmnlm)(n|. Show that in this representation the Liouville equation is
m n

dp i i
dr;z,n = _ﬁ mnPm,n — ﬁ Z (Vm,lpl,n - Vl,npm,l) (10.29)
/

where E,, , = Epy — E,.

Problem 10.5. Show that in any basis

B = @ |2 (equality holds for a pure state) (10.30)

Solution: To prove the inequality (10.30) we first note that for a pure state
0 = |¥)(¥|, and Eq. (10.30) is satisfied as an identity, with each side equal to
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|(n|1ﬂ)|2 |(m|w)|2. In the more general case o may still be expressed in the
diagonal representation,

p=> alyl; @ =0; Y a=1 (10.31)
J J

The inequality (10.30) then takes the form
2

> al(nly) Zaj [ (mly) ] Za, (i) (ilm)|  (1032)
J

This, however, is just the Schwarz inequality (Section 1.1.8). Indeed, Eq. (10.32)
is identical to the inequality satisfied by two complex vectors, (cf. Eq. (1.81)),
le|? |12 > |e* - f|2, if we identify ¢; = /@;(n|y;) and f; = . /@;(m|y;). Another
proof of (10.30) is obtained by defining the wavefunctions |) = p'/?|n);
|¢) = p'/2|m) and realizing the Eq. (10.30) can then be rewritten in the form
(W) (@lp) > |(¥|p)|> which is another expression, Eq. (1.85), of the Schwarz
inequality.

10.1.5 Thermodynamic equilibrium
The expression for the classical distribution function in thermodynamic equilibrium
reflects the Boltzmann equilibrium property

e BHEN pY)

[ drV [ dpNe=pHE )

ra,pVy = (10.33)

Similarly, for a quantum system in thermal equilibrium, the populations of station-
ary states are given by the Boltzmann factors Py ~ e P and coherences between
such states are zero. This implies that in the basis of eigenstates of the system
Hamiltonian A

L e PRI )
Peq = Zj o—PE

(10.34)

and more generally,

foq =Z e PH; Z = Tr{feq] (10.35)
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The thermal average of an observable represented by an operator Ais, according
to Eq. (10.14)

(A1 = Tt pecAl Tile #114] (10.36)
T = Tr[p = — .
“ Trle—FH]
Problem 10.6. Show that
(d)r = (4"} (10.37)

For future reference we cite here without proof a useful identity that involves the
harmonic oscillator Hamiltonian 2 = p%/2m + (1/2)mw?§* and an operator of the
general form A= expla1p + apg] with constant parameters «; and ay, that is, the
exponential of a linear combination of the momentum and coordinate operators. The
identity, known as the Bloch theorem, states that the thermal average (21)T (under the
harmonic oscillator Hamiltonian) is related to the thermal average ((1p + a2§)*)1
according to

(ealﬁ+(12t?>T — e(l/z)((alﬁ+a2@)2h (10.38)

Problem 10.7. Prove the classical analog of (10.38), that is,
(exp(a1p + a2q))1 = expl(1/2)((@1p + @29)*)1]

where (4(p,q))r = [ dp [ dqA(p,q) exp(—BH (p,q))/ [ dp [ dq exp(—BH (p, )
and H (p, q) is the classical harmonic oscillator Hamiltonian. (Note: the needed
two-dimensional integrations can be done directly, or you can use the general
relationship (7.63)).

10.2 An example: The time evolution of a two-level system in the density
matrix formalism

In Section 2.2 we have used the two coupled states model as a simple playground for
investigating time evolution in quantum mechanics. Here we reformulate this prob-
lem in the density matrix language as an example for using the quantum Liouville
equation

— = ——[H, )] (10.39)
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The Hamiltonian is taken in the form
H = Hyy|1)(1] + Hx[2) (2] + Hia|1)(2] + Ho[2)(1] (10.40)
and the density operator is

p = puOID(1 + p22(0)12)2] + p12(D 1) (2] + p21(D12)(1] (10.41)
Using

[H, ] = Hi1(p1211) 2] — p2112)(1]) + Hao(p2112) (1] — p12|1){2])
+ Hip[—p11 1) 2] + p2211) 2] + p21 1) (1] — 02112)(2]]
+ Hy[p1112) (1] — p2212) (1] + p1212) (2] — p12]1){1]] (10.42)

we get
dp11 . .
717 = —iHpp21 + iH21 012 (10.43a)
dpon . .
7@7 = iH2p21 — iFh1p12 (10.43b)
hdplz . . . .
o - iHy1p12 + iHypp12 + iHpp e — iH12022
= —iEpp12 +iHipn — iHi2p2 (10.43c)
dpa1 . . .
h? =iH11p21 — iHxnp21 — iH21p11 + iH21 022

= — iy 021 — iH1p11 + iHp1 022 (10.43d)

where we have denoted E>; = —E12 = Hyy—Hj1. Note that the sum of Eqs (10.43a)
and (10.43b) vanishes, because p11 + p22 = 1. There are therefore only three
independent variables. Defining

oz(1) = pu () — p22(1) (10.44)

o4 (t) = p21(1) (10.45)
o_(t) = p12(0) (10.46)
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we obtain from Eqs (10.43) the following equations of motion for these new
variables

do, i i
=2-Hyjo_ —2-H
g 3 210 5 120+

= %[(le + Hy1) — (Hip — Hyp)lo— — %[(le + H1) + (Hi2 — Hap)loy

(10.47a)

p .

% = iwoy — %Hmaz (10.47b)
9 _ iwo+Ln (10.47¢)
—— = —iwo_ + —Hjy0, 47c

dt R

where w = E13/h.

Problem 10.8. Show that o (¢), 04 (¢), and o_(¢) are the expectation values of
the operators

&, = |[1)(1] — 12){2| (10.482)
64 = |1)(2] (10.48b)
6_ = 12)(1] (10.48¢)

For example, o, (t) = Tr(0(¢)6>), etc.

In terms of
oy =04 +o0_; oy =—i(oy —0_) (10.49)

these evolution equations take the forms

doy i
E = W0y + ﬁ(le — Hz])O'Z (10503)
Dy _ oy — Lty + Hoy)o (10.50b)
dt h
i = —i(le — Ha1)ox + l(le + Hy1)o (10.50¢)
dt h h 7

Equations (10.47) or (10.50) do not have a mathematical or numerical advantage
over Eqgs (10.43), however, they show an interesting analogy with another physical
system, a spin % particle in a magnetic field. This is shown in Appendix 10A. A more
important observation is that as they stand, Eqs (10.43) and their equivalents (10.47)
and (10.50) do not contain information that was not available in the regular time-
dependent Schrodinger equation whose solution for this problem was discussed in
Section 2.2. The real advantage of the Liouville equation appears in the description
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of processes in which the time evolution of the density matrix cannot be associated
with that of wavefunctions. Such cases are discussed below.

10.3 Reduced descriptions

Nothing is less real than realism . .. Details are confusing. It is only by selection, by elimination, by
emphasis, that we get at the real meaning of things. (Georgia O’Keeffe)

In Chapter 7 (see in particular Section 7.2) we have motivated the use of reduced
descriptions of dynamical processes, where we focus on the dynamics of the sub-
system of interest under the influence of its environment. This leads to reduced
descriptions of dynamical processes whose stochastic nature stems from the incom-
plete knowledge of the state of the bath. The essence of a reduction process is
exemplified by the relationship

P(x)) = /dsz(xl,xz) (10.51)

between the joint probability distribution for two variables x; and x, and the prob-
ability distribution of the variable x; alone, irrespective of the value of x;. Extensive
use of such reduction procedures was done in Section 5.3 in conjunction with the
theory of classical liquids. Obviously, the same concept and the same need exist
also in quantum mechanics, and the density operator, the quantum analog of the
classical phase space distribution function is the natural starting point for such con-
siderations. In what follows we discuss such reduction procedures in the quantum
mechanical framework.

10.3.1 General considerations

Let S be the quantum system of interest and let B be the surrounding bath, also a
quantum system. The Hamiltonian is

H=Hs+Hg + Hsg = Hy+ V (10.52)

where 7/ = Hsg will denote here the system—bath interaction. Let {|s)} and {|b)}
be the (assumed orthonormal) sets of eigenstates of Hg and Hg, respectively. Then
the density operator p of the overall system—bath super-system may be written in
the representation defined by the product states |sb) = |s)|b) as

p= Z Z Psb.s' |sB) (s'D|
s,b s 053

Psb,s'b! = (Sb|,(3 |S/b,>
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A reduced description of the subsystem S alone will provide a density operator

&= ogls)s
s,8

Og,s' = (S|6|S/>

(10.54)

in the system sub-space. Such a density operator has to have the property that the

average of any system operatorA Z s Ag g |8)(s'] is given by

(4) = Trg[64]

The same average can be taken in the overall system

(A) = Trs+B[,6;1] = Z sprAlsb ZZ (sb|p|s'b) (s 'b'|A|sb)
sb sb s'b

However, A, being an operator on the system only satisfies (s'5’ |21 |sb) =

Equation (10.56) therefore implies

=D D (sblpls'b)(s'|Als) = Trs[(Trsp)A]

Comparing (10.57) with (10.55) we conclude
o= TI‘B,5

Equation (10.58) is the quantum mechanical analog of Eq. (10.51).

(10.55)

(10.56)

As,s/ 5b,b/ .

(10.57)

(10.58)

Problem 10.9. A system that comprises a two-level sub-system and a bath is found
in a pure state, characterized by finite probabilities to exist in states 1 and 2 of the
two-level subsystem where each of them is associated with a different bath state,
b1 and by, respectively. Show that the corresponding reduced density matrix of
the 2-level subsystem does not describe a pure state but a statistical mixture.
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Solution: In the basis of direct products |j,b) = |j)|b) of eigenstates of the
isolated 2-level subsystem and the bath, the given pure state is = C|1, b1) +
(112, by), so that the probabilities that the subsystem is in states |1) or |2) are
|C1|? and |C5|? respectively. The corresponding density operator is

p = |C11211,b1)(1,b1| + |Ca[?12,52) (2, by | + C1 C311,b1)(2, b
+ CF G212, b2) (1, by |

The reduced density matrix of the subsystem alone is (using (b1 |b2) = 0)

= Trpp = (b11p|b1) + (b2|plb2) = |C1*[1)(1] + |C21?12) 2]

Q>

which obviously describes a mixed state.

Problem 10.10. Show that Eq. (10.58) is satisfied for p and 6 defined by
Eqgs (10.53) and (10.54) provided that

Os,s' = Z Psb,s'b (10.59)
b

Note that the same results apply to time-dependent density operators, that is,
Eq. (10.59) holds for the corresponding oy (f) and pgp 5 (f), whether their time
dependence is intrinsic as in Eq. (10.16) or stems from external perturbations.
Using this reduction operation we may obtain interesting relationships by taking
traces over bath states of the equations of motion (10.15) and (10.21). Consider
for example the Liouville equatlon in the Schrodinger representation, Eq. (10 15).
(Note: below, an operator A in the interaction representation is denoted Ay while

in the Schrodinger representation it carries no label. Labels S and B denote system
and bath.)

R i i A i~
L = _Z[A,pl=—=[Hs, pl — —[Hg, p1 — =V, p 10.6
7 h[ , O] h[ S, P] h[ B, O] h[V,p] (10.60)

Taking Trg of both sides we note that Trg[Hs, ol = [Hs, Trgp] = [Hs, 5] while
Tre([HB, A1) = Y_;, [Ep, o] = 0. This leads to

do

i i .
= = —[Hs,6]— - 5 .
7 h[ S,0] hTrB([V,,O]) (10.61)
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Next consider the same time evolution in the interaction representation. For the
overall system we have (cf. Eq. (10.21))

din _

P
= —5[Iﬁ(t), p1(1)] (10.62)
where o o
p1(t) = e'/MH (1)~ i/ MHot (10.63a)
Pi(t) = /WA re=/MHot (10.63b)
Defining, in analogy to (10.58)
61(t) = Trgpi(t) (10.64)
it follows from (10.63a) that
61(t) = e(i/mﬁlsz&(t)e—(i/mﬁsr _ e(i/mﬁlsr(TrB ﬁ(t))e—(i/h)ﬁsl (10.65)

Problem 10.11. (1) Show that (10.65) follows from (10.63a). (2) Use Eqs (10.65)
and (10.61) together with the definitions (10.63) to prove the following identity

doy(t j A "
‘Zf ) _ —%TYB([VI(I),PIU)]) (10.66)

Proof of (10.66): Take the time derivative of (10.65) to get

PO _ L o) 40 O it (10,67

then use Eq. (10.61) to find thAat the second term on the right in (10.67) is

—(i/W)[Hs, 61(1)] — (i/R)e /MU Trg ([, p])e~@/MHst  Equation (10.67) can

therefore be written as

déi(t) _
e

ig P
_ ﬁe(l/h)HstTrB([V, ple (i/h)Hst

= — Ly et pe=Gimitsty Ly (G/mB [ 51p=G/m oty
h ’ h ’
(10.68)
which, using (10.63) gives (10.66).

Our goal is to describe the dynamics of our subsystem by constructing an
equation of motion for 6. This equation should show the influence of coupling
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to the thermal reservoir, however, we desire that our dynamical description will be
self contained in the sense that elements of the overall density operator p will not
explicitly appear in it. Equation (10.66) is obviously not yet of such a form, but
will be used as a starting point for our later discussion (see Section 10.4.3).

10.3.2 A simple example—the quantum mechanical basis for macroscopic rate
equations

Consider two coupled multilevel systems L and R, characterized by their spectrum of
eigenvectors and eigenvalues. The Hamiltonian without the intersystem coupling is

Hy = H; + Hg (10.69)
Hy =3 "EO();  Hrp=)_ Edlr)(r (10.70)
/ r

We assume that ¥/, the operator that couples systems L and R to each other, mixes
only / and r states, that is, V; = V,.,» = 0. We are interested in the transition
between these two subsystems, induced by V. We assume that: (1) the coupling
V is weak coupling in a sense explained below, and (2) the relaxation process
that brings each subsystem by itself (in the absence of the other) into thermal
equilibrium is much faster that the transition induced by V between them. Note
that assumption (2), which implies a separation of timescales between the L = R
transition and the thermal relaxation within the L and R subsystems, is consistent
with assumption (1).

In the absence of ¥/ the subsystems reach their own thermal equilibrium so that
their density matrices are diagonal, with elements given by

e‘ﬁE

_— k=1Lr, K=LR (10.71
Tr(e—PHk) g ( )

Pk = Pr =fk(Ev);  fx(E) =

When 7 = 0 transitions between L and R can take place, and their populations
evolve in time. Defining the total L and R populations by Pg(t) = >, Pi(?),
our goal is to characterize the kinetics of the L = R process. This is a reduced
description because we are not interested in the dynamics of individual level |/)
and |r), only in the overall dynamics associated with transitions between the L and
R “species.” Note that “reduction” can be done on different levels, and the present
focus is on P; and Pg and the transitions between them. This reduction is not done
by limiting attention to a small physical subsystem, but by focusing on a subset of
density-matrix elements or, rather, their combinations.
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We start from the Liouville equation (10.29) written in the basis of the |/) and
|r) states,

d pr i i
’ =—FEp /5 — = V % " /—V// ’ "), k’k/’k//:l,r
" Bk P — 5 ;( k" P K K Pk k")

(10.72)

where Ey p» = Ey — Ey, and write it separately for the diagonal and non-diagonal

elements of p. Recalling that 14 couples only between states of different subsystems
we get

dpiy  dP;

i 2
= N Wt = Veapi) = —Im S Vo, (1073
2 7 . Xr:( 1y Prl 1PLr) - er: 1P1, ( )

(and a similar equation with [ <> r)

dp; I !
A ——E1,.p1, — ﬁ(Vl,rpr,r = Vippo1n) + |:

non-diagonal p elements

(10.74)
In what follows we will disregard the terms containing non-diagonal elements of
4/ multiplying elements of ¥ on the right-hand side of (10.74). The rationale for
this approximation is that provided assumptions (1) and (2) above are valid, p
remains close to the diagonal form obtained when V= 0; with non-diagonal terms
of order V.

Below we will use the timescale separation between the (fast) thermal relaxation
within the L and R subsystems and the (slow) transition between them in one
additional way: We will assume that relative equilibrium within each subsystem is
maintained, that is,

V' x terms containing
dt h

Pi(t) = PL()f1(Ep)
P, (t) = PR(OfR(E))

(10.75)

Assume now that at the distant past, ¢t — —oo, the two systems L and R were
uncoupled from each other and at their internal thermal equilibrium states (10.71).
This also implies that p,;(f = —o0) = 0. At that point in the distant past the

intersystem coupling V was switched on. Propagation according to (10.74) yields

t
) = =1 ¥y [ dre B P ()~ pio)) (10.76)

—00
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where £, = E; — E,. Upon inserting into (10.73) this leads to

dPl —Z f dtS;(t = )(Pr(7) — Pi(7)) (10.77)

where

E
Sit—1) = Re|V1r|2 —iEL /M=) h2|V,,|2cos( ;,L ) (10.78)

Finally, summing Eq. (10.77) over all / and using (10.75) we get

t t

‘% = / dTKp gt — T)PR(T) — f dtKpr(t — T)PL(T) (10.79)
-0 —00
with
Kir(t) = % D fr(ER) Y Vil cos <%E,,t) (10.80)
r /
and
Kpep(t) = % Xl:fL(E;) Z V;.0|% cos (%El,,t) (10.81)

Problem 10.12. Show that
Krer(t=0) = /1) Y fEDUNID) (10.82)
(and a similar relation in which » <> [ for Kz . p(# = 0)).
The kinetic Eq. (10.79) is non-Markovian: the rate at which P, () changes
depends on its earlier values, going back over a time period characterized by the

“memory time”’—times above which Kz 1(¢), K« g(¢) ~ 0. To understand the
microscopic origin of this memory consider, for example, the function Kr 1 (¢).
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We assume that the manifold of states {|r)} is a continuum, that is, that the corres-
ponding eigenvalues {£,} span a continuous energy range. Let £, be the center of
this range, then

1 i
> Wil cos (ﬁEz,rz) =Re f dEp(Er)|Vi]* exp (ﬁEz,rt)
p

o0

=Re{e("/h><Ef—E"°>’ f dE-p(E)| Vil
—00
X exp (—%(E, — Ero)t) } (10.83)

Provided that p(E,)] Vl,r|2 is a relatively smooth function of E,, the Fourier trans-
form in (10.83) decays to zero on the timescale AWy ! where Wy is the spectral
width of the manifold {£,}. A similar argument holds for K7 . g(¢), which decays to
zero on a timescale AW, ! If these timescales are much smaller than the character-
istic L &2 R transition time, that is, if the spectral widths of the L and R manifolds
are large relative to the inverse reaction rate (multiplied by /#) we can replace Pr(7)
and Py (7) in (10.79) by Pr(¢) and P (t), respectively, to get

dP
d—tL — kprPR — kr1PL (10.84)
where
o0 o0
kper = /dTKReL(T)Q kp—gr= /dTKu—R(T) (10.85)
0 0

The approximation that leads to from Eq. (10.79) to (10.84), which relies on the large
spectral width and the smooth spectral functions of the state manifolds involved, is
sometimes referred to as the wide band approximation. Similar arguments were used
in Section 9.1 in treating the decay of a single state coupled to a continuous manifold
of states, in order to obtain a constant decay rate given by the golden rule formula,
Eq. (9.25). Also in the present case, under the approximations invoked above, the
rates (10.85) can be written as thermally averaged golden-rule expressions (see
Problem 10.13 below).
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Problem 10.13. Show that

o

krer = /-dTKReL(T) = ZfL(E[)k{r}<_1 (10.86)
0 /

where ki = Qm/h) Y, |V;,,|28 (E; — E;) has the form of a simple golden-
rule type rate to go from state / into a continuous manifold {r}. Therefore kp 1
is just the thermal average of this rate over the thermal distribution of / states.
k1 g may be interpreted in an equivalent way.

Equations (10.79)—(10.85) provide the basis for many macroscopic rate theories,
for example, the kinetic theory of chemical reaction rates. Obviously it was formu-
lated above for a very simple situation that in the language of chemical reaction
rates corresponds to unimolecular inter-conversion. Still, the concepts that were
introduced are general, and can be used in more complex situations. We have relied
on two key ideas: First, the separation of timescales between the (small) transition
rate under discussion and the (fast) thermal relaxation rate has made it possible to
focus on the transition between two subsystems defined by manifolds of energy
states, and avoid the need to address individual transitions between all microscopic
levels. The use of the density matrix formalism was critical at this stage, as it has
made it possible to consider separately the diagonal and non-diagonal elements of
the density matrix and to invoke the consequence of the timescale separation dis-
cussed above with regard to their relative sizes. This leads to Eq. (10.79). Second,
we have used arguments similar to those encountered in our discussion of the decay
of'a level coupled to a broad continuum in order to go over to the Markovian limit,
Eq. (10.84). These arguments again rely on timescale separation, now between the
(relatively short) time, W !, associated with the spectral structure of the continu-
ous level manifolds that affect irreversible decay, and the (relatively long) time that
characterizes the process of interest.

The above derivation has relied in an essential way on the smallness of the non-
diagonal elements of the density matrix in the energy representation that was chosen
in accord with our physical picture of the system. Without explicitly stating the fact,
we have assumed that dephasing, that is, the damping of coherences reflected in
the non-diagonal density matrix elements, is fast. In what follows we explore more
general applications of the density matrix formalism, where the existence of the
thermal environment and the coupling of system of interest to this environment are
considered explicitly. This will make it possible address directly population and
phase relaxation and the dependence of their rates on the physical characteristics
of the system.
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10.4 Time evolution equations for reduced density operators:
The quantum master equation

Let us state our goal again. The system of interest is in contact with its thermal
environment. This environment is interesting to us only as much as it affects
the dynamics of our system. We want to derive closed equations of motion for the
system, where “closed” implies that only relevant variables, those belonging to the
system’s subspace, appear explicitly. The density matrix formalism provides a con-
venient quantum mechanical framework for this task, where we seek an equation of
motion for & = Trgp, the so called quantum master equation. An analogous meth-
odology that starts from the classical distribution function £'(r", p¥; ) is equally
useful in classical mechanics, however, with the exception of deriving a classical
Langevin equation for a system interacting with a harmonic bath (Section 8.2.5), the
reduced equations of motion advanced in Chapter 8§ were constructed phenomen-
ologically. The derivation of equation (10.84) can be seen as a microscopic basis
for the phenomenological master equations used in Section 8.3. Now we aim for
a more general microscopic derivation which, as we will see, not only provides
the foundation for such reduced descriptions, but can also identify new dynamical
issues not easily come by in a phenomenological approach. Projection operators,
operators that project onto the subspace of interest, are very useful for carrying out
this task.

10.4.1 Using projection operators

We have already encountered the projection operator formalism in Appendix 9A,
where an application to the simplest system—bath problem—a single level interact-
ing with a continuum, was demonstrated. This formalism is general can be applied
in different ways and flavors. In general, a projection operator (or projector) Pis
defined with respect to a certain sub-space whose choice is dictated by the physical
problem. By definition it should satisfy the relationship pr=p (operators that
satisfy this relationship are called idempotent), but other than that can be chosen
to suit our physical intuition or mathematical approach. For problems involving a
system interacting with its equilibrium thermal environment a particularly conveni-
ent choice is the thermal projector: An operator that projects the total system—bath
density operator on a product of the system’s reduced density operator and the

equilibrium density operator of the bath, ﬁe(g)

Pp=pDTp = piDs (10.87)

Since Trp ), ,oeq — 1 P is indeed 1dempotent P2 =P.The complementary projector
Q is defined simply by Q =1-
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Problem 10.14. Using the definitions (10.63a) and (10.58) show that

Ppi(t) = pig)61(t) (10.88)

The projection operator P is chosen according to our stated need: We want an
equation of motion that will describe the time evolution of a system in contact with
a thermally equilibrated bath. P of Eq. (10.87) is the density operator of just this
system, and its dynamics is determined by the time evolution of the system’s density
operator 6. Finding an equation of motion for this evolution is our next task.

10.4.2 The Nakajima—Zwanzig equation

It is actually simple to find a formal time evolution equation “in P space.” This
formal simplicity stems from the fact that the fundamental equations of quantum
dynamics, the time-dependent Schrodinger equation or the Liouville equation, are
linear. Starting from the quantum Liouville equation (10.8) for the overall system—
system and bath,

d [ A “
A0 = —%[H,mt)] = —iLp();  L=hTl[A) (10.89)

we want to find an equation of motion for the density matrix of a chosen subsystem.
Let P be a projector on this relevant part of the overall system and let 0 =1 — P.
Then (10.89) trivially leads to

A

d n A A A
EP/; = —iPLp = —iPLPp —iPLOp (10.90)
d > A e A e A e A
EQ,O = —iQLp = —iQLPp —iQLOP (10.91)
These equations look complicated, however, in form (as opposed to in physical
contents) they are very simple. We need to remember that in any representatlon
that uses a discrete basis set p is a vector and £ is a matrix. The projectors P and Q

are also matrices that project on parts of the vector space (see Appendix 9A). For
example, in the simplest situation

. .. (0 NPV
Pp = (8P> ;. 0p= <pQ> ;. p=Pp+0p= (g‘;) (10.92)

where pp is just that part of p that belongs to the P space, etc. Similarly

s (Lpp OY . ~an (0 Lpo
P[,P—( 0 0), PLO = (O 0 ),etc. (10.93)
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where we should keep in mind that Lpg is not necessarily a square matrix because

the two complementary subspaces defined by P and Q are not usually of equal
dimensions. Writing Eq. (10.89) in the form

d (pp . (Lpp EPQ) <,0P
el S 10.94
dt (PQ> l <EQP Loo ) \po (10.942)

Equations (10.90) and (10.91) are seen to be just the equivalent set of equations
for pp and pp. One word of caution is needed in the face of possible confusion:
To avoid too many notations it has become customary to use Pp also to denote pp,
PLP also to denote Lpp, etc., and to let the reader decide from the context what
these structures mean. With this convention Eq. (10.94a) is written in the form

d fal ~ fay fay oy 2, fal ~
@ (ff‘i) — i (ff“f gcg) (lf‘i) (10.94b)
dr \0p ock 0co)\0p
Indeed, Eqgs (10.90) and (10.91) are written in this form.
We proceed by integrating Eq. (10.91) and inserting the result into (10.90).
Again the procedure is simple in form. If Pp = x and Qp = y were two scalar

variables and all other terms were scalar coefficients, this would be a set of two
coupled first order differential equations

d
Ex = Ax + By (10.95)
d
Ey =Cx+ Dy (10.96)

and we could proceed by solving (10.96) to get (as can be verified by taking the
time derivative)

t
y(t) = P y(19) + / dreP=9 Cx(1) (10.97)
fo
and inserting into (10.95) to get

t

d
x=Ax+B / dreP=0 Cx (1) + BP0y (1) (10.98)

fo

We will be doing exactly the same thing with Egs. (10.90) and (10.91). Integration
of (10.91) yields

t
Op(1) = e L= (1) — i / dre 0L LPp(r) (10.99)

fo
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(this can again be verified by taking time derivative) and inserting this into (10.90)
leads to

t
d ~ A . P N T P
b7 p(t) = —iPLPp(t) — / dtPLe PP =D LPH(T) — iPLe " CEI=0 0 b(1)

fo

(10.100)

The identity (10.100) is the Nakajima—Zwanzig equation. It describes the time
evolution of the “relevant part” f’,é(t) of the density operator. This time evolution
is determined by the three terms on the right. Let us try to understand their physical
contents. In what follows we refer to the relevant and irrelevant parts of the overall
system as “system” and “bath” respectively.

The first term, —if’ﬁf’,é (#) describes the time evolution that would be observed
if the system was uncoupled from the bath throughout the process (i.e. if Q£13 =
IA’[,Q = 0). The second term is the additional contribution to the time evolution of
the system that results from its coupling to the bath. This contribution appears as a
memory term that depends on the past history, P/ (z), of the system. Consider the
integrand in this term, written in the form'

PLO x e 10L0=0) « Orp « Pp(r
o 3 0 p(1)
4 2 1

It shows the relevant (system) part of the density operator at time 7 (1) coupled
to the bath (2), propagated in the bath subspace from time t to time ¢ (3) and
affecting again the system via the system-bath coupling (4). This is a mathematical
expression of what we often refer to as a reaction field effect: The system at some
time 7 appears to act on itself at some later time ¢, and the origin of this action is
the reaction of the system at time ¢ to the effect made by the same system on the
bath at some earlier time 7.

The last term on the right-hand side of Eq. (10.100) also has a clear physical
interpretation: This is a contribution to force exerted on the system at time ¢, associ-
ated with the initial ( = #) correlations between the system and the bath embedded
in the term Q 0(ty). There are many situations where this contribution to the relevant
time evolution can be disregarded, at least at long time, and it is identically zero
if Q,é (to) = 0. The last situation appears when P is the thermal projector (10.87)
if we assume that until time 7o the system and bath were uncoupled with the bath
kept at thermal equilibrium.

! Note that exp(OLONOp = exp(OLHNOP.
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We end this discussion with two comments. First, we note that the Nakajima—
Zwanzig equation (10.100) is exact; no approximations whatever were made in
its derivation. Second, this identity can be used in many ways, depending on the
choice of the projection operator P. The thermal projector (10.87) is a physically
motivated choice. In what follows we present a detailed derivation of the quantum
master equation using this projector and following steps similar to those taken
above, however, we will sacrifice generality in order to get practical usable results.

10.4.3 Derivation of the quantum master equation using the thermal projector

Practical solutions of dynamical problems are almost always perturbative. We are
interested in the effect of the thermal environment on the dynamical behavior of a
given system, so a natural viewpoint is to assume that the dynamics of the system
alone is known and to take the system—bath coupling as the perturbation. We have
seen (Section 2.7.3) that time dependent perturbation theory in Hilbert space is most
easily discussed in the framework of the interaction representation. Following this
route? we start from the Liouville equation in this representation (cf. Eq. (10.21))

D1 _ Lo, po (10.101)
i LN .
and, using P+ Q = 1, write the two projected equations
d ~ i A A A A
—Ppr = —=P[V1, (P 0 10.102
i - [V, (P + Q)p1] ( )
d . Pna e A
EQm = _%Q[VI, P+ O)pil (10.103)
Now use Eqs (10.88) and (10.64) in (10.102) to get
21 =~ Luglih, 5601 — LTeal, O]
—oy=—=Tr , o] — =Tr ,
pAd 5 1BLVL peq o1l = 2 1tBl V1, @11
i 2 i AA.
= —;L[Vl,m] - ﬁTrB[VI, Op1l (10.104)
where . A
V="Tra(Vp&) (10.105)
and . o X
V1 = el/WHst pp=(i/MHst (10.106)

We shall see below that the last term on the right in (10.104) is second order
and higher in the system—bath interaction J'. The time evolution obtained by

2 This derivation follows that of V. May and O. Kiihn, Charge and Energy Transfer Dynamics in
Molecular Systems (Wiley-VCH, Berlin, 2000).
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disregarding it
LI AP (10.107)
— =——[M,0 .
a — n "
corresponds to a modified system Hamiltonian, where Hg is replaced by Hs+ V.
Indeed, the equivalent equation in the Schrodinger representation is
9% s+ 7,61 (10.108)
— = ,0 .
dat — A
The operator ¥ has a very simple interpretation: it is a mean potential that corrects
the system Hamiltonian for the average effect of the bath. Such corrections are very
important, for example, in determining solvent shifts of spectral lines. Such shifts
result from the fact that the average solvent interaction often influences differently
the energies of the ground and excited states of a solvent molecule. At the same
time it is clear that such average interactions can only affect the system eigenstates
and energy levels, but cannot cause relaxation. We see that relaxation phenomena
must be associated with the last term of (10.104) that was neglected in (10.107).

Moreover, when addressing relaxation, we will often disregard the V term: This
amounts to including it in Hg thus working with a renormalized system Hamiltonian
that includes the energy shifts associated with the average effect of the solvent.

Problem 10.15. Show that Trg[P1, 5£61] = [V1,61] where ¥ is defined by
(10.105) and (10.106).

Consider now this last term, (i/ R Trg[ /1, Qﬁl], in (10.104). It contains Q,ﬁl
whose time evolution is given by Eq. (10.103). We rewrite this equation in the form

da.  diae aman s o
5201 =70V peq 01] — 5 O1V1, Q1] (10.109)
5 and formally integrate it to get
. ! . !
Opn(t) = Qpi(0) — % / dr' OLN(t), pé1(1)] - % / dt' QI (t), Qi (1)
0 0
(10.110)

This equation can be iterated by inserting this expression for Q 01(¢) into the integrand
in the second term on the right, and a perturbative expansion in increasing powers
of 7 can be obtained by continuing this procedure repeatedly. This is the analog
of the perturbative expansion of the time-dependent wavefunction, Eq. (2.76). The
resulting infinite series for Q p1(t) canbe inserted into Eq. (10.104) to yield a formally
exact equation in P-space. Of course this equation contains the effect of the system—
thermal bath coupling and is generally very difficult to simplify and to solve.
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Fortunately a substantial amount of relevant physics can be extracted by consid-
ering the low-order terms in this expansion. The lowest order is the mean potential
approximation (10.107). The next order is obtained by neglecting the last term on
the right-hand side of (10.110) and inserting the remaining expression for Q,@I into
Eq. (10.104). The resulting approximate time evolution equation for the system
density operator ¢ is what is usually referred to as the quantum master equation.

Problem 10.16. Starting from Eq. (10.66), show that rgplacing o1(2) on the right-
hand side by p1(7) = 61(¢) ﬁI(B) (t), where ,61(3) (1) = €Bt/h 5B) () e~iHBI/N i the

density operator of the thermal reservoir and 61(7) = eifist/h (t)e"flst/ " then
taking Trg of both sides, leads to

dor(t i A n i 2 A
aft( ) _ —E[TrB(VI(t)pI(B)(t)),ol(t)] = —2n®,601  (10.111)
where f/(t) = Trp(Vp® @) and I:/I(t) = el h)ﬁstf/(t)e_(i/ 2

Equation (10.111) has the same form as Eq. (10.107), however, the definition
(10.105) is replaced by a more general definition involving the time-dependent
density operator of the bath.

10.4.4 The quantum master equation in the interaction representation

As just stated, we henceforth use the term “quantum master equation” (QME) to
denote the approximate time evolution equation for the system’s density matrix &
obtained in second order in the system—bath coupling V. To obtain this equation
we start from Eq. (10.104) and use a simplified version of Eq. (10.110)

t
0pi() = —% / di' QI (1), pg 61011 (10.112)
0

in which we have truncated the right-hand side after the term that is lowest order in
¥ and also disregarded the initial correlation term Q 01(0). The latter approximation
amounts to assuming that pr(0) is in P space, that is, that initially the system and
the bath are uncorrelated and that the bath is in thermal equilibrium, or at least to
assuming that the effect of initial correlations decays fast relative to the timescale
at which the system is observed. Inserting (10.112) into (10.104) leads to

t

d . ia 1 s oA

Lor=—30161- 5 / dtTrs[V1(0), QLA (D). g e1(01] (10.113)
0
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We note in passing that had we included the bath—average interaction (10.105)
as part of the system’s Hamiltonian, then the first term on the right of (10.113)
would not appear. This is indeed the recommended practice for system-thermal
bath interactions, however, we keep this term explicitly in (10.113) and below
because, as will be seen, an equivalent time-dependent term plays an important
role in describing the interaction of such system with an external electromagnetic
field.
Next consider the integrand in (10.113)

Trg[P1(), OL71(1), 5 61(0)1]
= Tra (M1 Q(M1(0) s 61(1) — OB 1(0)71(2))
—0(N(0)pL61(x) V(1) + QAL 61(x) (1)) (1)) (10.114)

Further simplification is achieved if we assume that the interaction Visa product
of system and bath operators, that is

y=pSpB (10.115)

so that ¥ = VSVB and 11(t) = 1715 1713; f/IS — ol/MHstPS o—(i/WHst, fle =
e(i/MHpt B o—(/MHs! Tq see how the simplification works consider for example
the second term on the right of Eq. (10.114)

Trp{— V()0 61(x) Vi(1)))
= Tra{—V1()p% 61(1) V1(x)} — Tra{—Vi(OP ({3 61(1) Vi(x))}  (10.116)

Using (10.115) and the cyclic property of the trace, the first term on the right of
(10.116) takes the form

Trg{—V1()AE 61(0)V1(1)} = =Tre (VP @ VP 0)p8) - TP (1) VP (1)
=—VB@VBw) - V3wa(0)VE(x)  (10.117)
and, using (10.87), the second is
Tra{—T1(OP (5 61(0) V()
= —Tral PO 0D Tra(pL VP (1)61(1) V(1))

= —Trg (P SN Tra(pLD VP @)V (0)61(1) VP (1)

= —(TB2 361078 (0) (10.118)
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where

7B = (7B = Tra (P (1)) (10.119)

is time independent. Together, Egs (10.116)—(10.118) yield
Tra{(— 1 Q(AE 61(1) V(1)) = —=C(x — P& VE(r)  (10.120)

where

Ct—1)= (VEOVE®) — (7B = VB 1)sVE (0))
(10.121)

A -

i

is a bath correlation function. Time correlation functions (Chapter 6) involving
bath operators are seen to emerge naturally in our development. This is the way by
which information about the bath appears in the reduced description of our system.

Problem 10.17. Repeat the procedure used above to get Eq. (10.120), now using
instead of Eq. (10.115) a sum of products of systems and bath operators

=Y e (10.122)
n
Show that the result equivalent to Eq. (10.120) is in this case

Tra{— V() Q(AL 61() i(x)} = = D Cum(t — OV, (061(2) V5 (T)

n,m

(10.123)

where A A
Com(1) = SV V5,(0)) (10.124)

and

f/li _ e(i/h)ﬁszlynse—(i/n)ﬁlst; 1713 _ e(i/h)fIBtI}’]lSe—(i/h)Ilet (10.125)
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Repeating the procedure that led to (10.120) for all terms in Eq. (10.114) and
collecting the resulting expression leads to the final result

d(;’]_ i Ii/ .
W __E[ 1, 01]
1 t
—+3 dt{C(t— D)V @), V3 (0)61(0)] = C*(t — DIV (1), 61() VS ()]}
0
(10.126)

where the first term in the integrand results from the first and third terms in
Eq. (10.114), while the second term is obtained from the second and forth terms in
that equation. The equivalent result for the more general case (10.22) is
doy i~
= — —[, 01l

dr h

t
1 . .
=0 f dT(Cpn(t = DV, (1), Vi (0)61(0)]
n,m 0

— Cp(t = DS, (0, 61(D) Vi (D)D) (10.127)
where R A
Con(t) = (8Vi, (DSV(0)) = Cp (—1) (10.128)

The second equality results from the general identity (6.64)
Cup(t) = Cp (—1); where Cy(1) = (4(1)B(0)) (10.129)

for any two Hermitian bath operators A and B with X (1) = st/ hx e~illpt/h
(X =4,B).
10.4.5 The quantum master equation in the Schrodinger representation

Equations (10.126) and (10.127) represent the quantum master equation in the
interaction representation. We now transform it to the Schrédinger picture using

& (1) = e~ WIMAst g (1) i/Mst (10.130)
which yields

o= —%[ﬁsﬁ] + e_(i/h)gst—d(i}t([) el/mAst (10.131)
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Using (10.126) we find

t

om0 i _ 1 sy L / dr(C(t )
dt h
0

% [f,s —(i/mHg(1— r)VSO_(t)e(z/h)I:IS(t—t)]

—C*t—-1)[V5,e —(i/WHs (1— D6 (1) Se (i/h)Hs (t— o))
(10.132)

where all the operators on the right-hand side are in the Schrodinger representation.
Using this in (10.131) and making the transformation ¢t — ¢ — t finally leads to

t

do(t —i A 2 1 .

O;{f) El[ V 6_] hzfdf{c(f)[Vs —(l/h)HSTVSO_(t t)e(l/ﬁ)HS‘[]
0

_CH)[PS, e WMAsTS (4 1) PSelimitstyy (10.133)

Problem 10.18. Show that the equivalent expression in the more general case
(10.113) is

t
do(t) —i = 2 1
= [H. __2
7 h[ s+V,o] 7 mn/dr

X {Cmn(f)[VS _(l/h)HSTVSU(t T)e(i/h)f{sf]

(@[PS, e~ MASTG (¢ — 7 PSeiMAsT)y (10.134)

10.4.6 A pause for reflection

What did we achieve so far? We have an equation, (10.133) or (10.134), for the
time evolution of the system’s density operator. All terms in this equation are
strictly defined in the system sub-space; the effect of the bath enters through cor-
relation functions of bath operators that appear in the system—bath interaction.
These correlation functions are properties of the unperturbed equilibrium bath.
Another manifestation of the reduced nature of this equation is the appearance of
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memory: The time evolution of & at time 7 is not determined just by & () but by
the past history of 6. As explained in Sections 7.4.2 and 8.2.6, and in analogy to
Eqgs (10.95)—(10.98), this non-local temporal character (or non-Markovian beha-
vior) stems from the fact that the system evolves at time ¢ in response to the state of
the bath at that time and the latter is determined by the history of the system—bath
interaction. Equation (10.133) (or (10.134)) results from a low order expansion
of the system—bath interaction, so its validity is expected to be limited to weak
system—bath coupling. The neglect of initial system—bath correlations, expressed
in dropping the term Q,@I (0) in Eq. (10.110) constitutes another approximation, or
rather a restriction on the choice of the initial nonequilibrium state. There is a large
class of problems, for example the study of nonequilibrium steady states, for which
this approximation is of no consequence.

10.4.7 System-states representation

Next we express Eq. (10.133) in the Hs representation, that is, the representa-
tion defined by the eigenstates of the system Hamiltonian Hg. Using relationships
such as

[As,61ap = (Eq — Ep)0ap (10.135)
[f/a 6]ab = Z (I;vaco'cb — Ogc I_/cb) (10-136)
C

[f/s, e*(i/ﬁ)[:]s‘[ IA/S&(t _ _L,)e(i/h)ﬁsr]ab

= S VS S ot — TP EET SN Y8 (1 — S el Ea e
cd

ac’ ¢
cd

(10.137)

with Vasb = <a|173|b) and a, b stand for eigenstates of Hs. We also define the
coupling correlation function

1
Mapa(t) = 25 COV gV ey (10.138)

which, using (10.129), is easily shown to satisfy
My (0) = My ge(—1) = Mae pa(—1) (10.139)

The second equality, which is trivial for this case, was added to show the correspond-
ence to the more general case, Eq. (10.144) below. Using Egs (10.135)—(10.138),
Eq. (10.133) is expressed in the Hg representation as
dogp
dt

) I - - doyp
= —iwaoa = 7 Y VacOeh = 0ucVep) + < o ) (10.140)
B
c
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where w,p, = (E; — Ep)/h. The first two terms on the right-hand side constitute
the system-states representation of the mean potential approximation, Eq. (10.108),
and the last term is

t

d 1 .

( Z;lb> == Z /df{Mac,cd(f)elwbctadb(f —7) +Mcd,db(—f)€lwd“toac(t -1)}
B

C,d 0

t
+ Z:/\dT(]Vldb,ac(‘E)eiwdat +Mdb,ac(_f)eiwbat)oﬁcd(t - 1)
C,d 0
(10.141)

This last term will be seen to contain the physics of thermal relaxation.

Problem 10.19. For the function Ryp.4(w) = fooo dtMab,cd(t)e"“” prove the
identity

o0

Rapcd (@) + R, (@) = f dte" Myp ¢4 (t) (10.142)
—00
Problem 10.20. Show that in the more general case (10.134) we get (10.141) with
1
Mapea® = 25 3 ConOV o'V (10.143)
m,n
that satisfies (using (10.128))
1

My ea® = 25 > Com(—OVer VS = Me pa(—1) (10.144)

m,n

Note that the result (10.141) satisfies the basic requirement of conservation of
probability, that is

d d
ET@} =0 thatis, — Za:aaa =0 (10.145)

at all time. Indeed, it is clearly satisfied by the first two terms (the mean potential
approximation) in (10.140). To show that it is satisfied also by the last (relaxation)
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term put @ = b in (10.141) and sum over a to get

t

Z (d"‘“’> = Z/dr{—M (D) oy, (t — T)
- dt B ac,c a

a,c,d 0

— Mg ga(— 7)€" " 040 (t — T) + Mg ac ()€ 004 (t — T)
+ Migac(—7)e T o0q(t — 1)} (10.146)

It is easy to see by interchanging subscript notations that the first and third terms
on the right of (10.146) cancel each other, as do the second and fourth terms. Other
consistency issues are discussed in Section 10.4.10.

10.4.8 The Markovian limit—the Redfield equation

Simpler and more manageable expressions are obtained in the limit where the
dynamics of the bath is much faster than that of the system. In this limit the func-
tions M (¢) (i.e. the bath correlations functions C(¢) of Eq. (10.121) or C,,(¢) of
Eq. (10.124)) decay to zero as t — oo much faster than any characteristic system
timescale. One may be tempted to apply this limit by substituting t in the elements
omn(t — 7) in Eq. (10.141) by zero and take these terms out of the integral over t,
however this would be wrong because, in addition to their relatively slow physical
time evolution, non-diagonal elements of 6 contain a fast phase factor. Consider
for example the integral in first term on the right-hand side of (10.141),

t
I = / dTMye.ca(T)E P G (t — T) (10.147)
0

In the free system (i.e. without coupling to the reservoir) oz (f) = e~ '“d! g4, (0).
This fast phase oscillation, or its remaining signature in the presence of system—bath
coupling, should not be taken out of the integral. We therefore use the interaction
representation of & (see Eq. (10.65))

oap(t) = e @dlgl () (10.148)

and assume that the relaxation of M, .4(7) to zero as T — oo is fast relative to
the timescale on which oéb changes. We then approximate aéb (t—1)~ aéb () and
take it out of the integral. This yields

t t
I = e_iwdbtaéb(t)/dTMac,cd(T)eiwaTdebf = Udb(t)/drMac,cd(T)eiwdcr
0 0

(10.149)
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In the second equality we have regained the Schrodinger representation of & (¢).
A final approximation, valid for times longer than the relaxation time of M (¢), is
to take the upper limit of the time integral in (10.149) to infinity, leading to

It = Ruc ca(@ac)oap(t) (10.150)

where we denote here and henceforth

o

Rab,cd(a)) = /dTMab,cd(T)eiwr (10.151)
0

Proceeding along similar lines, the integral in the second term on the right of
(10.141) is shown to be

t o0
L= /Aa,":jwca',db(_'L')eiwdataac(Z —T) = 0g4e() / dTMcd,db(_T)eiideT
0 0

o
= 04c (1) / dt (Mg ()€ ) = 0uc (R} 4o (@ed) (10.152)
0

where we have used the symmetry property, Eq. (10.139) or (10.144), of M.
Similarly, the integrals in the third and forth terms are transformed to

! (e ¢])
b= / ATMgpac (D) 004 (t = T) = 0ea(t) | dTMap ae(T)e ™"
0 0
= 0cd()Rabac(®ca) (10.153)

and

! o0
Iy = / dTMgp 4 (=) 00y (t — T) = 0eq(t) | dTMgp ge(—T)e" 4"
0 0
= 0cd (DR pg(@ab) (10.154)
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Combining all terms we get the so called Redfield equation

that was first introduced by Redfield in the nuclear magnetic resonance literature.

daab (t) . i - _
di = — lWgpOab — ﬁ XC: (Vacoeh — 0acVep)
=Y Rac.cd(@de)oas(t) + Rig 4o (@ca)Tac (t)
c,d
— [Rab.ac(@ca) + R, pg(@an)10ca(t)) (10.155)

3

To summarize:

1.

The Redfield equation describes the time evolution of the reduced density
matrix of a system coupled to an equilibrium bath. The effect of the bath

enters via the average coupling V' = (Hsg) and the “relaxation operator,” the
last sum on the right of Eq. (10.155). The physical implications of this term
will be discussed below.

Equation (10.155) is written in the basis of eigenstates of the system Hamilto-
nian, Hs. A better description is obtained by working in the basis defined by

the eigenstates of Hs + . In the latter case the energy differences wg;, will
include shifts that result from the average system—bath coupling and second
term on the right of (10.155) (or (10.156a) below) will not appear.

. Equation (10.155) was obtained under three approximations. The first two

are the neglect of initial correlations and the assumption of weak coupling
that was used to approximate Eq. (10.110) by Eq. (10.112). The third is the
assumption of timescale separation between the (fast) bath and the (slow)
system used to get the final Markovian form.

. The “kinetic coefficients” R(w) that appear in the relaxation operator are

given by Fourier-Laplace transforms Rgp cq(w) = fooo drMab,cd(r)ei“’T of
the coupling correlation functions M (¢). These functions are defined by
Eq. (10.138) and satisfy the symmetry property (10.139). In the more general
case where the system—bath coupling is given by (10.122), these functions
are given by Eq. (10.143) with the symmetry property (10.144).

. The dynamics of the bath enters through the bath correlation functions, C(¢) =

(8VB(1)8VB(0)) = C*(—t) or more generally Cp, () = (8VE ()8VE(0)) =
Cr . (—t). These functions are properties of the equilibrium bath only, inde-
pendent of any system it might be coupled to. An important observation is

that even though we have assumed that the bath is fast on the timescale of

. G. Redfield, IBM J. Res. Develop. 1, 19 (1957); Adv. Magn. Reson. 1, 1 (1965).
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the system dynamics, the details of its dynamics do matter, that is, we could
not have simply assumed that C(¢) ~ §(¢). The reason for this is that the bath
dynamics is usually slow relative to phase oscillations (related to the inverse
spacing between energy levels) in the system. Indeed, we will see below that
it is through details of the bath dynamics, expressed though relationships
between Fourier transforms of bath correlation functions by equations like
(6.73), that detailed balance enters in the reduced description of the system
dynamics.

Problem 10.21. Verify that Eq. (10.155) can be rewritten in the form

dop (1) . i _ _
:Z’t = —lWgpOahp — 7_1 ; (Vacoeb — 0acVep) — ;;Kab,cdacd @)
(10.156a)
with
Kabed =864 Y _ Raeec(@ce) + 8ac Y Ry oq(@de)
e e
— [Rap.ac(@ca) + R pg(@ap)] (10.156b)

10.4.9 Implications of the Redfield equation

Next we consider the physical implications of Eq. (10.155). We assume, as dis-
cussed above, that the terms involving ¥ are included with the system Hamiltonian
to produce renormalized energies so that the frequency differences w,; corres-
pond to the spacings between these renormalized levels. This implies that the
second term on the right of Eq. (10.155), the term involving ¥, does not exist.
We also introduce the following notation for the real and imaginary parts of the
super-matrix R:

Rab,cd (w) = l—‘azb,cd () + iDab,cd (w) (10.157)

We will see below that it is the real part of R that dominates the physics of the
relaxation process.

To get a feeling for the physical content of Eq. (10.155) let us consider first
the time evolution of the diagonal elements of 6 in the case where the non-
diagonal elements vanish. In this case Eq. (10.155) (without the term involving )
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becomes

da:ltll‘(t) - Xc: [Rac,ca(®Wac) + RZc,ca (@ac)]0aa(?)

+ Z [Rca,ac (wea) + Rza,ac (wca)loee(t)

=-2 Z LCac,ca(@ac)0aa(t) + 2 Z LCeaac(@ea)oce (1) (10.158)

This is a set of kinetic equations that describe transfer of populations within a group
of levels. The transition rates between any two levels a and ¢ are given by

ko = 2Fca,ac (@ea); keea = 2Fac,ca (@ac) (10-159)

Using Eqgs (10.121), (10.138) and (10.151) we find that these rates are given by
1 o
ket = 351 olE f dte ™ (5VB ()8 VR (0)) (10.160)
—0

Consequently

ka<—c _ ffooo dreiwm‘r <8171B(T)8I71B(0)>
keea [ dreioat (SVB(1)8VB(0))

= ePhwea (10.161)

where we have used Eq. (6.75). Here hw., = E. — E, where E, and E, are eigen-

values of Hs + V. We see that the time evolution obtained within the specified
approximations satisfies detailed balance with respect to these energies. This insures
that the system will reach a Boltzmann distribution at equilibrium.

Problem 10.22. Show that Re(R.q,qc(w)) = (1/2) ffooo AtM g 4c(t)e™®". Use this
with Egs (6.71) and (6.72) to show that the relationship (10.161) remains valid
also in the more general case where M is given by (10.143), that is, when, for
example, kg = ()L Y, Vamyar [0 die™e Cop ().

C

Next, still within our drive to gain physical feeling for the solution of (10.155),
assume that all but one element of o is nonzero, and let this element be non-diagonal.
How does it evolve? Taking o;; = 040,40, everywhere on the right side of
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Eq. (10.155) leads to

dogp )
= 0a0ap - (Z [Rac.ca(@ac) + ch,cb@bc)]) Tab

Cc

+ (Rpb.aa(0) + Ry 1, (0))0ab (10.162)

or, alternatively,

dogp
dt

= —iWqpOap — ZRac,ca (@ac) + ZRZC,cb(wa) Oab
c#a c#b

+ (Rbb,aa 0) + R:a,bb (0) - Raa,aa (O) - RZb,bb (O))Uab (10- 1 63)
Using (10.157) we see that the terms that involve the imaginary part of R just affect
a (small in the weak coupling limit that was already assumed) normalization of the

frequency w,p. The R terms with zero-frequency argument on the right of (10.163)
are all real. Defining

Wabh = Wgp + Z Dac,ca (Wae) + Z Dbc,cb (wpe) (10- 1 64)
c#a c#b

we can rewrite Eq. (10.163) in the form

dogp
dt

= — iWapOah — Z Fac,ca(wac) + Z Fbc,cb(wbc) Oab
c#a c#b

+ (Rbb,aa 0) + Raa,bb 0) — Raa,aa 0) — Rbb,bb 0))oup (10.165)

In addition to the deterministic term —i®,p0,4p, We find on the right-hand side
of Eq. (10.165) two relaxation terms. The first can be rewritten in terms of the
transition rates k& of Eq. (10.159), Uy¢ ca(@ae) = (1/2)keq. Using Eqgs. (10.138)
and (10.151) for the second, we find Rpp 44 (0) + Raa,p6(0) — Raa,aa(0) — Rpp pp(0) =
—h2CO)(VS, — V)2, where Clw) = fo dte’'C(t) and C(0) is real and
positive. We finally get

doyp
dt

= — i@awoas — (1/2) [ Y kecat+ D kecs | oup
c#a c#b

—B2CO)VVE, = Vi) ow (10.166)
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Equation (10.166) shows two mechanisms for the relaxation of non-diagonal ele-
ments of the system density matrix (i.e. coherences). First, population relaxation
out of states a and b with rates k, = ZC# keeqand kp = Zc#b k. p manifests
itself also here, giving rise to the relaxation rate (1/2)(k, + kp). This may be intu-
itively expected as the contribution of population relaxation in states @ and b to
the relaxation of their mutual coherence. For example, in terms of the pure state
amplitudes C, and Cp we have o, = CaC]j‘, cf. Eq. (10.4), and if |Ca|2 ~ ¢ kat
then C, ~ e~(1/Pk!_ This component of the coherence relaxation is sometimes
referred to as “#; process.” The corresponding rate, kl(ab) = (tiab))_l is given by

kP = (1/2) (ky + k) (10.167)
The other coherence relaxation process, with the rate
K = (Y = i 2Oy VS, - V)? (10.168)

is more interesting. To understand the origin of this relaxation we note that the
difference Vasa — Vbsb is related to the fluctuations in the energy spacing between
states a and b that result from the system coupling to its thermal environment.
Indeed, the system—bath coupling that appears in Eqs (10.52) and (10.115) may be
written in the form

V=rSpB=pSpB 4 pSspB (10.169)
where 7B and 8 VB were defined by (10.119) and (10.121), respectively, and we
have included the VS 7B term in a renormalized system Hamiltonian. The remaining
term, VSs I7B, is responsible for the # relaxation discussed above but also induces
fluctuations in the system energy spacings that can be represented by

héwap = (Vo — V5)8VB (10.170)

This is because for any realization of the operator § yB (that satisfies (8 I7B) =0)
Equation (10.170) expresses a corresponding shift in the a—b energy spacing and
because such realizations correspond to the changing instantaneous state of the
thermal environment adjacent to our system. If§ VBis replaced by a stochastic scalar
function »(¢) ({(r(¢#)) = 0) then Adwyp(t) = (Vasa - Vbsb)r(t) represents random
modulations of this energy spacing. Indeed, the equation

dogy/dt = —i(wap + Swap(t))Tap (10.171)

was our starting point in analyzing the lineshape of a randomly modulated oscillator

in Section 7.5.4. Equation (10.168) represents a relaxation process of the same type:

kéab) is a contribution to the relaxation rate of non-diagonal elements of the density
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matrix that results from random modulations of energy spacings that constitute the
phases of these elements. This kz(ab) = (téab))_1 process is sometimes referred to
as “pure dephasing” or “pure decoherence,” or simply “#, relaxation.” The word
“pure” used in the present context implies a contribution to the phase relaxation
that is not associated with population relaxation.

The relaxation terms in the time evolution of non-diagonal elements of the dens-
ity matrix, Eq. (10.166), are thus comprised of population relaxation contributions

(ab)
kl

embedded in rates such as , and pure phase relaxation expressed by rates of the

kéab) type. An important distinction between pure dephasing and population relax-
ation appears in their temperature dependence. At T — 0 thermal relaxation can
move population from higher to lower energy levels of the system but obviously
not in the opposite direction, as implied by the detailed balance relation (10.161).
The T — 0 limit of the population relaxation rate depends on the energy gap,
the bath density of states, and on details of the system—bath coupling. A particular
example will be discussed in Chapter 13. Dephasing rates were seen to reflect the
modulation of levels spacings in the system due to its interaction with the bath.
Such modulations arise by repeated events of energy exchange between the system
and the bath. A bath whose temperature remains zero at all time cannot affect such
an exchange—it can only take energy out (#; relaxation) but not put it back into
the system. This implies that pure dephasing vanishes at 7 — 0, a conclusion
that can be validated by proving that zero frequency transforms C(0)of bath time
correlation functions vanish at 7 = 0.4

10.4.10 Some general issues

The Redfield equation, Eq. (10.155) has resulted from combining a weak system—
bath coupling approximation, a timescale separation assumption, and the energy
state representation. Equivalent time evolution equations valid under similar weak
coupling and timescale separation conditions can be obtained in other representa-
tions. In particular, the position space representation o (r,r’) and the phase space
representation obtained from it by the Wigner transform

o(r,p) = / dr'o(r —r',r 4 r')e¥®Pr /" (10.172)

(h)?

are often encountered in the condensed-phase literature; the expression (10.172)
then serving as a convenient starting point for semiclassical approximations.

* The subject of zero temperature dephasing has some other subtle aspects that are not addressed
here, and to some extent depends on the observable used to determine loss of phase. For more
discussion of this issue see Y. Imry, arXiv:cond-mat/0202044.
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Whatever representation is used, the reduced density operator 6 should satisfy
some basic requirements that can provide important consistency checks. The fact
that Tro(¢) = 1 at all time implies that we should have Trso (¢) = 1, as was indeed
verified in Section 10.4.7. In addition, the reduced density operator 6 should satisfy
some other basic requirements:

1. Like any valid density operator it has to be semi-positive (i.e. no negative
eigenvalues) at all time. This is implied by the fact that these eigenvalues
correspond to state probabilities in the diagonal representation. Indeed, if the
overall density operator p satisfies this requirement it can be shown that so
does 6 = Trgp.

2. Ifthe bath is kept at thermal equilibrium, the system should approach the same
thermal equilibrium at long time. In practical situations we often address this
distribution in the representation defined by the system eigenstates,” in which
case the statement holds rigorously in the limit of zero coupling.® Detailed-
balance relationships such as Eq. (10.161) indeed imply that a Boltzmann
thermal distribution is a stationary (do/dt = 0) solution of the Redfield
equation.

A third requirement is less absolute but still provide a useful consistency check
for models that reduce to simple Brownian motion in the absence of external
potentials: The dissipation should be invariant to translation (e.g. the resulting
friction coefficient should not depend on position). Although it can be validated
only in representations that depend explicitly on the position coordinate, it can be
shown that Redfield-type time evolution described in such (position or phase space)
representations indeed satisfies this requirement under the required conditions.

The main shortcoming of the Redfield time evolution is that it does not neces-
sarily conserve the positivity property. In fact, it has been shown by Lindblad’ that
a linear Markovian time evolution that satisfies this condition has to be of the form

L) NPT p6, V1 + 17,67 10.173
6 = —3l0,61+3 3 (176, V141736 7D (10.173)
J

where { I7j} is a set of system operators associated with the system—bath interaction.
When constructing phenomenological relaxation models one often uses this form
as a way to insure positivity. It can be shown that the general Redfield equation

> Asdiscussed in Sections 10.4.8 and 10.4.9, these eigenstates may be defined in terms of a “system”
Hamiltonian that contains the mean system—bath interaction.

¢ Otherwise the thermal distribution is approached with respect to the exact energies that may be
shifted under this interaction.

7 G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
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is not of this form, and indeed it is possible to find, even for simple systems such
as the damped harmonic oscillator, initial conditions for which positivity of the
Redfield evolution is not satisfied. At the same time, it has been shown,® again for
the damped harmonic oscillator, that the Lindblad equation (10.173) cannot satisfy
together the conditions of translational invariance and detailed balance. It has to
be concluded that no theory can yet yield a fully consistent master equation that
describes thermal relaxation in the weak system—bath coupling. Nevertheless, on
the practical level, Redfield equations and their analogs in different representa-
tions were found very useful for many applications, some of which are discussed
below.

10.5 The two-level system revisited

10.5.1 The two-level system in a thermal environment

Further insight on the implications of the Redfield equation can be obtained by con-
sidering the special case of a two-level system. In the discussion of Section 10.4.10
we have included terms involving ¥, which arise from the average effect of the bath
on the system, in the system Hamiltonian Hs. We will keep similar terms explicitly
in the following discussion. They will be used for modeling the coupling between
the system and time-dependent external forces as encountered for example, in the
semiclassical treatment of a system interacting with a radiation field. The picture
is then as follows: The average system/thermal—bath interaction is included in Hy
so that the eigenstates and eigenvalues of this system Hamiltonian correspond to
the renormalized system that includes the average effect of the thermal bath. At
the same time a deterministic term appears in the Liouville equation in which a
(generally tiArne dependent) system operator F replaces the bath-average thermal
interaction V. £ will later represent the effect of an external electromagnetic field
in the semiclassical level of description (Chapter 3), and for simplicity will be
assumed to have no diagonal terms in the representation defined by the eigen-
states of the thermally renormalized system Hamiltonian. Equation (10.155) then
leads to

doqy

i
L __(F —F
o h( 12021 21012)
— 2ReR 1221 (w12) 011 + 2ReRy1 12(w21) 022

+ (R21,11(0) — R} 5, (0))o12 — (R1222(0) — B3 11(0)o21  (10.174a)

8 G. Lindblad, Rep. Math. Phys. 10, 393 (1976).
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dop . iF ( )
—— = —Ilw12012 — 112022 — 011
dt h

+ (R22,11(0) + R} 5,(0) — R11,11(0) — R5, »,(0)
— Riz1(@12) — Ry 15 (@21)012
+ (Riz,12(@21) + B3 51 (@12))021
+ (RY1 21 (@12) — R35 51 (@12) + Ri2,11(0) — Ry 1;(0)) o1y
+ (Ra2,12(@21) — Rin12(@21) + R31 5 (0) — R1222(0)) 022 (10.174b)

and equations for dop;/dt and doy; /dt obtained from (10.174(a,b)) by interchan-
ging the indices 1 and 2 everywhere. Note that the structure of these equations is
the same as before, except that Fj; has replaced V7;.

Problem 10.23. Using (10.151) and (10.138) show that the coefficients of o7;
and oy in Eq. (10.174a) satisfy

V2
hz

V12
hz

2ReR 21 (w12) = Rc(w12); 2ReRy1,12(w21) = Re(—w12)

where R (w) = [0 dte" C(1).

A useful simplified set of equations can be obtained by invoking an approxim-
ation based on the observation that in Eqs (10.174) there are two kinds of terms
that transform between coherences and populations. The first involves the coupling
F12. The second are terms (last two terms in each of (10.174a) and (10.174b)) that
involve the system—thermal bath interaction. In consistency with our weak thermal
coupling model we will disregard the latter terms, that is, we assume that trans-
itions between coherences and populations are dominated by the interaction with
the external field. For a similar reason we will also drop the term involving o7
on the right-hand side of Eq. (10.174b). Using the notation introduced in (10.159),
(10.167), and (10.168) we then get

do i
ke —;L(F12021 — F21012) — ky 1011 + k12022 (10.175a)
do1z

i
ke —iw12012 — ﬁFlz(Uzz —o11) — kgo12 (10.175b)
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where kq is the dephasing rate

1 ~
ko = kP + 1 = 5 k21 + ki) + R2CO) I = V3y)?
N ) (10.176)
C(0) :/ drC(t)
0

and where, by (10.161),

kot _ pron (10.177)
k12

We have invoked the assumption that the interaction with the thermal environment is
weak to disregard the difference between @15 and wy,. The corresponding equations
for 075 and o5 are again obtained by interchanging 1 < 2.

10.5.2 The optically driven two-level system in a thermal environment—the Bloch
equations

Equations (10.174) and (10.175) have the same mathematical structure as
Eqgs (10.155) except the specification to a two-level system and the replacement of
V by F. As discussed above, it makes sense to keep the F terms explicitly in these
equations only when they depend on time. In what follows we consider one import-
ant problem of this kind, where F@t) — E@) o and £(t) = &y cos wt, as a model
for a two-level system interacting with an incident radiation field. We consider the
special case where the light frequency is near resonance with the two-level system,
that is,

w~wy o N=w-—wy Ko (10.178)

where we have denoted wp1 = (E» — E1)/h > 0 and where 5 is the detuning
frequency.

We are going to make one additional approximation. First make a transformation
to new variables

G12(t) = e "o12(0); 621(t) = o1 (1); 0ji(t) = 0j(t); (j=1,2)
(10.179)
For the free two-level system oy (1) = exp(—iwjx1)0j;(0), so by (10.178) the trans-
formed variables are slow functions of the time, where “slow” is measured against
the timescale “’2_11 ~ w~!. Equations (10.175) and the corresponding equations for
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o7, and o071 become

doi i o -
= %é’o cos(wt)(1pe 621 — 216" ”'612) — kn 1011 + k12022
(10.180a)
do i . o
dtzz - ﬁgo cos(wt)(ua1€' 612 — pae”"'é21) — k1202 + ko 1011
(10.180b)
doip . i » )
= o = pcostne P unon — o) —kidi (10,1800
do ] ) i
;21 =indy — %50 cos(wt)e™ a1 (011 — 022) — keb21 (10.180d)

In Egs (10.180) the terms that depend explicitly on time originate from
cos(wt)eT® = (1/2)(1 + exp(F2iwt)) and oscillate with frequency 2w. The other
rates in the problem are the detuning frequency and the thermal rates (population
relaxation and dephasing). For optical transitions these rates are usually much
smaller than w, for example typical room temperature vibrational relaxation rates
are of order 10'2s~! while vibrational frequencies are in the range 10'4 s~!. The
effect of the fast terms, exp(32iwt), in Eqs (10.180) is therefore expected to be
small provided that the field is not too strong, and they will be henceforth disreg-
arded.’ This is known as the rotating wave approximation (RWA).'? Under this
approximation Eqgs (10.180) become

don doy i - -
e —612) — kpe ki
7 0 o o (021 — 012) — ko1011 + k12022
(10.181a)
012 _ 15 L cond ) — k6 (10.181b)
— = —IN0o - — o — 0 — (o2 .
7 no12 — - Eo(o2 —on 4012

° A formal way to do this is a coarse-graining procedure by which we take the average of Eqs (10.180)
over the time interval 277 /2w. If we assume that all terms except exp(42iwt) are constant on this
timescale the result is equivalent to dropping out all terms containing these fast oscillating factors.

' The origin of this name can be understood by considering the product of two time-oscillating
functions, /(1) = f1(0)f2(¢) with fj(1) = cos(wjf) and w; >~ wy > 0. If we sit on a time-
frame that rotates with f,(¢#) we find that in the product f(¢) there is a component that moves
very slowly, at a frequency w = w; — wj, relative to this rotating frame, and another that
moves very fast, with frequency w; + wp =~ 2w, relative to it. Indeed, cos(w;?) cos(wrt) =
(1/2)[cos((w] — wp)t)+ cos((w] + wy)t)]. In the RWA we disregard the latter component.
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d;% = inoy1 + ;—h5ou(022 —o11) — k4021 (10.181¢)
We have also denoted p12 = w1 = w, using the fact that the dipole moment
operator is real. Equations (10.181), known as the optical Bloch equations, cor-
respond to an effective two state system with energy spacing wi; = 1 and a time
independent interstate coupling Ey1/2, subjected to thermal relaxation that itself
characterizes the original two state system and satisfies the detailed balance con-
dition (10.177). We could derive the same set of equations using the dressed-state
approach introduced in Chapter 9. In this approach applied to the present example
we replace the original two-level system coupled to a radiation field with another
two state system—a ground state dressed by a photon (more generally N photons)
and an excited state without photons (or N — 1 photons), and disregard the coupling
of these dressed states to the infinite number of differently dressed states. This intu-
itive approach is now validated for near resonance conditions involving relatively
weak fields.
A simpler form of Eqs (10.181) may be obtained by redefining variables
according to Egs (10.44)—(10.46) and (10.49)

o:(t) = o11(f) — 022(2) (10.182)

ox(1) = 012(1) + 621(0); oy(1) = i(012() — 021(1)) (10.183)

which leads to the optical Bloch equations in the forms!!

do; gOM -

= 0y — k(0 — 02cq) (10.184a)
d;x = —nG, — kaby (10.184b)
% — 16y — &)T“az — kady (10.184c)

where
Ozoq = % (10.185)

is the equilibrium value of o, in the absence of radiation (£ = 0),!? and

ko =kio+hoe . (10.186)

1" Note that, as defined, 7 is equivalent to —w of Egs (10.50).
' The corresponding values of oy and oy, are ox,eq = 0y,¢q = 0.
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The Bloch equations and related approximate models derived using similar prin-
ciples are very useful as simple frameworks for analyzing optical response of
material systems. Some examples for their use are provided in Chapter 18.

Appendix 10A: Analogy of a coupled 2-level system to a spin % system in a
magnetic field

A particle with a spin S has a magnetic moment M = GS where G is the gyro-
magnetic constant. The energy of such a particle in a static magnetic field B is
Eg = —M - B. A particle of spin % is a degenerate two-state system; the two states
can be defined according to the spin direction with respect to an arbitrary axis.
The degeneracy of this system is lifted in a magnetic field. Taking the field to be
B = (0,0, B,), that is, in the z direction, it is convenient to work in the basis of the
two eigenstates of the z component of the spin operator, denoted |+) and |—), with
eigenvalues +(1/2)h and —1/2h respectively. These states are also eigenstates of
the Hamiltonian, the corresponding energies are therefore

Ey = q:%hGBZ (10.187)
Using a matrix-vector notation with this basis set the two eigenstates are
H=(5): ==(1) (10.188)
On this basis the Hamiltonian is represented by
H=-GB-S= —%hGBzc%z (10.189)
where the operator 6, = (2/ h)S‘Z is

) 10
6y = (o _1> (10.190)

6. is one of the three Pauli matrices whose mutual commutation relations correspond
to angular momentum algebra. The other two are

N 0 1Y\ ~ (0 —i
Gx_<1 0>, O'y—<l. 0) (10.191)

It is easily verified that

[66,6,] =2i6,  [6),6.1 =2i6,  [6,6,] = 2i5, (10.192)
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Note that the Pauli matrices are the matrix representations, in the basis of
Eq. (10.188), of the operators defined in Eq. (10.48), provided that we denote
the states |+)and |—) by |1) and |2), respectively.

0z = [+)(+] = [=) (=] = [1){1] = 12){2]
Ox = [+H) (= + |=)(+] = 12 + 12)(1] (10.193)

oy = i(|=){+] = [4+)(=D = i(12)(1| = [1)2)

In addition we define the operators

1
o1 = 112 = 5(6x +i6y) (10.194)
. L.

G- = 12){1] = 56y — i6y) (10.195)

whose matrix representations are

N 0 0 N 0 1
o_ = <1 O) oy = <0 0) (10.196)

The operation of 6 changes the spin from —(1/2)% to 4+(1/2)#4, that is, it moves
the higher energy state to the lower energy state. 6_ acts in the opposite direction.

Consider now the Hamiltonian (10.40). Using the identities [1){1| = (1 /2)(? +
6.); 12)2] = /2)([ — 0;), where 1 is the unity operator, we can rewrite it in
the form

~ 1 . 1 “ A
H = E(HH — Hp)o, + E(HH + Hy) + Hi204 + Hy10-
1, 1, . 1,
=(Hn — sz)zaz + (Hi2 +H21)§Ux +i(Hyp — HZI)EUy (10.197)

where, in the second line we have disregarded the constant (1/2)(H1 + Hz2). We
see that, up to the neglected constant energy, this Hamiltonian can be written as a
spin % system in a magnetic field,

=—-GB-S= —(1/2)hG(Bx6x + B, 6, + B.62), (10.198)
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with the fictitious magnetic field whose components are

1
B, =+—WH»y —H 10.199
+Gh( 2 1) ( )
By = ——(Hjs + Hyy) = ——ReH (10.200)
» =~y (Hiz + H21) = — = ReH .
i 2
B, =——WH; — Hy1)) = —ImH 10.201
) Gh( 12 21) o mA ( )

In this representation the difference between the diagonal elements of H corres-
ponds to the z component of the magnetic field, while the non-diagonal elements
arise from the other components of B, that is B, and B, In this regard note that

2 |H
B, = /B)%—I—B;:%‘%

Using the Hamiltonian (10.197), the Heisenberg equations G = (i /h) [H,6]
and the commutation relations (10.192), we can easily verify that Eqs (10.50) do
not only stand for the averages (o) but also for the Heisenberg operators 611(f) =

(i/mHt
e

(10.202)

&e~ /Mt Another form of these equations is obtained using Eq. (10.198)

s
;tx = GB.&, — GB,6. (10.203)
ds, . .
=2 =GB, — GB.6 (10.204)
do; . .
% = GB,6, — B, (10.205)
or
dé .
L =-GBxs (10.206)

Equation (10.206) has the form of a classical time evolution equation of the mag-
netic moment associated with an orbiting charge in a magnetic field. Such a charge,
circulating with an angular momentum J, possesses a magnetic moment m = yJ.
In a magnetic field B a torque m x B is exerted on the charge and the corresponding
classical equation of motion is

dJ
— =mxB=yJxB (10.207)
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or

—- =ymxB (10.208)

Since the scalar product of m x B with either B or m is zero, it follows that
d ., d
— =—(m-B)=0 10.209
5" =~ (m-B) ( )

This implies that m evolves such that its modulus is constant, maintaining a constant
angle with the direction of B. This motion is called precession. The angular velocity
of this precession is w = y B.
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11
LINEAR RESPONSE THEORY

If cause forever follows after cause

In infinite, undeviating sequence,

And a new motion always has to come

Out of an old one by fixed law; if atoms

Do not, by swerving, cause new moves which break
The Laws of fate; if cause forever follows,

In infinite sequence, cause—where would we get
This free will that we have, wrested from fate,

By which we go ahead...

Lucretius (c.99—c.55 Bcg) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

Equilibrium statistical mechanics is a first principle theory whose fundamental
statements are general and independent of the details associated with individual
systems. No such general theory exists for nonequilibrium systems and for this
reason we often have to resort to ad hoc descriptions, often of phenomenological
nature, as demonstrated by several examples in Chapters 7 and 8. Equilibrium
statistical mechanics can however be extended to describe small deviations from
equilibrium in a way that preserves its general nature. The result is Linear Response
Theory, a statistical mechanical perturbative expansion about equilibrium. In a
standard application we start with a system in thermal equilibrium and attempt to
quantify its response to an applied (static- or time-dependent) perturbation. The
latter is assumed small, allowing us to keep only linear terms in a perturbative
expansion. This leads to a linear relationship between this perturbation and the
resulting response.

Let us make these statements more quantitative. Consider a system character-
ized by the Hamiltonian Hy. An external force acting on this system changes the
Hamiltonian according to

Hy — H =Hy+ H, (11.1)
We take 1 to be of the form
Hi(t) = —AF () (11.2)
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where F(¢) is the external force that can depend on time and Ais an operator that
represents the dynamical variable A(r", p") (a function of the coordinates r" and
moments p" of all particles in the system) that couples to this force. For example,
for an external electric field £ imposed on a one-dimensional classical system with
one charged particle, H; = —gx&, that is, A = x and F' = g€ where x and q are
the particle position and charge, respectively. More generally A can be a sum of
such products,

H ==Y 4F (11.3)
j

but for simplicity we consider below the simplest case (11.2). Next, we focus on
another dynamical variable B(r",p"), represented in quantum mechanics by an
operator B, and on the change (AB) in the expectation value of this variable in
response to the imposed perturbation. Linear response theory aims to character-
ize the linear relationship between the imposed small force /' and the ensuing
response (A B).

It should be noted that in addition to mechanical forces such as electric or mag-
netic fields that couple to charges and polarization in our system, other kinds of
forces exist whose effect cannot be expressed by Eq. (11.2). For example, temper-
ature or chemical potential gradients can be imposed on the system and thermal or
material fluxes can form in response. In what follows we limit ourselves first to
linear response to mechanical forces whose effect on the Hamiltonian is described
by Eqs (11.2) or (11.3).

11.1 Classical linear response theory

11.1.1 Static response

In previous chapters it was sometimes useful to use different notations for an observ-
able 4 and the corresponding dynamical variable A(r", p). In this chapter we will
not make this distinction because it makes the presentation somewhat cumbersome.
The difference between these entities should be clear from the text.

Consider first the response to a static perturbation, that is, we take F' = constant
in Eq. (11.2). In this case we are not dealing with a nonequilibrium situation,
only comparing two equilibrium cases. In this case we need to evaluate A(B) =
(B) — (B)o where

[drMN [ dpN Be=FHo

[ drN [ dpNe—BHo
[drN [ dp" Be=PHo+HD)

- [deN [ dpNe—FHo+H)

(B)o =

(11.4a)

(B)

(11.4b)
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where 8 = (kgT)~!. In what follows we use [[to denote [ dr" [ dp".Fora small
perturbation, BH; < 1, we expand (11.4b) to linear order in this quantity using

e PUHHHY) — o=PHo(1 _ BH ) + 0([—[12) (11.5)
to get

) = L]0 = it Blo} _
L[] P {1 = B(Hi)o)

= (B)o + B(B)o(H1)o — B{H1B)o + OL(BAH)?] (11.6)

((B)o — B{H1B)o)(1 + B(H1)o)

So, to linear order

A(B) = —B((HB)o — (H1)o(B)o)
= BF({AB)o — (A)o(B)o) = BF(845B) (11.7)

So we found the remarkable result

A(B) = xpaF
xBa = B(8A3B)o (11.8)

that is, the response function xp4 (sometimes called admittance or susceptibility),
the coefficient of the linear relationship between the applied force and the ensuing
system response, is given in terms of a correlation function between the equilib-
rium fluctuations in 4 and B in the unperturbed system. Note that there are different
susceptibilities, each associated with the way by which forcing one system variable
invokes a response in another. Note also that yp4 as defined is the isothermal sus-
ceptibility. We could also study the response of the system under other conditions,
for example, the adiabatic susceptibility measures the linear response under the
condition of constant system energy rather than constant temperature.

11.1.2 Relaxation

In (11.8) xp4 is the response coefficient relating a static response in (B) to a static
perturbation associated with a field 7 which couples to the system through an addit-
ive term H; = —FA in the Hamiltonian. Consider next the dynamical experiment
in which the system reached equilibrium with Hy + H; and then the field suddenly
switched off. How does A(B), the induced deviation of B from its original equi-
librium value (B)y, relax to zero? The essential point in the following derivation is
that the time evolution is carried out under the Hamiltonian Hy (after the field has
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been switched off), while the thermal averaging over initial states is done for the
Hamiltonian H = Hy + H;.

_ ff e—ﬁ(Ho-f-Hl)Bo(t |pN,rN)
(B®) = T e Flt+H)

(11.9)

Here By(t | pN Ny = Bo(pN @), "N (@) | pN ,#V) is the value of B at time ¢, after
evolving under the Hamiltonian Hy from the initial system’s configuration (r", p¥).

Note that
f f P By | pV ) = (B)o f f o PHo (11.10)

because we start from equilibrium associated with H and propagate the system’s
trajectory with the same Hamiltonian. However,

// e—ﬂ(H0+H1)BO(t |pN,,,N) £ (B) // e~ BHo+H1) (11.11)

because we start from equilibrium associated with Hy + H1, but the time evolution
is done under Hj.

Starting from Eq. (11.9) we again expand the exponential operators. Once
exp(—p(Hy + H1)) is replaced by exp(—fHp)(1 — BH1) we get a form in which
the time evolution and the averaging are done with the same Hamiltonian Hy. We
encounter terms such as

—BHo g, (pN (1), N NN
e O?fit)ﬂrHo OIrr) (B(D)o = (B)o (11.12)

and

[[ e Pom N, rM)Bo@" (1), N (1) | pV, V)

e

With this kind of manipulations Eq. (11.9) becomes

(B(1)) = (B)o — B(H1(0)B(1))o (11.14)

1 — B(H1)o

= (H1(0)B())o (11.13)

and to linear order in SH|
A(B()) = (B(1)) — (B)o = —B((H1(0)B(?))0 — (H1)o(B)o)
= BF(84(0)éB(1))o (11.15)

with
84(0) = A(0) — (4)o; 3B(t) = B(t) — (B)o (11.16)
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On the left side of (11.15) we have the time evolution of a prepared deviation from
equilibrium of the dynamical variable B. On the right side we have a time cor-
relation function of spontaneous equilibrium fluctuations involving the dynamical
variables 4, which defined the perturbation, and B. The fact that the two time evol-
utions are the same has been known as the Onsager regression hypothesis. (The
hypothesis was made before the formal proof above was known.)

11.1.3 Dynamic response

Consider next a more general situation where the weak external perturbation is
time-dependent, /' = F'(t). We assume again that the force is weak so that, again,
the system does not get far from the equilibrium state assumed in its absence. In
this case, depending on the nature of this external force, two scenarios are usually
encountered at long time.

1. When a constant force is imposed on an open system, the system will even-
tually reach a nonequilibrium steady state where the response to the force
appears as a time-independent flux. (A closed system in the same situation
will reach a new equilibrium state, as discussed above.)

2. When the external force oscillates with a given frequency, the system will
eventually reach a dynamic steady state in which system observables oscillate
with the same frequency and often with a characteristic phase shift. The
amplitude of this oscillation characterizes the response; the phase shift is
associated with the imaginary part of this amplitude.

Linear response theory accounts for both scenarios by addressing the assumed
linear relationship between the response of a dynamical variable B (i.e. the change
in its average observed value) and the small driving field F. It is convenient to
represent the long time behavior of the system under this driving by assuming that
the external force has been switched on in the infinite past where the system was
at its unperturbed equilibrium state. In terms of the density operator p(¢) or the
analogous classical distribution function f (rN P t) this implies

—BHy —pHy
N N _ ) — e Aoy — €
f(r 7p s OO) fderdrNe—‘B[—[O’ 10( OO) 7 [efﬂ]:]o]

(11.17)

The most general linear relationship between the force F'(¢#) and the response
(AB(t)) is then

t
(AB(t)) = / dt xpa(t —tF(t') (11.18)
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Note that causality, that is, the recognition that the response at time # can depend only
on past perturbations and not on future ones, is built into (11.18). It is convenient

to write
o0

(AB(1)) = / dt' yga(t — tHF () (11.19)

by defining the time-dependent susceptibility x so that x () = 0 for ¢ < 0. For the
following special choice of F'(¢):

(11.20)

F@t)=F t<0
F@®) =0 t>0

Equation (11.19) should yield the result (11.15), that is, (AB(t)) =
BF (84(0)3B(t))o. This implies that for t > 0

0 00

B(84(0)8B(1))o = / dt' xpa(t — 1) Z/dTXAB(T) (11.21)

—0o0 t

and by taking derivative with respect to time

XBa() = —0()B(8A(0)8B(t))o = 6(1)B(8A(0)8B(1))o (11.22)

where the 6 function is

80 1 fort>0 (11.23)
1) = .
0 otherwise

The second equality in (11.22) follows from the symmetry property (6.32). We
have found that the dynamic susceptibility is again given in terms of equilibrium
correlation functions, in this case time correlation functions involving one of the
variables 4 or B and the time derivative of the other. Note (c.f. Eq (1.99)) that if X
is a dynamical variable, that is, a function of ", pN ) so is its time derivative.

11.2 Quantum linear response theory

The derivation of the quantum analog of the theory presented above follows essen-
tially the same line, except that care must be taken with the operator algebra
involved.
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11.2.1 Static quantum response

The analogs of Eqs (11.4) are

~ eiﬂf{()
B)o = Tr[Bpoeql; Poeq = ———— 11.24a
(B)o [ pO,eq] £0,eq Tr(e_ﬁHO) ( )
AL R e_ﬂ(i_\[o—i_j_\ll)
(B) = Tr[Bpeql;  Peq = (11.24b)

Tr(e—PHo+H))

and the first-order perturbation expansion analogous to (11.5) is obtained from the
operator identity (cf. Eq. (2.78))

8
exp [—ﬂ (ﬁo +1§h)] — exp (—ﬁﬁo) - / e o) | g s
0

by replacing, as a lowest order approximation, exp [—k <ro +H 1)} by
exp <—M%> inside the integral on the right to get

exp [—5 (ﬁo + Hl)] = exp (—ﬁﬁlO) (1 — ﬂﬁ]fﬁ)) ) <H12) (11.26)

Here we have used the notation X @ for the Kubo transform of an operator X
defined by

A B
X® = g1 / dre*o X e=Ho (11.27)
0

Problem 11.1. Show that in the basis of eigenstates of I:IO, 1% ) = &ili),

leﬁ(si—sj) -1

XB); =g~ X; (11.28)

E — 8j
and that the high-temperature limit is limg_, X® =x.

When the external force F' is small and constant we again seek a linear
dependence of the form

8(B) = (B) — (B)o = xpaF (11.29)
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where xp4 is the static quantum isothermal susceptibility. Using (11.26) in (11.24b)
we get

R Tr[Be PH0 4B Tr[Be PHo] Tr{ePH 1P
§(B) = BF -

Tr[e—BHo] Tr[e=BH0]  Tr[e—BHo]
= B (AP B)g — (AP)o(B)o)F = B(8APsB)oF (11.30)
So that . R
X4 = B <5A<ﬁ)53>0 (11.31)

where for any operatorf( we define 8X = X — (X)o. We see that the classical limit,
Eq. (11.8), is obtained from Eq. (11.31) by replacing X ® by the corresponding
dynamical variable X, irrespective of B.

Problem 11.2. Show that for any two operators Aand B
(AP By = (BP 4) (11.32)
Proof: Using Eq. (11.27) we have

B anTife P Mo o=t )

(121(/3)@)
Tr[e—AHo]

(11.33)

Consider the numerator expressed in the basis of eigenstates of H
B N B X .
/ dATr[e oM jo—o By — / dry Z e Pt e (| A1k) (k| B )
0 0 ;

- ZZe - k__fk " ke B
(11.34)
Interchanging j and & gives
e Bek — o—Bgj

/ﬁ dATr [e_’gﬁoe}‘ﬁoﬁe_}‘ﬁof?] Z Z {l B k) (k| A4 )
0

gy
_ / d,\Tr[e—ﬂffoemozée-mOﬁ] (11.35)
0

This, together with (11.33) imply that (11.32) holds.
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11.2.2 Dynamic quantum response

Now let the external force F'(¢) be time-dependent. We will repeat the procedure
followed in the classical case, assuming that F(¢) is glven by the step function
(11.20), that is, following the onset of a perturbation H = —F4att = —o0, F
is switched off at 7 = 0. We want to describe the subsequent relaxation process
of the system as expressed by the evolution of the expectation of an observable B
from its value ( ) (equilibrium average under H = Ho +H 1) at t = 0 to the final
value (l})o att — oo. In what follows we will follow two routes for describing this
relaxation.
Our first starting point is the equation equivalent to (11.9)

Tr[e—FHo+H1) o/t (/M) Hot
(B)(1) = — (11.36)
Tr[e—f(Ho+H))

Using the identity (11.25) we expand the thermal operators in (11.36) to first order
in ﬁll : exp[—,B(I:Io +I:[1)] = exp(—,BﬁIo)(l — foﬂ d)\e)‘Holille*AHO). Using the
definition of the interaction representation

By (t) = exp(iHot /h)B exp(—iHot/h) (11.37)
and the identity Tr[,éo,eql?[(t)] = (B)¢ that holds for all ¢, we find

Trie= 0B, (1)] — Trie=Po [ dre* o e By ()]
Tr[e=P](1 — Tr[e=#Ho [ dnerflo 1) e=*Hl0]/ Tr[e=FHo))

B - . B .
=(B)0—< / d)\eAHOHle_AHOBI(t)> +(B)o< / dxe*HOHle—kH0>
0 0 0 0

(11.38)

(B)(1) =

or
(B)(1) — (Blo = BF (1P B,(0) — (B0 (A7) = p(s4PB10)) F (11.39)

where the Kubo transform 4#) is defined by Eq. (11.27). In the classical limit
8AP) = 54 and Eq. (11.39) becomes identical to (11.15). The rest of the devel-
opment follows the same steps as those leading to Eq. (11.22) and results in the
linear response equation (11.19) with the quantum expression for the isothermal
susceptibility

x84() = —0(OBAPISB ()0 = 0(H)BBAP 8B, (1)) (11.40)
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As in the classical case, the important physical aspect of this result is that the time
dependence in SZAB[ (¢) as well as the equilibrium thermal average are evaluated with
respect to the Hamiltonian Hy of the unperturbed system.

Let us now follow a different route, starting from the quantum Liouville equation
for the time evolution of the density operator o

Qgﬁz_mh+mmmm

Lop=h"[Ho,pl;  Li(0)p=h'[H,pl=—-n""FOI4,p] (11.4])

Assume as in Eq. (11.17) that the system is at its unperturbed equilibrium state in
the infinite past

e_ﬁﬁo
" Tr[e—BHo)

Using integral equation representation of (11.41) given by Eq. (10.25) and keeping
only the lowest-order correction to Og eq leads to

P(—00) = Po,eq (11.42)

t

—o0

t
. i PP A o
= foeg = 5 / dr'e= UMD (1), po eqle DD (11.43)

where we have also used the identity exp(—iLo?)0o,eq = 00,eq- The deviation of an
observable B from its equilibrium value under poeq is given by

8(B)(t) = (B(1)) — (B)o = Tr{p(t)B] — Tt[po,eqB]

t

_ % / A TeBe™ UMEOR 1, (1), 5o eqle® P01
—00
t

=—%/mmmm—wmmmm@] (11.44)

—00

where the last equality is obtained by cyclically changing the order of operators
inside the trace and by using the interaction representation (11.37) of the operator
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B. Note that since Tr[1:11 ), P0,eq] = 0 we can replace B; by 831 = Bl — (B)p in
(11.44) to get

t

i A ~ R
§(B)(1) = ~7 / dt'Tr[8B; (t — £ )[H (), fo,eql] (11.45)
—00
Next we use H (1) = —F(t)A and the cyclic property of the trace to rewrite

Eq. (11.45) in the form

t
3B =+ / 4 F (T8 B (t — )[4, Poeq]]
. t
= / A F (B — 1)A)o — (8Bt — 1))o)
. t
=%/dt’F(t/)([(Sf}[(t—t/),ﬁ])o (11.46)

—0o0

Finally we note that under the commutator we can replace A by 84 = A4 — (A)o.
We have found that in the linear response approximation

t
$(BY(t) = / dt xpa(t — F () (11.47)
where _
X8 (t) = %([531(0,51:1])0 (11.48)
or
8(B)(f) = / dt' x4t — t)F () (11.49)

with xp4(t) given by

xBA(t) = (11.50)

L8B1(1),84)0 >0
t<0
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Problem 11.3. Use the Kubo’s identity (Appendix 11A, Eq. (11.81)) with H
replaced by Hy to show that Eqs (11.50) and (11.40) are equivalent

Solution: Indeed

X84(1) = %([sém),s?ﬂm = %Tr{ﬁo,eq[séz(n, 541} = %Tr{[aﬁ,ﬁo,eq]sél(m

B B
= Tr{f0.eq f dAS AL (—ifN)8B; (1)} = / A0 (841 (—ifN)8B1(1))o
0 0

= B6ABSB(1))o = —B(6AP 8B, (1))0 (11.51)

11.2.3 Causality and the Kramers—Kronig relations

The fact that the response functions y (¢) in Eqs (11.19) and (11.49) vanish for
t < 0isphysically significant: It implies that an “effect” cannot precede its “cause,”
that is, the “effect” at time ¢ cannot depend on the value of the “cause” at a later
time. This obvious physical property is also reflected in an interesting and use-
ful mathematical property of such response functions. To see this we express the
response function xp4(t) = %G(t)([BZA?](t), 821])0 in terms of the eigenstates (and

corresponding energies) of A

XBA(t) = %9(t)Tr{,éo,eq(eiﬂOt/héﬁ’e_iHOt/h8;1 — Aot/ poiflot/hy)
- %9(;) 3 P SBys Ay — e S Byd Ay)
k I
_ %9(;) SN (P — P sBys Ay (11.52)
k I

where Py = expf—ﬁSk)/Zk exp(—Ber), wy = (ex — &) /h, and Xy = (k| X|I)
for any operator X .
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Now consider the Fourier transform of this function, x (w) = ffooo dte' x (t).
We use the identity!

o

/ dte™0(t)e" = lim —— (11.53)
n—0+x +x' 4+ in
—0
to write
1 1
X =—— 1 P, — P))———38By64 11.54
XB4(®) hﬂg&;;( 3 l)a)+a>k1+in K8 Aik ( )

The appearance of in in the denominators here defines the analytical properties of
this function: The fact that ¥ (w) is analytic on the upper half of the complex w
plane and has simple poles (associated with the spectrum of Hy) on the lower halfis
equivalent to the casual nature of its Fourier transform—the fact that it vanishes for
t < 0. An interesting mathematical property follows. For any function x (w) that is
(1) analytic in the half plane Rew > 0 and (2) vanishes fast enough for |w| — oo
we can write (see Section 1.1.6)

o0

fim [ do— X0
n—0 o —w—in
—00

= 27mix () (11.55)

Using (cf. Eq. (1.71)) lim;.o(«’ — @ — in) ™! = PP(¢/ — )~ +ind (e — ) we
find for the real and imaginary parts of x = x1 +ix2

o0
1 /
Xl(a))=—PP/dw’ (@)
T w —w
—0
17 /
xz(w)z——PP/dw/X}(w) (11.56)
T w —w
—00

! Note that the existence of the # function is important in this identity. The inverse Fourier
transform is

T :
lim — / dxe_m% = G(I)eix/t
n—0+ 27 x+x +in
—0oQ

as is easily shown by contour integration.
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The transformation defined by (11.56) is called Hilbert transform, and we have
found that the real and imaginary parts of a function that is analytic in half of the
complex plane and vanishes at infinity on that plane are Hilbert transforms of each
other. Thus, causality, by which response functions have such analytical properties,
also implies this relation. On the practical level this tells us that if we know the real
(or imaginary) part of a response function we can find its imaginary (or real) part
by using this transform.

Problem 11.4. Note that if x1 (») is symmetric under sign inversion of w, that is,
x1(@) = x1(—w), then x»(w) is antisymmetric, x2(w) = — x2(—w). Show that
in this case Eqgs (11.56) can be rewritten in the form

o0
2 / /
X1 (@) = —PPfdw/%(“’;
T ws —
0

x1 (@)
w/z _ a)z

x
2
Xo(@) = —?wPP / do (11.57)
0

In this form the equations are known as the Kramers—Kronig relations.

11.2.4 Examples: mobility, conductivity, and diffusion

Consider a homogeneous and isotropic system of classical noninteracting charged
particles under an external, position-independent electric field E,(¢) in the x
direction. In this case

Hi=—q ij E.(t) (11.58)
J

where x; is the displacement of particle j in the x direction and g is the particle
charge. In the notation of Eq. (11.2) we now have

F=E and A=q) X (11.59)
]

We want to calculate the response to this force as expressed by the average speed
of a given particle /, and since in equilibrium (v;)o = 0 we can write

AB =3 = vy (11.60)
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In focusing on the x component of the response we anticipate that the response in
the orthogonal directions vanishes, as can be easily verified using the procedure
below. Equation (11.18) takes the form

t
(1)) = f iy (t = ) Ex(e) (11.61)

where, using Eq. (11.22) in the form xp4 = ,3(8/1 (0)8B(1))o

x() = IBQ<(ZJ V]x(0)> le(t)> = Bq(vix(0)vi (D))o (11.62)
0

In the last equality we have used the fact that the equilibrium velocities of different
particles are uncorrelated. For E,(¢) = Ex = constant Eq. (11.61) gives

o0

v = | Ba / dt (e O (1)) | E (11.63)

0

Here and below we have dropped the subscript 0 from the correlation functions.
Indeed, to this lowest order we could take the thermal averages using either H or
Hy. We have also dropped the subscript / because this result is obviously the same
for all identical particles. The equivalent quantum result is

o0

v = | 84 / dt 6P )00 | Ex (11.64)

0

For simplicity we continue to consider the classical case. We can now discuss
several equivalent transport functions (or “transport coefficients”):

11.2.4.1 Mobility
The coefficient that multiples the force, gEy, in (11.63) is the mobility u,

=8 / O (1)) = § / v(0) - V(1) (11.65)
0 0

In the last equality we have used the fact that an isotropic system u does not depend
on direction.
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11.2.4.2  Diffusion

Equation (11.65) is closely related to the expression (6.14) for the diffusion
coefficient D, so that
D

N kT
This result is known as the Stokes—FEinstein relation. It can also be derived from
elementary considerations: Let a system of noninteracting charged particles be in
thermal equilibrium with a uniform electric field £y = —9d®/dx in the x direction,
so that the density of charged particles satisfies p (x) ~ exp(—Bg®P (x)). In equilib-
rium, the diffusion flux, —Ddp/dx = —BDgpkE, and the drift flux, ugE,p should
add to zero. This yields (11.66).

" (11.66)

11.2.4.3 Friction

The diffusion coefficient and therefore the mobility are closely related to the friction
coefficient y that determines the energy loss by the moving particles. Writing the
acceleration v, of the moving charged particle as a sum of electrostatic and friction
forces

) 1
(i) = Z‘]Ex — ¥ {x) (11.67)
and putting at steady state () = 0, leads to u = (my)~! or
kgT
pD="8" (11.68)
my

11.2.4.4  Conductivity

The conductivity o connects the external electric field £, and the observed current
(Jx) via (Jy) = oEyx. The average current is (J;) = pq(vy) where p is the carrier
density. The average velocity vy is obtained from (11.66) in the form (v,) = ugEy =
DgE, /kpT. This yields the Nernst—Einstein equation
2
q9-p
=-—D 11.69
o= T (11.69)

Consider now the time-dependent case. From Eq. (11.63) we get

o0

Je() = pglve(t)) = f dto (6 — 1VEx(0) (11.70)

—0o0

2
oty = | PR O] = SO0 V@) (>0

0 t<0

(11.71)
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In Fourier space, Jy(w) = f fooo dte'' J, (1), etc. we get
J(w) = 0 (w)E(w) (11.72)
with the frequency-dependent conductivity, o (@), which is given by the Fourier—
Laplace transform of the velocity—time correlation function,?

o o.¢]
o PIB :
o(w) = / dto (1)e'” = —5 / dt(v(0) - v(z))e'™" (11.73)
—00 0
The generalization of these results to anisotropic system is easily done within the
same formalism, see for example, the book by Kubo et al. referred to at the end

of this chapter. The result (11.73) (or the more general expression below) is often
referred to as Kubo’s formula of conductivity.

11.2.4.5 Conductivity and diffusion in a system of interacting particles

If carrier—carrier interactions are not disregarded we cannot obtain the above trans-
port coefficients from the single particle response (11.63). Linear response theory
should now be used for collective variables. Starting from Eqs (11.58) and (11.59)
we seek the response in the current density

Je(r,0) =q ) 508 — 1)) (11.74)

J

Classical linear response theory now yields o (1) = B (8A8B(t))o (for t > 0) with
8B =Jx(r,)and 84 =g % = [ dr'J(r',0). This leads to Eq. (11.70) with

o(t) = ﬂ/dl"(Jx(r',O)Jx(r, D)o = ﬂ/dr(Jx(O,O)Jx(r, )o
= g/dr(J(O, 0) - J(r, ))o (11.75)

while the DC conductivity is given by

o= g/dr/dz(J(o,O).J(r,t))o (11.76)
0

2 Note that o of Eq. (11.69) (or o (w) of Eq. (11.73)) have dimensionalities of (time)_l while o (7)
of Eq. (11.71) has dimensionality (time) 2.
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In Eqs (11.75) and (11.76) the current density vector is
I, =q) HOx—1) (11.77)

J
These equations relate the static and dynamic conductivities to the time and space
correlation functions of equilibrium fluctuations in the local current density.

Turning now to the diffusion coefficient, the single particle expression
(Section 6.2.1)

m_/mwwwm /mwmvm> (11.78)

still has a meaning in a system of interacting particles, because it is possible to follow
the motion of single particles in such a system. This is done by marking a small
fraction of such particles by, for example, isotope substitution and following the
marked particles. The diffusion coefficient that characterizes the motion observed
in this way is called the tracer diffusion coefficient.

The tracer diffusion coefficient however is not the transport coefficient to be used
in the linear relationship (Fick’s law) J, = —DV ¢ between the diffusion current J,,
and the particle concentration ¢ or in the diffusion equation dc/dt = DV?c. The
coefficient D in these equations does depend on correlations between the motions
of different molecules. We have used the notation Dy above to distinguish the
tracer diffusion coefficient from the so-called chemical diffusion coefficient D that
appears in the diffusion equation.

A fully microscopic theory of chemical diffusion can be constructed, however,
it requires a careful distinction between the motions of the observed species and the
underlying host, and is made complicated by the fact that, as defined, the diffusion
coefficientrelates flux to the concentration gradient while the actual force that drives
diffusion is gradient of the chemical potential. An alternative useful observable is
the so-called conductivity diffusion coefficient, which is defined for the motion of
charged particles by the Nernst—Einstein equation (11.69)

D, = kB—za (11.79)
cq

More generally, any force could be used to move the particles, so a more general
definition of this type of transport coefficient will be the “mobility diffusion coef-
ficient,” D,, = kpTu (cf. Eq. (11.66)). Note that while this relationship between the
conductivity and the diffusion coefficient was derived for noninteracting carriers,
we now use this equation as a definition also in the presence of interparticle
interactions, when ¢ is given by Eq. (11.76).
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Fic. 11.1 The Haven ratios, plotted against inverse temperature, for the diffusion of silver ions in
three solid ionic conductors: Agy S, Ag,Se, and Agy Te. (From H. Okazaki, J. Phys. Soc. Jpn, 43,213
(1977).)

It should be realized that D, and D,, just express the properties of the conductivity
and mobility from which they are derived, and using them in the Fick’s law J. =
—DVc is at best a crude approximation. On the other hand they contain information
about interparticle correlations that result from carrier—carrier interactions. A useful
quantity that gauge the importance of such correlations is the Haven ratio

Hg = =& (11.80)

which is unity in a system of noninteracting particles and deviates from 1 when
carrier—carrier interactions affect the observable D,. An example is shown in
Fig. 11.1.

Appendix 11A: The Kubo identity

Here we prove the Kubo's identity for any operator A and Hamiltonian A. It states

B B
[efﬂﬁ,zzl] = eﬂﬁ/d)\e)‘ﬁ[ﬁ,ﬁ[]e)‘ﬁ = iheﬂﬁ/d)»ekﬁjlekﬁ
0 0
B
= ihe P / dAAgp(—ihd) (11.81)
0
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where Ay (x) = e@/MWHx fo—/MHX ig the Heisenberg representation of A. The first
equality in (11.81) is verified by taking the ij matrix element of the two sides in the
basis of eigenstates of H. On the left we have (i|[e~#1, 4] /) = Aij(e_ﬁgi — e Pe),
The same matrix element on the right is

(ile P11 / x4, He ™ |jy = =P / dre’i (dye; — eidy)e ™
0 0

B
= Aj(e; — gj)e Pei / dre i) (11.82)
0

which is easily shown to be the same. The second equality in (11.81) is based on
the identities

A

dth _ %[ﬁ,ﬁH(f)] _ %e(i/h)ﬁlt[lj],g]e—(i/h)flt _ QiDL ~ /DTt (11.83)

Here Ay and 4 denote respectively the Heisenberg and Schrodinger representations

of the operator. Equation (11.83) implies that Ay = dAy Jdt and A are respect-
ively time derivatives of 4 in the Heisenberg and the Schrodinger representations.
Eq. (11.81) is a relationship between these representations in which ¢ is replaced
by —ih.
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THE SPIN-BOSON MODEL

Sometimes, you know, we can not see dazzling objects
Through an excess of light; whoever heard

Of doorways, portals, outlooks, in such trouble?
Besides, if eyes are doorways, might it not

Be better to remove them, sash, jamb, lintel,

And let the spirit have a wider field?

Lucretius (c.99—c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

In a generic quantum mechanical description of a molecule interacting with its
thermal environment, the molecule is represented as a few level system (in the
simplest description just two, for example, ground and excited states) and the envir-
onment is often modeled as a bath of harmonic oscillators (see Section 6.5). The
resulting theoretical framework is known as the spin—boson model,! a term that
seems to have emerged in the Kondo problem literature (which deals with the
behavior of magnetic impurities in metals) during the 1960s, but is now used in a
much broader context. Indeed, it has become one of the central models of theoretical
physics, with applications in physics, chemistry, and biology that range far beyond
the subject of this book. Transitions between molecular electronic states coupled

! The term “spin—boson model” seems to have emerged in the Kondo problem literature (which deals
with the interactions between an impurity spin in a metal and the surrounding electron bath) during
the 1960s, however fundamental works that use different aspects of this model were published earlier.
In 1953, Wangsness and Bloch (R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953)) presented
a framework for the theoretical discussion of spin relaxation due to environmental interactions, that
evolved into theory of the Bloch equations in a later paper by Bloch (F. Bloch, Phys. Rev. 105, 1206
(1957)) and the more rigorous description by Redfield (A. G. Redfield, IBM J. Res. Develop. 1,
19 (1957)); see Section 10.4.8). Marcus (R. A. Marcus, J. Chem. Phys. 24, 966; 979 (1956); see
Chapter 16) has laid the foundation of the theory of electron transfer in polar solvents and Holstein
(T. Holstein, Ann. Phys. (NY), 8, 325; 343 (1959)) published his treatise of polaron formation and
dynamics in polar crystals. Much of the later condensed phase literature has been reviewed by Leggett
et al. (A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger, Rev. Mod.
Phys. 59, 1 (1987)), see also H. Grabert and A. Nitzan, editors, Chem. Phys. 296(2-3) (2004). In
many ways the problem of a few level system interacting with the radiation field (Chapter 18) also
belong to this class of problems.
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to nuclear vibrations, environmental phonons, and photon modes of the radiation
field fall within this class of problems. The present chapter discusses this model
and some of its mathematical implications. The reader may note that some of the
subjects discussed in Chapter 9 are reiterated here in this more general framework.

12.1 Introduction

In Sections 2.2 and 2.9 we have discussed the dynamics of the two-level system and
of'the harmonic oscillator, respectively. These exactly soluble models are often used
as prototypes of important classes of physical system. The harmonic oscillator is an
exact model for a mode of the radiation field (Chapter 3) and provides good start-
ing points for describing nuclear motions in molecules and in solid environments
(Chapter 4). It can also describe the short-time dynamics of liquid environments
via the instantaneous normal mode approach (see Section 6.5.4). In fact, many lin-
ear response treatments in both classical and quantum dynamics lead to harmonic
oscillator models: Linear response implies that forces responsible for the return of
a system to equilibrium depend linearly on the deviation from equilibrium—a har-
monic oscillator property! We will see a specific example of this phenomenology
in our discussion of dielectric response in Section 16.9.

The two-level model is the simplest prototype of a quantum mechanical system
that has no classical analog. A spin % particle is of course an example, but the
same model is often used also to describe processes in multilevel systems when
the dynamics is dominated by two of the levels. The dynamics of an anharmonic
oscillator at low enough temperatures may be dominated by just the two lowest
energy levels. The electronic response of a molecular system is often dominated by
just the ground and the first excited electronic states. Low temperature tunneling
dynamics in a double well potential can be described in terms of an interacting
two-level system, each level being the ground state on one of the wells when it is
isolated from the other. Finally, as a mathematical model, the two-level dynamics is
often a good starting point for understanding the dynamics of a few level systems.

The prominence of these quantum dynamical models is also exemplified by
the abundance of theoretical pictures based on the spin—boson model—a two
(more generally a few) level system coupled to one or many harmonic oscillat-
ors. Simple examples are an atom (well characterized at room temperature by its
ground and first excited states, that is, a two-level system) interacting with the
radiation field (a collection of harmonic modes) or an electron spin interacting with
the phonon modes of a surrounding lattice, however this model has found many
other applications in a variety of physical and chemical phenomena (and their
extensions into the biological world) such as atoms and molecules interacting with
the radiation field, polaron formation and dynamics in condensed environments,
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electron transfer processes, quantum solvation phenomena, spin—lattice relaxation,
molecular vibrational relaxation, exciton dynamics in solids, impurity relaxa-
tion in solids, interaction of magnetic moments with their magnetic environment,
quantum computing (the need to understand and possibly control relaxation effects
in quantum bits, or qubits), and more. In addition, the spin—boson model has been
extensively used as a playground for developing, exploring, and testing new theor-
etical methods, approximations, and numerical schemes for quantum relaxation
processes, including perturbation methods, exactly solvable models, quantum-
numerical methodologies and semiclassical approximations. A few of these results
and applications are presented below.

12.2 The model

We consider a two-level system coupled to a bath of harmonic oscillators that
will be referred to as a boson field. Two variations of this model, which differ
from each other by the basis used to describe the two-level system, are frequently
encountered. In one, the basis is made of the eigenstates of the two-state Hamiltonian
that describes the isolated system. The full Hamiltonian is then written

1:1 = ]A{() + 175]3 (12.1)

where the zero-order Hamiltonian describes the separated subsystems (see
Fig. 12.1)

Hy = Hy + Hp = E|[1)(1] + E2(2) 2] + ) _ hovadtl (12.2a)
o
and the coupling is taken in the form

2

Vse= 3 D ViulnG'l@l + aw (12.2b)

ji=1 @

The rationale behind this choice of system—bath interaction is that it rep-
resents the first term in the expansion of a general interaction between the

E,
1% Phonons or
AE et S B) photons
i 5. ald,

Fig. 12.1 The spin—boson model for a two-level molecule coupled to a system of harmonic
oscillators.
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two-level system and the harmonic bath in the bath normal mode coordinates,
Xo =R/ (2mawa)(&:§, + ay), that express deviations from the minimum energy
configuration.? In other situations the coupling takes place through the momentum
operator which is linear in (&Z — dy). An example is the important case of system—
radiation field coupling. If the system does not have a permanent dipole moment the
coupling Vsp is non-diagonal in the system states and takes the form (cf. Eq. (3.27))

Vsp=—i) > 22?2”"[0112 Co )21 + (21 - 010 12) (1 1@k, — ] )
k ok
(12.3)
where i is the system dipole operator and where the harmonic modes are
characterized in terms of the wavevector k and the polarization vector o.
In the second model, the basis chosen to describe the two-level (or few level)
system is not made of the system eigenstates. In what follows we denote these states

L) and |R)

I:I = [A{() + Vs + I}SB (12.4)
Hy and Vs have the forms (12.2)
Hy = Hoy + Hop = ELIL){L| + ERIR) (R| + ) hoadlds (12.52)
o
R
Ve =Y Y VEHINUI@] + aa) (12.5b)
Jij'=L @

and the additional term is the non-diagonal part of the system Hamiltonian
Vs = VERIL) (R + Vi IRV (LI (12.6)

Sometimes this is done as a computational strategy, for example, atomic orbitals are
used as a basis set in most molecular computations. In other cases this choice reflects
our physical insight. Consider, for example, tunneling in a double well potential
U, Fig. 12.2(a), where the barrier between the two wells is high relative to both
the thermal energy kpT and the zero-point energy in each well. We have already
indicated that a two-level model can be useful for describing the low-temperature
dynamics of this system. Denoting by v/, and vz the wavefunctions that represent
the ground states of the separated potentials Uy, Fig. 12.2(b), and Ug, Fig. 12.2(c),

% The zero-order term of this expansion, which is independent of xy, just redefines the zero-
order Hamiltonian. Disregarding higher order reflects the expectation that in condensed phases the
deviations x¢ from the minimum energy configuration are small.
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Up()

(b)
Ux)
Ur(x)

(©)
(a)

X

Fic. 12.2 A double well potential U (x) (a) and the potentials Uy (x) and Ug(x), (b) and (c), which
define the states |L) and |R) used in the local state representation of a 2-level system.

respectively, the two lowest states of the potential U are approximated well by the
even and odd linear combinations, Y1 » = V¥, £ ¥g. While | » represent the exact
ground states of the potential U (x), tunneling is more readily described in terms of
transitions between the local states ¥ and ;.

It should be emphasized that, while the two models, Eqs (12.1), (12.2) and
(12.4)—(12.6) are mathematically just different representations of what may be seen
as the same Hamiltonian, they are used in different physical contexts. The former
model is used to describe transitions between system eigenstates that are induced
by the interaction of a two-level system with a boson field, as exemplified by the
interaction between a system and a radiation field, Eq. (12.3). In contrast, the latter
model is used to examine the effect of a boson bath on the transition between states
of the system that are (1) coupled to each other also in the absence of this field
and (2) associated with distinctly different polarizations of the boson environment
in the different system states. This is exemplified by the electron transfer problem
discussed in Chapter 16, where states L and R correspond to charge localization at
different spatial positions in a polar solvent. Obviously, a two-level system may be
described in terms of its eigenstates or any other basis, and the dynamics caused
by its coupling to an external field or a thermal bath can be studied in any rep-
resentation. Physical reality often guides us to choose a particular representation.
In the tunneling example discussed above and in the electron transfer problem of
Chapter 16 the local state representation is convenient because the system can be
initially prepared such a local state. We have encountered a similar example in
Chapter 9, where the study of the decay of a prepared “doorway” state coupled to a
continuous manifold of background states was studied in the representation defined
by these states and not by the eigenstates of the system Hamiltonian, because such
a doorway state could be experimentally prepared and monitored.
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Choosing a physically motivated representation is useful in developing phys-
ically guided approximation schemes. A commonly used approximation for the
model (12.4)—(12.6) is to disregard terms with j # j’ in the system—bath interaction
(12.5b). The overall Hamiltonian then takes the form

H= [EL + Y V@l + aa)} IL)(L| + |:ER +Y Vi@l + &a):| IR) (R

o

+ VIRILYR| + VRLIRY(L] + Y howdl e (12.7)
o

The spin—boson coupling in this Hamiltonian is diagonal in the local state basis.
The rationale for this model is that in this local state representation bath induced
coupling between different local states is small relative to the interstates coupling
Vrr because the corresponding local wavefunctions almost do not overlap. However
the bath affects the system in states L and R in a substantial way. Its effect in the
Hamiltonian (12.7) appears as fluctuations in the local state energies associated with
the instantaneous configurations of the harmonic bath (again expanded to first order
in the bath coordinates). Interestingly, the Hamiltonian (12.7) can be transformed
to a form similar to (12.3) but with a nonlinear coupling to the boson field. This is
shown in the next section.

12.3 The polaron transformation
Consider the n-level equivalent of the Hamiltonian (12.7)
=3 (E + ngfca) m)(nl + > Vawln) (0 |+Hs(Pan2a})  (12.8)
n o n#n'

where (using (2.153))

2
8na = V,;X m;wa (12.9)
and where
]32 1 222
A A o R
HB({pa,Xa}) = Xa: (% -+ Emaa)axa) (1210)

is the harmonic bath Hamiltonian, with Xy, py, @,, and m, denoting the position
and momentum operators, the frequency and mass, respectively, of the harmonic
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bath modes. We now carry the unitary transformation, known as the polaron
transformation

AH=UHU";  U=]]0, (12.11a)
Un = exp(—i|n) (nlen), Qn = Z S,\Zn,oz (12.11b)
o
A SnaDa . A 8na 0
e hmaa)g Phoma maa)gl 0Xy ( 2

Now use Eq. (2.178) to find

2
A n A D2 1
L o G ¥ L)
o

o

=Hp + Z(Z g"“)m (n] — Z( gnaxa> n)(nl  (12.12)

n n
g2
=YY =iyl (12.13)
P p maa)a

in deriving (12.12) and (12.13) we have used (|n) (n])? = |n)(n|, and the fact that
when evaluating transformations such as Uz, U1 the operator |n)(n| in U, can be
regarded as a scalar. In addition it is easily verified that

Uy (En + ngfca) my(n| U~ = (E + Zmﬁm) In) (n]

T X M1y 1 X I 1S — =) 012y 1y (g, [172) 12120
i(Q2ny—S2ny)
(12.14)

= ny) (my e’ = |y} (male
Equations (12.8) and (12.11)—(12.14) yield

= Z<E_ (Z 2;5"0;) )) )1+ 3 Ve 0 ) (| 4 g (pas )

n#n’'

=Ho+ Y Ve @ n) (| (12.15)
n#n'
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In this transformed Hamiltonian Hj again describes uncoupled system and bath;
the new element being a shift in the state energies resulting from the system—bath
interactions. In addition, the interstate coupling operator is transformed to

V=V ln) (0| = V = Ve "m0 ) (| = 1, e ek @105 )
(12.16a)
with
Ena

2
o

A = )L((xn) _ )L((x”); )L((x”) = (12.16b)

My
To see the significance of this result consider a typical matrix element of this

coupling between eigenstates of Hy. These eigenstates may be written as |n, v) =
|n) xv({x4}), where the elements v, of the vector v denote the states of different
modes «, that is, x,v({xe}) = [], xv, (x«) are eigenstates of f]B and y,, (xq) 18
the eigenfunction that corresponds to the vy th state of the single harmonic mode «.
A typical coupling matrix element is then

VIV V') = Vi Oty (D1 =20 [ () (12.17)

that is, the coupling between two vibronic states |n,v) and |n/, V') is given by the
bare interstate coupling V,, ,» “renormalized” by the term

Ot (e D le ™ @20 ey (o)) = [T Otv Oa)le ™" @050 1 ()

o

= l_[ (ve ) oy, (o — ABT)) (12.18)

The absolute square of these term, which depend on v, v/, and the set of shifts
{xa" ), are known as Franck—Condon factors.

12.3.1 The Born Oppenheimer picture

The polaron transformation, executed on the Hamiltonian (12.8)—(12.10) was seen
to yield a new Hamiltonian, Eq. (12.15), in which the interstate coupling is “renor-
malized” or “dressed” by an operator that shifts the position coordinates associated
with the boson field. This transformation is well known in the solid-state physics
literature, however in much of the chemical literature a similar end is achieved via a
different route based on the Born—Oppenheimer (BO) theory of molecular vibronic
structure (Section 2.5). In the BO approximation, molecular vibronic states are of
the form ¢,(r, R) x,v(R) where r and R denote electronic and nuclear coordin-
ates, respectively, ¢, (r, R) are eigenfunctions of the electronic Hamiltonian (with

corresponding eigenvalues Eéf) (R)) obtained at fixed nuclear coordinates R and
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xnv(R) are nuclear wavefunctions associated, for each electronic state n, with a

nuclear potential surface given by Eg') (R). These nuclear potential surfaces are
therefore different for different electronic states, and correspond within the har-
monic approximation to different sets of normal modes. Mathematically, for any
given potential surface, we first find the corresponding equilibrium position, that is,
the minimum energy configuration £ gli @ and make the harmonic approximation by
disregarding higher than quadratic terms in the Taylor expansion of the potentials
about these points. The eigenvectors and eigenvalues of the Hessian matrices of the
nth surface, Hgf()x, = (9%E éln) (R)/0Ry0Ry)eq, yield the normal-mode coordinates,

x™ = {x} and the corresponding frequencies {w(”} of the nuclear motion. In
this harmonic approximation the potential surfaces are then

1
EXPR) = E, + 5 D Mawl 5 (12.19)
o

where E,, = Eéﬁlq.

The sets of normal modes obtained in this way are in principle different for
different potential surfaces and can be related to each other by a unitary rotation in
the nuclear coordinate space (see further discussion below). An important simpli-
fication is often made at this point: We assume that the normal modes associated
with the two electronic states are the same, {xé") } = {x«}, except for a shift in their

equilibrium positions. Equation (12.19) is then replaced by
1
EQ(R) =E, + 5 D Maty (o = 1)
o
=Ey+ ) hwy (g — AJ")° (12.20)
o

where the dimensionless coordinates and shifts are defined by

m;;”“; A = —mg;"‘ (12.21)

A schematic view of the two potential surfaces projected onto a single normal
mode is seen in Fig. 12.3. The normal mode shifts )»((,") express the deviation of
the equilibrium configuration of electronic state n from some specified reference
configuration (e.g. the ground state equilibrium), projected onto the normal mode
directions. Other useful parameters are the single mode reorganization energy Ey,
defined by the inset to Fig. 12.3,

E® = hwgAl (12.22a)
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Fic. 12.3 A schematic view of the shifted potential surfaces model, shown for simplicity as a one-
dimensional (single mode) representation. The inset is a similar figure on a different scale that shows
the reorganization energy Er.

and the corresponding total reorganization energy

E =) E (12.22b)
o

What is the justification for this approximation? Our accumulated experience in
molecular spectroscopy involving low-lying electronic states teaches us that many
optical spectra can be interpreted approximately using model nuclear potential
surfaces in which the identities of the normal-mode coordinates do not change
in the electronic transition. A geometrical picture of this observation is that the
harmonic surfaces shift in parallel with each other. Mixing the normal modes will
amount in this picture to a relative rotation of the potential surfaces between the
different electronic states, and the assumption is that this rotation is small and
may be disregarded to first approximation. Note that this does not mean that the
molecular shape remains constant in the transition. Any change in the equilibrium
position of a normal mode that is not totally symmetric in the molecular symmetry
group will lead to a change in molecular shape.

To summarize, the Born—Oppenheimer states are of the form ¢, (r, R) x,.v(R)
where the vibrational wavefunction x,yv(R) is an eigenstate of the nuclear

Hamiltonian A l(;”) associated with the electronic state #n. In the harmonic approx-
imation these Hamiltonians are separable, ﬁé") =Y, izna, so that x,yv(R) =

[ 1y xnvy (xo) where x,,,, are eigenfunctions of the mode Hamiltonians iz,,a. In the
shifted harmonic surfaces model these normal modes keep their identity in different
electronic states, except that their equilibrium positions depend on the electronic
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state. Formally this can be expressed as
oo = Ughio U (12.23)
where Uy, is the unitary position shift operator (Eqgs (2.173) and (2.175))
0, = e a@/0%) _ gha(iy—ia) (12.24)

and X, is the shift associated with mode « between the two electronic states (same
as Aé,’z in the notation of Eq. (12.16)).

Consider now transition between vibronic levels associated with different elec-
tronic states that are described in the Born—Oppenheimer approximation. Any
residual coupling ¥ (r,R) not taken into account under the BO approximation, as
well as coupling induced by external fields, can cause such transitions. For allowed
optical transitions this is the electronic dipole operator. Electronic radiationless
relaxation following optical excitation in molecular processes is best described
in the full BO picture, whereupon perturbations that lead to interstate coupling
between states of the same spin multiplicity stem from corrections to this picture
(Eq. (2.53)). Charge transfer processes (Chapter 16) are usually described within
a diabatic local state picture, where the dominant interaction is associated with
electrons on one center feeling the other. In either case, a general coupling matrix
element between two vibronic states ¢, (r,R) x,v(R) and ¢,/ (r,R) x, v/ (R) is of
the form .

Vn,v;n/,v/ = <Xn,v|<¢n| Vr, R)|¢n/>r|Xn’,v/>R (12.25)
where () and ()r indicate integrations in the electronic and nuclear subspaces,
respectively. In the so-called Condon approximation the dependence of the
electronic matrix element on the nuclear configuration is disregarded, that is,
(dnl I7(r, R)|¢y)r — Vpn 1s taken to be independent of R, whereupon

Vi v = Vo Xy Xw v ) g (12.26)

In the shifted harmonic surfaces model x,v(R) = [], Xnv, (¥a) and x,y v (R) =
I, X' v, (X — Ag’"/), so Eq. (12.26) is identical to (12.17) and (12.18).

We have thus found that the interstate coupling (12.17) associated with the
Hamiltonian (12.15) is the same as that inferred from the Born—Oppenheimer pic-
ture in the Condon approximation, under the assumption that different potential
surfaces are mutually related by only rigid vertical and horizontal shifts.? In spite

3 Note that the term >« 8naXo in Eq. (12.8) contributes both horizontal and vertical shift: Limiting
ourselves to the contribution of a single mode « we have: £, + goxo = (1/ 2)mw§x§ + guXe =
(1/2)ma)2 (xq — Aa)z — (1/2)ma)§)% where Ay = ga/(ma)gt). The associated vertical shift is
ay/ 2)mw§ )% = gg[/ (2mw§) which is indeed the vertical shift contribution that enters in Eq. (12.15).
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of the approximate nature of the shifted harmonic surfaces picture, this model is
very useful both because of its inherent simplicity and because it can be sometimes
justified on theoretical grounds as in the electron transfer problem (Chapter 16).
The parallel shift parameters A can be obtained from spectroscopic data or, as again
exemplified by the theory of electron transfer, by theoretical considerations.

12.4 Golden-rule transition rates

12.4.1 The decay of an initially prepared level

Let us now return to the two model Hamiltonians introduced in Section 12.2, and
drop from now on the subscripts S and SB from the coupling operators. Using
the polaron transformation we can describe both models (12.1), (12.2) and (12.4)—
(12.6) in a similar language, where the difference enters in the form of the coupling
to the boson bath

H=Hy+V (12.27a)

Hy = E\[1){1] + E212)(2| + Hp
R 12.27b
Hp =" howdla, (12:270)
o

In one coupling model we use (12.2b) where, for simplicity, terms with j = ;" are
disregarded

V=101 Vi@l 4 aw) + 121D VS @+ a) (12.28a)
o o

Sometimes an additional approximation is invoked by disregarding in (12.28a)
terms that cannot conserve energy in the lowest order treatment. Under this so-called
rotating wave approximation® the coupling (12.28a) is replaced by (for E; > E})

Trwa = D@1 Vhal + 12001 V8 aa (12.28b)
o o

* The rationale for this approximation can be seen in the interaction picture in which ¥’ becomes
Vi(t) = exp((i/h)Hot)V exp(—(i/h)Hot)

= [1){2] exp((i/W)(E1 — ED) Y Vil (@l expliont) + da exp(—iwat)) + h.c.

The RWA keeps only terms for which £1 — Ey & hwy can be small, the argument being that strongly
oscillating terms make only a small contribution to the transition rate.
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In the other model, Eq. (12.15) written for a two-state system, Hyis given again by
(12.27b), however now

) = 1126/ 1) 2] 4 1y 70 ) (1] (12.292)
Q- O = Zw Zz,\ @l — ag) (12.29b)
hmg a)

where we have dropped the tilde notation from the Hamiltonian, denoted AS | simply
by A and have redefined the energies E, to include the shifts Y g2,/ (2mq?) that

o
were written explicitly in Eq. (12.15). We have also defined (compare Eq. (2.176))

_ mawa gla mawa (12.30)
o V mgw? '

Equations (12.28) and (12.29) describe different spin-boson models that are
commonly used to describe the dynamics of a two-level system interacting with a
boson bath. Two comments are in order:

(a) The word “bath” implies here two important attributes of the boson subsys-
tem: First, the boson modes are assumed to constitute a continuum, characterized
by a density of modes function g(w), so that the number of modes in a frequency
range between w and w + dw is given by g(w)dw. Second, the boson field is large
and relaxes fast relative to the dynamics of the two-level system. It can therefore
be assumed to maintain its equilibrium state throughout the process.

(b) The couplings terms (12.28a) and (12.29a) that characterize the two models
differ from each other in an essential way: When the spin-boson coupling vanishes
(fo2 = 0 for all @ in (2.28); g14 = Q¢ for all « in (2.29)) the exact system

Hamiltonian becomes f]o in the first case and f[o + V in the second. The basis
states |1) and |2) are therefore eigenstates of the free system in the first case, but
can be taken as local states (still coupled by V' therefore equivalent to |L) and |R)
in Eq. (12.5)) in the second.

As an example consider, within the model (12.29), the time evolution of the
system when it starts in a specific state of f[o, for example, ¥ (t = 0) = |2,v) =
12) [ [, 1va) where |v,) is an eigenfunctions of the harmonic oscillator Hamiltonian
that represents mode « of the boson bath, with the energy (vy + (1/2))hw,. In the
absence of coupling to the boson field, namely when A, = 0, that is, Q—Q =0in
(12.29), the remaining interstate coupling V'1» cannot change the state v of the bath
and the problem is reduced to the dynamics of two coupled levels (|2, v) and |1, v))
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AEI
Bl —

Fic. 12.4 A dressed-states representation of the model of Fig. 12.1.

discussed in Section 2.2, yielding the solution (for W (# = 0) = |2); cf. Eq. (2.32))
Py(t) =1—Pi(1)

4|V12|2 . 5 [%} (1231)

Pi(t) = n
{0 = E B2+ ap 2

where QR is the Rabi frequency, Qr = (1/h)\/(E2 — E1)? 4 4|V12|2. Two facts
are evident: (1) The specification of the bath state |v) is immaterial here, and (2) in
this case we cannot speak of a rate that characterizes the 1 <> 2 transition.

The coupling to the boson bath can change this in a dramatic way because initial
levels of the combined spin—boson system are coupled to a continuum of other
levels. Indeed Fig. 12.1 can be redrawn in order to display this feature, as seen in
Fig. 12.4. Two continuous manifolds of states are seen, “seating” on level 1 and
2, that encompass the states |1,v') = [1)[], [v,) and [2,v) = |2) ], [v«) With
zero-order energies £y and E; y, respectively, where

En,v = Ey; + Evoson(V) = E, + Za hwg (ve + (1/2)) (12.32)

The continuous nature of these manifolds stems from the continuous distribution of
boson modes. The picture is altogether similar to the dressed state picture discussed
in Sections 9.2 and 9.3, where states 1 and 2 were ground and excited molecular
electronic states, while the boson subsystem was the radiation field, and where we
have considered a specific case where level 2 with no photons interacts with the
continuum of 1-photon states seating on the ground state 1.

The initial state, W(t = 0) = [2,v) = [2) [], [va), is a state of the overall
system—a particular level in the state manifold 2. The general considerations of
Section 9.1 (see also Section 10.3.2) have taught us that under certain fairly general
conditions the probability to remain in this level decays exponentially by transfer
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to states in the manifold 1, with a rate given by the golden-rule formula

2 A
kicay = 5= D IQVPILY)PS(Ery — Er) (12.33)
v/

The assumption that thermal relaxation in the bath is fast relative to the timescale
determined by this rate (see statement (2) of Problem 12.1) makes it possible to
define also the thermally averaged rate to go from state 2 to state 1

2w N
kea === ;Pv Z (2, VIV 11,V ?8(Eay — E1y) (12.34)
\ 4

where (denoting Ey = Eposon(V))
e Py B e—ﬁEv'
Q2 B Qboson ’
O = Z eiﬂEz’v; Oboson = Z e P (12.36)
A\ \ 4

Py = B = (kgT)~! (12.35)

is the canonical distribution that characterizes the boson bath.

Problem 12.1. Refer to the general discussions of Sections 9.1 and 10.3.2 in
order to explain the following two statements: (1) Eq. (12.33) for the par-
tial rates and hence Eq. (12.34) for the thermally averaged rate are valid rate
expressions only if the partial rates (12.33) are larger than the inverse of
hp1(Ezy) = h) v 8(Eayy — E1y). (2) The thermally averaged rate, k>, of
Eq. (12.34), is meaningful only if it is much smaller than the rate of thermal
relaxation between the levels v of the initial “2”” manifold.

An important observation, made in statement (1) of Problem 12.1, is that we do
not really need a continuous distribution of modes in the boson field in order for
the manifold (1v') to be practically continuous in the sense that the rate expressions
(12.33) and (12.34) are valid. A large finite number, N > 1, of modes can provide
a sufficiently large density of states in manifold 1, p;(E2y), with energies Ejy =
221:1 (v, + 1/2)hwg in the neighborhood of the energy E» y, provided the energy
gap Ey — Ej is large enough (a reasonable criterion is £ — E; > h{w) where
w is the average mode frequency). This stems from the huge number of possible
combinations of occupation numbers v, that will yield an energy £y in a finite
neighborhood of any energy E> y. This is demonstrated by Problem 12.2.
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Problem 12.2. Obtain a rough estimate of the density of vibrational states p (E)
as a function of energy, for a molecule that contains 30 harmonic modes of
average frequency w = 500 cm™! using the following procedure: Assume first
that all the modes have the same frequency, 500 cm™!. Then the only possible
energy levels (relative to the ground vibrational state) are integer products of
this number, £(L) = 500 x L. Calculate the degeneracy D(L) of the energy
level E£(L) and estimate the actual density of states from the results obtained.
How fast does k1., need to be for an expression like (12.33) to be valid if
E>; = 10,000 cm™!?

Solution: For N modes and £ = hwL we have L indistinguishable quanta that
should be distributed among these N modes. The number of possibilities is a
standard problem in combinatorics and the result, (N + L — 1)!/[(N — 1)!L!],
is the degeneracy of a level of energy £. The density of states can be roughly
estimated to be p(E) = [(N + E/hw — D!/[(N — DI(E/hw)!]/fiw. For v =
500 cm~! and £ = 10000 cm™! this is 49!/(29!120!)/500 ~ 5.7 x 10'0 cm,
that is, p ~ 5.7 x 109 states per wavenumber or ~2.8 x 10® states per erg.
This translates into the time t = hp ~ 0.28 s. The rate therefore has to be faster
than 3.6 s~! for expression (12.33) to hold.

The interstate energy E»1, the number of modes N, and the frequency w used
in the estimate made in Problem 12.2 are typical for moderately large molecules.
This rationalizes the observation that electronically excited large molecules can
relax via radiationless pathways in which population is transferred from the excited
electronic state to higher vibrational levels of lower electronic states. We may con-
clude that large isolated molecules can, in a sense, provide their own boson bath
and relax accordingly. In such cases, however, the validity of the assumption that
thermal relaxation in the boson bath is faster than the 1 <> 2 transition dynamics
may not hold. Radiationless transition rates between electronic states of the same
spin multiplicity can be as fast as 10°—10'> s~! 3 while thermal relaxation rates vary.
For large molecules in condensed phases thermal equilibrium of nuclear motion is
usually achieved within 1-10 ps. For small molecules and for molecules in the gas
phase this time can be much longer. In such situations the individual rates (12.33)
may have to be considered specifically. We will not consider such cases here.

> Nonradiative rates that are considerably slower than that will not be observed if the 2— 1
transition is optically allowed. In the latter case radiative relaxation (i.e. fluorescence) on timescales
of 1078-10~ s will be dominant.
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12.4.2 The thermally averaged rate

We now proceed with the thermally averaged 2 — 1 rate, Eq. (12.34), rewritten in
the form

2w N
ko= Py ) 1VI72,1IV)P8(E2 = Bt + Broson(¥) = Eboson (V)
\4 v/

(12.37)
We will evaluate this rate for the two models considered above. In the model of
(12.28a)

Na=> 1@k +aw); Vo =) V8@l +a; Vs =0
[07 o

(12.38)
while from (12.29) in
~ _Z)_‘a(al_aa) A T oAt A
V],Z — Vl,ze o ; VZ,] — Vz,leZ(x )\a(aa_ao(); V2,1 — V1*,2
(12.39)

Now use the identity 6 (x) = (27 h) -1 f fooo dte™/" 1o rewrite Eq. (12.37) in the form

V/

o0
!y~ . . o
k1<—2 =ﬁ PV E <V|V2,1|V,><V/|V1’2|V> / dtel(Ezv Elvr)l/h
v
—o0

o
1 . A R A R
— ﬁ / dtezEz,lt/h ZPV (VlelHBt/th,le_lHBt/h Z (|V/) (V/|)V1,2|V)
—00 v v/
1 o
= / de B2 (1) V12) (12.40)
—00

where By = E» — Ej, 172,1(t) = ¢!st/h 172,1@*"[131/ " is the interaction operator
in the Heisenberg representation and where (- - - ) denotes a thermal average in the
boson subspace. To get this result we have used the fact that ), (|v')(v']) is a unit
operator in the boson subspace.

Problem 12.3. Explain the difference in the forms of Eqs (12.40) and (6.20).

We have thus found that the k| is given by a Fourier transform of a quantum
time correlation function computed at the energy spacing that characterizes the
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two-level system,

o0

1 -~ - .
kiep = ﬁCm(EZ,l/h); Cr(w) = / dte' Cy (1);

—0o0

(12.41)

Co1 () = (Va1(O712)

Problem 12.4.

(1) Assume that an expression analogous to (12.33) holds also for the
transition |1, v') — 2, that is,

k2<—1v/=—2|(2 VIVILV) P8 (B — Ery) (12.42)

(when would you expect this assumption to be valid?), so that the
thermally averaged 1 — 2 rate is

kpet = — v/Z|2v|V|1 WP8(Eaw — Ery)  (1243)

Using the same procedure as above, show that this leads to

o0

1 —iE>1t/h 1 0
kre1 = ] dte” "2 Cra(2); Cia(t) = (Va0 V21) (12.44)

—00
(2) Use Eqgs (12.41), (12.44), and (6.73) to show that
kye1 = kype F21/ksT (12.45)

that is, the rates calculated from the golden-rule expression satisfy detailed
balance.

12.4.3 Evaluation of rates

For the model (12.28a) 14 2 and 172 | are given by Eq. (12.38) and the correspond-
ing Heisenberg representation operator is Vj ;(¢) = YoV i k(aa elvel 4 g e iwal)
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wherej = 1,k =2 orj = 2, k = 1. Using this in (12.41) yields
Co () = Cio() = Y _ V5 M (@) awe™ + aaafe ')
o

= fdwg(w)lV1,2(w)|2(n(a))ei“’t + (n(w) + De™ @) (12.46)
0

where n(w) = (/™ — 1)~ is the thermal boson occupation number and g(w) =
Y o 8(w — wy) is the density of modes in the boson field.® We note in passing that
the function ), |fo2|28 (w—wy) = g(a))lVl,z(a))l2 is essentially the spectral
density, the coupling weighted density of modes (see Sections 6.5.2, 7.5.2, and
8.2.6), associated with the system—bath coupling. We have discussed several models
for such functions in Sections 6.5.2 and 8.2.6.

Using Eq. (12.46) in (12.41) we find that for £5; > 0 the term containing
exp(iwt) in (12.46) does not contribute to kj.». We get

27
ks = ﬁg(wz,l)lV1,2(w2,1)|2(n(w2,1) +1); wr =Ey1/h (12.47)

Similarly, Eq. (12.44) yields

21
kpet = ﬁg(wz,l)lV1,2(w2,1)|2n(w2,1) (12.48)

Note that for a model characterized by an upper cutoff in the boson density of
states, for example, the Debye model, these rates vanish when the level spacing
of the two-level system exceeds this cutoff. Note also that the rates (12.47) and
(12.48) satisfy the detailed balance relationship (12.45).

Next consider the model defined by Eqs (12.27) and (12.29). The correlation
functions C»;(¢) and C;,(¢) are now

Cn () = (Vo 2) = VP S50 (12.492)
o
where L _ .
CS, (1) = (ehal@ae™ ! —aae™) g —halla—la)) (12.49b)

® The function Vi2(w) is defined by a coarse-graining procedure, Zwa cAw |Vf‘2|2 =
Aa)g(a))lVl’z(w)l2 where wy € Aw denotes w + Aw/2 > wy > w — Aw/2 and Aw is large
relative to (g(w)) 1. A formal definition is |V12(0)?| = g1 (@) Y V% 128(0 — wa).
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and
Cia(t) = (a0 21) = V2P [ ] Cl (12.50a)
o
T T iwgt 5 —iwgty 3 (a7~
C (1) = (e Gad™ —dae™) gha (@a=la)) (12.50b)

These quantum thermal averages over an equilibrium boson field can be evalu-
ated by applying the raising and lowering operator algebra that was introduced in
Section 2.9.2.

Problem 12.5. Use the identities
AeB — A+B(1/DIAB] (12.51)
(for operators ;1, B which commute with their commutator [1:1, fAB]) and
@y = eV/DUENT (Bloch theorem) (12.52)
(for an operator A that is linear in & and a*) to show that

K = (endthid’ goitpraly et Bi+p) 1/ D@ pr-Bier) (12 53)

where n = (afa) = (efh — 1)1,

Using (12.53) to evaluate (12.49b) and (12.50b) we get

(1) = C% (1) = e 2t DHRZ (@t et et (12.54)
So that
ki 2 = k(w21); w1 = (E2 — EY)/h (12.55a)
o
2 _ o _
k(a)zl) = |Vh1;| e Za )‘gz(znot"_l) / dteinIt"_Za )‘gz(naelwaf"'(na"'l)ei’wat) (1255b)

—0o0

Equations (12.55), sometime referred to as multiphonon transition rates for reasons
that become clear below, are explicit expressions for the golden-rule transitions
rates between two levels coupled to a boson field in the shifted parallel har-
monic potential surfaces model. The rates are seen to depend on the level spacing
E»1, the normal mode spectrum {wy}, the normal mode shift parameters {A,}, the
temperature (through the boson populations {n,}) and the nonadiabatic coupling
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parameter |V13|%. More insight on the dependence on these parameters is obtained
by considering different limits of this expression.

Problem 12.6. Show that in the limit where both 2 and A2 n, are much smaller
than 1, Eqs (12.55a) and (12.55b) yield the rates (12.47) and (12.48), respectively,
where |V'{,|* in Eq (12.46) is identified with [ V12| %A so that | V12 (w)|* in (12.48)
is identified with | V12|22 (w).

The rate expressions (12.47) and (12.48) are thus seen to be limiting forms of
(12.55), obtained in the low-temperature limit provided that )_% < 1 for all .
On the other hand, the rate expression (12.55) is valid if V7, is small enough,
irrespective of the temperature and the magnitudes of the shifts 2.

12.5 Transition between molecular electronic states

Transitions between molecular electronic states are often described by focusing
on the two electronic states involved, thus leading to a two-state model. When
such transitions are coupled to molecular vibrations, environmental phonons or
radiation-field photons the problem becomes a spin—boson-type. The examples
discussed below reiterate the methodology described in this chapter in the con-
text of physical applications pertaining to the dynamics of electronic transitions in
molecular systems.

12.5.1 The optical absorption lineshape

A direct consequence of the observation that Eqgs. (12.55) provide also golden-
rule expressions for transition rates between molecular electronic states in the
shifted parallel harmonic potential surfaces model, is that the same theory can
be applied to the calculation of optical absorption spectra. The electronic absorp-
tion lineshape expresses the photon-frequency dependent transition rate from the
molecular ground state dressed by a photon, |g) = |g, hw), to an electronically
excited state without a photon, |x). This absorption is broadened by electronic—
vibrational coupling, and the resulting spectrum is sometimes referred to as the
Franck—Condon envelope of the absorption lineshape. To see how this spectrum is
obtained from the present formalism we start from the Hamiltonian (12.7) in which
states L and R are replaced by |g) and |x) and Vg becomes Vg, —the coupling
between molecule and radiation field. The modes {«} represent intramolecular as
well as intermolecular vibrational motions that couple to the electronic transition
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in the way defined by this Hamiltonian,
i = [Eg +ho+ ) VG + %)} 2)(gl + {E + Y V@l + %)} ) (x|
o o

+ Varl@) x| + Vagh) (@] + D heoadf e (12.56)

o

We have already seen that this form of electron—phonon coupling expresses shifts in
the vibrational modes equilibrium positions upon electronic transition, a standard
model in molecular spectroscopy. Applying the polaron transformation to get a
Hamiltonian equivalent to (12.27) and (12.29), then using Eq. (12.34) with £, =
E; = Eq + hw and E1 = Ey leads to the electronic absorption lineshape in the form

Labs(@) ~ Y Py Y (V] e % |xv') |78 (Eg + hew — Ex + Evin(v) — Evip(V)))
v v/

= lpgel®D Py _[(v|e" B V)28 (Eg + heo — Ex + Eyin (V) — Evip (V')
\4 v/

(12.57)

where [1 is the electronic dipole operator, the molecular—electronic part of the
molecule—radiation field coupling, and where in the last expression we have invoked

the Condon approximation. As already discussed, the operator /(=8 affects a
rigid displacement of the nuclear wavefunctions. The matrix elements
(FC)yy = [(v]e! ™)) 2 (12.58)

called Franck—Condon factors, are absolute squares of overlap integrals between
nuclear wavefunctions associated with parallel-shifted nuclear potential surfaces.
A word of caution is needed here. The golden-rule expression, Eq. (12.33) or
(12.43), was obtained for the rate of decay of a level interacting with a continuous
manifold (Section 9.1), not as a perturbation theory result’ but under certain con-
ditions (in particular a dense manifold of final states) that are not usually satisfied
for optical absorption. A similar expression is obtained in the weak coupling limit
using time-dependent perturbation theory, in which case other conditions are not

7 This statement should be qualified: The treatment that leads to the golden-rule result for the
exponential decay rate of a state interacting with a continuum is not a short-time theory and in this
sense nonperturbative, however we do require that the continuum will be “broad.” In relaxation
involving two-level systems this implies E5; > I' =27 V2p, thatis, a relatively weak coupling.



TRANSITION BETWEEN MOLECULAR ELECTRONIC STATES 441

needed. It is in the latter capacity that we apply it here. The distinction between
these applications can be seen already in Eq. (12.33) which, for the zero temper-
ature case (putting v = 0 for the ground vibrational level in the dressed electronic
state |g)), yields

2 .
keego = 5= D 1@, 0171, V) P (Ego — Exy) (12.59)
V/

This expression can be interpreted as a decay rate of level |g, 0) into the manifold
{Ix,v')} only if this manifold is (1) continuous or at least dense enough, and (2)
satisfies other requirements specified in Section 9.1. Nevertheless, Eq. (12.59) can
be used as a lineshape expression even when that manifold is sparse, leading to the
zero temperature limit of (12.57)

Laps (@) ~ |pgel> Y 101" W) P8(Eg + hoo — Ex — Eip(v))  (12.60)

Vv

It displays a superposition of lines that correspond to the excitation of different
numbers of vibrational quanta during the electronic transition (hence the name
multiphonon transition rate). The relative line intensities are determined by the
corresponding Franck—Condon factors. The fact that the lines appear as § functions
results from using perturbation theory in the derivation of this expression. In reality
each line will be broadened and simplest theory (see Section 9.3) yields a Lorentzian
lineshape.

Consider now the 77 — 0 limit of Eq. (12.55b) written for the absorption
lineshape of a diatomic molecule with a single vibrational mode «,

0o
Laps(w) ~ |;Lgx|2e_)—“§ / dte—l.(wxg—w)t_l’_igefiwat
—00
- o 00 1
= |ng|2e—)»§ f dte " (@xg—)t Z Jiéve—ivwat
% =0
~ gl 3 TS g o v — ) (12.61)

v=0

We have seen (Egs (2.185) and (2.186)) that the coefficients in front of the &-
functions are the corresponding Franck—Condon factors, so Eq. (12.61) is just
another way to write Eq. (12.60) with the Franck—Condon factors explicitly
evaluated.
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Equations (12.60) and (12.61) are expressions for the low temperature (i.e.
kpT < hwy) electronic absorption lineshape. The frequency dependence originates
from the individual transition peaks, that in reality are broadened by intramolecular
and intermolecular interactions and may overlap, and from the Franck—Condon
envelope

0 ® < Wxg

FCyv(®))y=(0w— = 72 = 2[(W—wr) /e
(FCo,(@))v=(0—wxg) /0 e‘*ika[(w eg) /@ ]/[(w — )] 0> g

(12.62)
This Franck—Condon envelope characterizes the broadening of molecular electronic
spectra due to electronic—vibrational coupling.

12.5.2 Electronic relaxation of excited molecules

When a molecule is prepared in an excited electronic state, the subsequent time
evolution should eventually take the molecule back to the ground state. This res-
ults from the fact that electronic energy spacings AFE. between lower molecular
electronic states are usually much larger than k7. The corresponding relaxation
process may be radiative—caused by the interaction between the molecule and
the radiation field and accompanied by photon emission, or nonradiative, resulting
from energy transfer from electronic to nuclear degrees of freedom, that is, trans-
ition from an excited electronic state to higher vibrational levels associated with
a lower electronic state. The excess vibrational energy subsequently dissipates by
interaction with the environment (vibrational relaxation, see Chapter 13), leading to
dissipation of the initial excess energy as heat.® The terms radiative and nonradiative
(or radiationless) transitions are used to distinguish between these two relaxation
routes. Both processes can be described within the spin—boson model: In the radiat-
ive case the radiation field can be represented as a set of harmonic oscillators—the
photons, while in the nonradiative case the underlying nuclear motion associated
with intramolecular and intermolecular vibrations is most simply modeled by a set
of harmonic oscillators.

In what follows we focus on the nonradiative relaxation process (the treatment of
radiative relaxation, namely fluorescence, is similar to that of absorption discussed
in the previous section). An important observation is that the mechanism and con-
sequently the rate of the electronic transition depend critically on how the nuclei
behave during its occurrence. Figure 12.5 depicts a schematic view of this process,

8 It is also possible that the molecule will dispose of excess vibrational energy radiatively, that is,
by infrared emission, however this is not very likely in condensed phases because relaxation to
solvent degrees of freedom is usually much faster. Even in low-pressure samples the relaxation due
to collisions with the walls is usually more efficient than the infrared emission route.
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showing two extreme possibilities for this nuclear motion. In the low-temperature
limit route a has to be taken. This is a nuclear tunneling process that accompanies
the electronic transition. In the opposite, high-temperature case pathway b domin-
ates. This is an activated process, characterized by an activation energy £4 shown
in the figure.

We should keep in mind that the two routes: Tunneling in case a and activation
in case b refer to the nuclear motion that underlines the electronic transition. In fact,
the mathematical difference between the rates of these routes stems from the cor-
responding Franck—Condon factors that determine the overlap between the nuclear
wavefunctions involved in the transition. The nuclear wavefunctions associated
with process a are localized in wells that are relatively far from each other and
their mutual overlap in space is small—a typical tunneling situation. In contrast, in
process b the electronic transition takes place at the crossing between the nuclear
potential surfaces where the overlap between the corresponding nuclear wavefunc-
tions is large. This route will therefore dominate if the temperature is high enough
to make this crossing region energetically accessible.

We will see below that the relative importance of these routes depends not
only on the temperature but also on the nuclear shift parameters A, the electronic
energy gap AE, and the vibrational frequencies. We should also note that these
two routes represent extreme cases. Intermediate mechanisms such as thermally
activated tunneling