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Preface

My intention in this book is to provide some understanding of the
various methods that have been proposed for treating time-dependent
processes in statistical mechanics. Some familiarity with equilibrium
statistical mechanics is assumed. Whenever possible, I start with a
simple example, generalize it, and finally discuss its theoretical foun-
dations. The applications treated here were chosen as simple illustra-
tions of a particular method; these choices were motivated by their
utility in chemical physics. The methods, of course, have a much wider
applicability, for example, in biophysics or condensed matter physics or
even in astrophysics. There are no problem sets or exercises; most inter-
esting problems are suitable subjects for serious research, and there is
no point practicing on uninteresting problems. There are few literature
references, only the occasional name and date; a lot of the material has
been around a long time, and some of it is my own work.

In a letter accepting the Rumford medal of the American Academy of
Arts and Sciences in 1881, J. Willard Gibbs wrote

One of the principal objects of theoretical research in any department of
knowledge is to find the point of view from which the subject appears in
its greatest simplicity.

This is a hard standard; I hope that I came close. I am especially indebted
to Attila Szabo, who encouraged me to finish a project I started about
1965 and who worked hard to get me to simplify my often obscure treat-
ments of various topics. My failures are my own, not his.
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1

Brownian Motion and
Langevin Equations

1.1 Langevin Equation and the Fluctuation-
Dissipation Theorem

The theory of Brownian motion is perhaps the simplest approximate
way to treat the dynamics of nonequilibrium systems. The fundamen-
tal equation is called the Langevin equation; it contains both frictional
forces and random forces. The fluctuation-dissipation theorem relates
these forces to each other. This theorem has many important and far-
reaching generalizations. For the present, we focus on the most ele-
mentary version of the theorem.

The random motion of a small particle immersed in a fluid is called
Brownian motion. Early investigations of this phenomenon were made
on pollen grains, dust particles, and various other objects of colloidal
size. Later it became clear that the theory of Brownian motion could
be applied successfully to many other phenomena, for example, the
motion of ions in water or the reorientation of dipolar molecules.

In particular, the theory of Brownian motion has been extended to
situations where the "Brownian particle" is not a real particle at all, but
instead some collective property of a macroscopic system. This might
be, for example, the instantaneous concentration of any component of
a chemically reacting system near thermal equilibrium. Here the irreg-
ular fluctuation in time of this concentration corresponds to the irreg-
ular motion of the dust particle. This kind of extension is of the greatest
importance and will be discussed in depth later.

3



4 NONEQUILIBRIUM STATISTICAL MECHANICS

While the motion of a dust particle performing Brownian motion
appears to be quite random, it must nevertheless be describable by the
same equations of motion as is any other dynamical system. In classi-
cal mechanics, these are Newton's or Hamilton's equations.

Consider the one-dimensional motion of a spherical particle (radius
a, mass m, position x, velocity v) in a fluid medium (viscosity ).
Newton's equation of motion for the particle is

where Ftotal(t) is the total instantaneous force on the particle at time t.
This force is due to the interaction of the Brownian particle with the
surrounding medium. If the positions of the molecules in the sur-
rounding medium are known as functions of time, then in principle, this
force is a known function of time. In this sense, it is not a "random
force" at all. An example that illustrates this point, a Brownian par-
ticle coupled to a heat bath of harmonic oscillators, will be dis-
cussed later.

It is usually not practical or even desirable to look for an exact
expression for Ftotal(t). Experience teaches us that in typical cases, this
force is dominated by a frictional force - v, proportional to the veloc-
ity of the Brownian particle. The friction coefficient is given by Stokes'
law, = 6 a. If this is the whole story, the equation of motion for the
Brownian particle becomes

and, as a linear first-order differential equation, it has the familiar
solution

According to this, the velocity of the Brownian particle is predicted to
decay to zero at long time. This cannot be strictly true because the mean
squared velocity of the particle at thermal equilibrium is (v2)eq = KT/m,
so that the actual velocity cannot remain at zero. Evidently, the assump-
tion that Ftotal(t) is dominated by the frictional force must be modified.

The appropriate modification, suggested by the observed random-
ness of an individual trajectory, is to add a "random" or "fluctuating"
force 8F(t) to the frictional force, so that the equation of motion
becomes
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This is the Langevin equation for a Brownian particle. In effect, the
total force has been partitioned into a systematic part (or friction) and
a fluctuating part (or noise). Both friction and noise come from the
interaction of the Brownian particle with its environment (called, for
convenience, the "heat bath"). Because of this, one should not be sur-
prised to find that there is a fundamental relation between friction
and noise; this will be demonstrated shortly.

There are two basic views of the nature of the fluctuating force. In
the more-commonly presented view, the fluctuating force is supposed
to come from occasional impacts of the Brownian particle with mole-
cules of the surrounding medium. The force during an impact is sup-
posed to vary with extreme rapidity over the time of any observation,
in fact, in any infinitesimal time interval. This clearly cannot be strictly
true in any real system. Then the effects of the fluctuating force can be
summarized by giving its first and second moments, as time averages
over an infinitesimal time interval,

B is a measure of the strength of the fluctuating force. The delta func-
tion in time indicates that there is no correlation between impacts in
any distinct time intervals dt and dt'. The remaining mathematical spec-
ification of this dynamical model is that the fluctuating force has a
Gaussian distribution determined by these moments.

The other view can be illustrated by the analogy of random number
generators in computers. These algorithms are deterministic; that is, if
the same seed in used in repetitions of the algorithm, the same sequence
of numbers is generated. Yet the sequence generated by a good algo-
rithm is "random" in the sense that it satisfies various statistical
requirements of randomness for almost all choices of seed. The output
of a random number generator is used as input to other programs, for
example, Monte Carlo integration. The results are generally indepen-
dent of the initial seed; only the statistical distribution of random
numbers is important. In the same way, the randomness of Brownian
noise is fully determined by the initial state of the heat bath. The
results of a calculation using the Langevin equation are expected to be
independent of the initial state and to involve only the statistical
distribution of the noise. In this view, the averages in eq. (1.5) come
from averages over initial states. A later section shows how all this
can come from a simple harmonic oscillator model of a Brownian
heat bath.

As remarked earlier, the particle's velocity decays to zero in the
absence of noise, but this cannot be so. At thermal equilibrium, we
must require that (v2)eq = kT/m. The Langevin equation, which is a
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linear, first-order, inhomogeneous differential equation, can be solved
to give

(Appendix 1 deals with solutions of equations of this kind.) The first
term gives the exponential decay of the initial velocity, and the second
term gives the extra velocity produced by the random noise. Let us use
this to get the mean squared velocity. There are three contributions to
v(t)2; the first one is

and clearly decays to zero at long times. There are two cross terms, each
first order in the noise,

On averaging over noise, these cross terms vanish. The final term is
second order in the noise:

Now the product of two noise factors is averaged, according to eq. (1.5),
and leads to

The delta function removes one time integration, and the other can be
done directly. The resulting mean squared velocity is

In the long time limit, the exponentials drop out, and this quantity
approaches B/ m. But in the long time limit, the mean squared
velocity must approach its equilibrium value kT/m. Consequently
we find

This result is known as the Fluctuation-dissipation theorem. It relates
the strength B of the random noise or fluctuating force to the magni-
tude of the friction or dissipation. It expresses the balance between
friction, which tends to drive any system to a completely "dead" state,
and noise, which tends to keep the system "alive." This balance is
required to have a thermal equilibrium state at long times. Many
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variations on the fluctuation-dissipation theorem will be encountered
in the following pages.

1.2 Time Correlation Functions

The Langevin equation can be used to calculate various time correla-
tion functions. This section provides an introduction to these important
quantities.

Equilibrium statistical mechanics is based on the idea of a statistical
ensemble. We learn that the thermodynamic properties of a gas, for
example, can be found by calculating the partition function of a statis-
tical ensemble. We learn that the spatial structure of a liquid can be
described statistically by a pair correlation function.

Nonequilibrium statistical mechanics is based on the same idea of a
statistical ensemble. A fundamental difference, however, is that while
there is only one equilibrium state, there are many nonequilibrium
states. There is no unique "partition function" to use as a starting point
for calculating transport properties. Time correlation functions play the
same role as partition functions and spatial pair correlation functions
in nonequilibrium statistical mechanics. Many properties of systems
out of equilibrium, for example, coefficients of viscosity, thermal con-
ductivity, diffusion, and conductivity, are determined by time correla-
tion functions. They also provide a useful way to interpret experiments
on neutron and light scattering, optical spectroscopy, and nuclear mag-
netic resonance.

We encounter a time correlation function whenever we analyze the
statistical behavior of some time-dependent quantity A(t) measured
over a long time. The quantity A(t) could be, for example, the intensity
of light scattered by fluctuations in a liquid, or it could be the velocity
of a single particle followed in a computer simulation of a liquid. The
first stage in the analysis is to time-average the quantity itself,

Then we subtract the average to get the fluctuation SA,

One often observes that fluctuations at different times are correlated
(in the same way that molecules in a liquid are spatially correlated).
The time-averaged product of two fluctuations at different times,

mehdi
Highlight
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is called the time correlation function (TCF) of A. The conventional
mean squared fluctuation, the time average of fluctuations at the same
time, is C(0).

If the system under investigation is ergodic (generally assumed
without proof), a long time average is equivalent to an equilibrium
ensemble average. This is where the methods of statistical mechanics
come in. Just as we get a pressure by calculating the partition func-
tion of a statistical ensemble instead of making a long time average
of a single sample, we get a time correlation function by calculating
an ensemble average of the product of two fluctuations instead of
its long time average. In an equilibrium ensemble, there is no special
initial time, and C(t) depends only on the difference t between the
two times.

While we based the definition of C(t) on a record of the time depen-
dence of A(t), of the sort that might be produced, for example, by a
computer simulation, many experiments actually generate the Fourier
transform of the time correlation function directly. Generally, the
Fourier transform of any time correlation function,

is called its spectral density. If we know the spectral density, we can
recover the time dependence of the correlation function by Fourier
inversion. For example, the optical absorption spectrum of a system as
a function of frequency is related to the time correlation function of its
total electric dipole moment. This connection will be treated later.

Velocity Correlation Function

Perhaps the simplest example of a time correlation function is the
velocity correlation function of a single particle in a fluid, (v(t)v(t')),
where v(t) is the velocity of that particle at time t. One reason for inter-
est in this time correlation function is its connection with the self-
diffusion coefficient D. There are many ways to show this connection.
A particularly easy one starts with the one-dimensional diffusion equa-
tion for the space (x) and time (t) dependence of the concentration C(x,
t) of a tagged particle,

Suppose that the tagged particle starts out initially at x = 0. Then the
concentration will change from an initial delta function in x to a spread-
out Gaussian function of x. By symmetry, the mean displacement is
zero. The mean squared displacement at time t can be found by multi-
plying the diffusion equation by x2 and integrating over x,

mehdi
Highlight
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The last line comes from integrating by parts and by recognizing that
the concentration is normalized to unity. On integrating over time, this
result leads to the well-known Einstein formula for diffusion in one
dimension, (x2) = 2Dt.

Now we make a statistical mechanical theory of the same quantity.
The net displacement of the particle's position during the interval from
0 to t is

where v(s) is the velocity of the particle at time s.The ensemble average
of the mean squared displacement is

Note that the integral contains the correlation function of the velocity
at times s1 and s2. Next, take the time derivative and combine two
equivalent terms on the right-hand side,

The velocity correlation function is an equilibrium average and cannot
depend on any arbitrary origin of the time axis. It can depend only on
the time difference t - s = u, so that

The velocity correlation function generally decays to zero in a short
time; in simple liquids, this may be of the order of picoseconds. The dif-
fusion equation is expected to be valid only at times much longer than
a molecular time. In the limit of large t, the left-hand side approaches
2D, and the right-hand side approaches a time integral from zero to
infinity, so we have derived the simplest example of the relation of a
transport coefficient to a time correlation function,
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The three-dimensional version can be obtained by summing over x, y,
and z displacements and is

where V is the vector velocity.

1.3 Correlation Functions and Brownian Motion

The Langevin equation and the fluctuation-dissipation theorem can be
used to find expressions for various time correlation functions.

Velocity Correlation Function

The first example is to obtain the velocity correlation function of a
Brownian particle. In this example, it is instructive to calculate both the
equilibrium ensemble average and the long-time average.

Calculating the equilibrium ensemble average involves both an
average over noise and an average over the initial velocity. The noise
average leads to

Now we multiply by v(0) and average over initial velocity,

This holds only for t > 0 because the Langevin equation is valid only
for positive times.

We expect that the velocity correlation function is actually a func-
tion of the absolute value of t, but to see this from the Langevin equa-
tion we have to go to the long time average. This calculation starts with
a record of the time dependence of the velocity v(t) over a very long
time interval T. Then the velocity correlation function can be obtained
from the long time average,

The instantaneous velocity at time t is determined by its initial value
and by an integral over the noise. We assume that the initial time is the
infinite past, so that the contribution from the initial value of the veloc-
ity has decayed to zero, and the instantaneous velocity is determined
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only by the noise. Then with a slight rearrangement of the time inte-
gral, we obtain

Now the velocity correlation function is the triple integral,

The product of two random force factors has been replaced by its
average. The integral over s can be done immediately. The delta func-
tion removes another integral, and the last one can be done explicitly
leading to

Note that when the time correlation function is calculated this way, the
absolute value of the time difference comes in automatically. On using
the fluctuation-dissipation theorem, this leads to the final expression
for the velocity correlation function,

The time average of the product of two velocities is the same as the
equilibrium ensemble average. This is what one expects of an ergodic
system. One point of this derivation is to show that observation of time
dependent fluctuations over a long time interval can be used to learn
about friction.

Mean Squared Displacement

Another application of the general solution of the Langevin equation
is to find the mean squared displacement of the Brownian particle. The
actual displacement is

To find we start with
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and then do the averages. Since the calculation is just like earlier ones,
it will be left for the reader. The result is

At short times, the mean squared displacement increases quadratically
with time. This is the inertial behavior that comes from the initial veloc-
ity. At long times, the effects of the noise are dominant, and the mean
squared displacement increases linearly with time,

Einstein's formula for the mean squared displacement of a diffusing
particle is 2Dt where D is the self-diffusion coefficient of the Brown-
ian particle. Thus we obtain Einstein's expression for the self-diffusion
coefficient,

When Stokes' law is used for the friction coefficient, the result is called
the Stokes-Einstein formula. This also is a prototype of may similar
expressions to be encountered later.

Dipole-Dipole Correlation Function

Many time correlation functions are related to spectroscopic mea-
surements. For example, the frequency dependence of the optical
absorption coefficient of a substance is determined by the time
correlation function of its electric dipole moment. The derivation of
this connection, which will be presented in Section 3.2, is an exercise
in applying the quantum mechanical "Golden Rule". The result of
the derivation is quite simple, especially in the classical limit where

Then the absorption coefficient at frequency & is

In the coefficient, c is the velocity of light in vacuum, and n is the index
of refraction. M(t) is the total electric dipole moment of the system at
time t. The absorption coefficient is proportional to the spectral density
of the dipole-dipole time correlation function.
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Suppose the system being investigated is a single rigid dipolar mol-
ecule. Then M is just its permanent dipole moment. It has a constant
magnitude and a time-dependent orientation specified by the unit
vector u(t) so that

If the motion is constrained to the xy plane, then it is convenient to
represent the orientational vector by the angle 9,

and the time correlation function of the orientations u(0) and u(t) in
two dimensions can be written as

We can calculate this quantity using the Langevin equation for
rotational Brownian motion. The position x is replaced by the angle 9,
the velocity v by the angular velocity , and the mass m by the moment
of inertia I,

and

Then, as in eq. (1.34), the equilibrium mean squared change in angle as
a function of time is

The orientational time correlation function is

But is linear in the noise and in the initial angular velocity, and
both of these have a Gaussian distribution. (This is explained further
in Appendix 2, which surveys some properties of Gaussian distribu-
tions.) Then has a Gaussian distribution with a zero mean value
and a second moment given by eq. (1.43), and we can use the general
formula for any Gaussian average,
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Then the time correlation function is

At long times this decays exponentially,

1.4 Brownian Motion of Other Variables

The preceding discussion started with the Brownian motion of a heavy
particle, but the ideas have a much wider applicability. Another
example is the kinetics of a first-order isomerization reaction between
two species called A and B. For convenience, we use the same symbols,
A and B, for the total number of molecules of each species that are
present in a unit volume of the system. In a laboratory experiment,
these are macroscopic quantities, perhaps of the order of Avogadro's
number. The basic rate equations are

and they have the equilibrium solutions Aeq, Beq. The sum A + B is con-
stant in time, so that we can replace the two equations with a single
one. The deviation of A from equilibrium is denoted by C, and because
of conservation, the deviation of B from equilibrium is -C,

We use the equilibrium condition,

so that the deviation C satisfies
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A macroscopic deviation from equilibrium decays exponentially. Now
we use the "regression hypothesis" of L. Onsager (1931); this asserts
that small fluctuations decay on the average in exactly the same way as
macroscopic deviations from equilibrium. (This is not really a hypoth-
esis—it seems to always be true.) Then the time correlation function of
the equilibrium fluctuations in particle number is

Equation (1.51) requires that C must decay to zero at long times; but
we know that if this reacting system comes to thermal equilibrium,
there are still thermal fluctuations in C, and in particular the mean
squared deviation (determined by statistical thermodynamics) (C2)eq is
of the order of Avogadro's number and cannot vanish. This situation is
exactly like what we saw in connection with the Brownian particle. To
account for the fluctuations, a "random force" or noise term (t) must
be added to the basic kinetic equation,

and to have the correct equilibrium behavior, we must impose the
condition

This is evidently another version of the fluctuation-dissipation theorem.
Observation of particle number fluctuations over a very long time can
be used to find a rate constant.

Several Variables

At this point, it should be clear than any linear dissipative equation will
lead to a similar Langevin equation and a corresponding fluctuation-
dissipation theorem. The general treatment is more complex because
of the possibility of both dissipative and oscillatory behavior and will
be handled using a vector-matrix notation. The general treatment will
be followed by an illustrative example, the Brownian motion of a har-
monic oscillator.

We consider a set of dynamical variables {a1, a2,...} denoted by the
vector a, and the Langevin equation

or in matrix form,
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in which 6 is a matrix and F(t) is a random force vector. (To save space,
the extra will be dropped from F.) The strength of the noise is given
by

or

where B is by definition a symmetric matrix.
0 can be diagonalized by a similarity transformation. If it has a zero

eigenvalue, the corresponding eigenvector corresponds to a dynamical
constant of the motion. We assume that all such quantities have been
removed from the set a. For a system that approaches equilibrium at
long times, all eigenvalues of 0 must have negative real parts; however,
they can be complex.

To obtain the analog of the fluctuation-dissipation theorem for this
Langevin equation, we integrate, omitting the initial value term that
decays to zero at long times. The result is

Now we form the matrix (a(t)a(t)), giving proper attention to the trans-
pose (denoted by ),

In the limit of very large time, this second moment must approach its
equilibrium value, denoted by M,

To evaluate the time integral, we first construct the symmetrized
quantity M + M and then use the integral representation of M,
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The upper limit, at infinite time, vanishes because the eigenvalues of
all have negative real parts. So we have derived the fluctuation-
dissipation theorem:

Note that by their definition as second moments, B and M are sym-
metric, but 0 is not. According to the last equation, the product © • M
has a symmetric part that is related to B. But it can also have an anti-
symmetric part that has no relation to B. It has become conventional
to write 8 in the form

The fluctuation-dissipation theorem requires both a symmetry, involv-
ing K, and an antisymmetry, involving ,

and

The reason for including the factor i in i is that itself typically rep-
resents a frequency, so that i describes oscillatory motion. The quan-
tity K M is real and symmetric and describes decaying motion. The
symmetry of K M is a statement of the "reciprocal relations" found by
L. Onsager (1931).

A good illustration of the many-variable Langevin equation is the
Brownian motion of a harmonic oscillator. We extend the earlier treat-
ment of Langevin equations by adding an elastic force to the frictional
force. The position and momentum of the oscillator are x and p, and
the explicit equations of motion are

The noise in the momentum equation is labeled by a subscript p. Then
the various vectors and matrices are
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On multiplying out the various matrices, it is easy to see that all the
consequences of the fluctuation-dissipation theorem are met.

1.5 Generalizations of Langevin Equations

Nonlinear Langevin Equations

Up to now we have discussed only linear Langevin equations. They
have the great practical advantage that finding analytic solutions is easy.
For example, this is how the fluctuation-dissipation theorem was
derived. But one often encounters nonlinear Langevin equations in
modeling physical problems. A typical example is Brownian motion of
a molecular dipole in a periodic potential U(x) = ucos2x. It is custom-
ary, when constructing nonlinear Langevin equations, to assume that
the friction is still linear in the velocity, and that the noise is related to
the friction by the same fluctuation-dissipation theorem as in the linear
case. Then the equations of motion are

where the force is F(x) = -U'(x), and we have restored the in the noise
term. An explicit derivation of these equations, starting with a Hamil-
tonian describing interaction of a system with a harmonic oscillator
heat bath, is presented in the following section.

In the linear case, the first moments (x) and (p) obey exactly the same
equations as the unaveraged variables, except that the noise term is
absent. But if the force F(x) is not linear in x, this is no longer true and
the problem is much more difficult. The average equation of motion for
the average momentum (p) is

and contains the average of the force. It is generally not safe to replace
the average of a nonlinear function by the same function of the average,

This would require, for example, that the mean squared fluctuation of
x must be negligible, and that is not necessarily so. A solution of the
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nonlinear Langevin equation will generally involve all moments of x
and p, (xmpn), and these will all be coupled together.

While nonlinear Langevin equations have a pleasant pictorial
character and are amenable to easy computer simulation (where the
noise is modeled using random number generators), they are very
hard to treat analytically. The most practical approach is to convert
the Langevin equation into a Fokker-Planck equation. This will be
discussed in chapter 2.

Markovian and Non-Markovian Langevin Equations

The Langevin equations considered up to now are called "Markovian."
This word, familiar in the theory of probability, has a somewhat differ-
ent usage in nonequlibrium statistical mechanics. It is used here to indi-
cate that the friction at time t is proportional to the velocity at the same
time, and that the noise is delta-function correlated or "white."
("White" means that the Fourier transform of the correlation function
of the noise, or its spectral density, is independent of frequency.) Real
problems are often not Markovian. The friction at time t can depend
on the history of the velocity v(s) for times s that are earlier than t.
That is, the friction may have a "memory." The friction coefficient is
replaced by a memory function K(t), sometimes called an aftereffect
function, so that the frictional force at time t becomes

or, on changing variables from s to t - s,

If a system of this sort approaches equilibrium at long times, the fluc-
tuation-dissipation theorem must be modified; the noise is no longer
white. Problems of this kind are called non-Markovian.

A simple illustration of how non-Markovian behavior can arise is by
elimination of the momentum in the Brownian motion of a harmonic
oscillator. The starting equations are Markovian,

Let us suppose that the momentum vanishes in the infinite past,
p(-- ) = 0. We solve the second equation for p(t) by integrating
from — to t,
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When this is put back into the equation for dx/dt, we obtain

where the memory function K(s) and the new fluctuating force Fx(t)
(with a subscript "x" to distinguish it from the old F p ( t ) ) are given by

At equilibrium, the second moment of x is

Then the second moment of the new random force can be worked out
explicitly, using the second moment of the old force. (It is important to
remember that t' can be either smaller or larger than t.) The result of
this somewhat tedious calculation is

This is a non-Markovian version of the fluctuation-dissipation theorem.
The correlation function of the new noise is proportional to the
memory function for the new friction.

In the limit of very large friction, and if we are concerned only with
times much longer than m/ , then the memory function K(s) can be
approximated by a delta function having the same area,

corresponding to Markovian friction. Then eq. (1.78) becomes an
approximately Markovian Langevin equation for the position x(t).

Whenever variables are eliminated from a Markovian system of
equations, the result is a non-Markovian system. The converse is useful
to keep in mind: If the memory decays exponentially in time, a non-
Markovian system can be changed into a Markovian system by adding
another variable. In the present example, adding a momentum converts
eq. (1.78) into the two-variable Markovian eq. (1.76).
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In this treatment of non-Markovian Brownian motion, the "history"
began at t = — , and the equations reflected that. It often happens,
however, that the history begins at some specified time t = 0. This could
be, for example, because the system has been prepared in some
state at that time. Then the standard form of linear non-Markovian
equations is very much like those already discussed,

and the corresponding fluctuation-dissipation theorem is, in matrix
form,

1.6 Brownian Motion in a Harmonic Oscillator
Heat Bath

It is always instructive to look at simple examples, where everything
can be worked out in detail. Here is a derivation of the Langevin
equation for the Brownian motion of an arbitrary nonlinear system
interacting bilinearly with a harmonic oscillator heat bath. This is a
prototype for many statistical mechanical models, both in classical
mechanics and in quantum mechanics. It will appear several times in
later sections.

The main results are an exact Langevin equation, and an explana-
tion of the way in which averages of the random force are handled.
Also we can see how Markovian behavior is an approximation to true
non-Markovian behavior.

The system is described by a coordinate x and its conjugate momen-
tum p. The heat bath is described by a set of coordinates {qj} and their
conjugate momenta {pj}. For simplicity, all oscillator masses are set
equal to 1. The system Hamiltonian Hs is

and the heat bath Hamiltonian HB includes harmonic oscillator Hamil-
tonians for each oscillator and a very special coupling to the system,

in which j is the frequency of the jth oscillator and j measures the
strength of coupling of the system to the jth oscillator. HB consists of
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three parts: The first is just the ordinary harmonic oscillator Hamilton-
ian, specified by its frequencies; the second contains a bilinear coupling
to the system, ( j jqj)x, specified by the coupling constants; and the third
contains only x and could be regarded as part of the arbitrary U(x). The
bilinear coupling is what makes the derivation manageable.

The equations of motion for the combined Hamiltonian Hs + HB are
simple:

Suppose that the time dependence of the system coordinate x(t) is
known. Then it is easy to solve for the motion of the heat bath oscilla-
tors, in terms of their initial values and the influence of x(t),

Integration by parts leads to a more useful form:

When this is put back into the equation for dp/dt, we obtain the formal
Langevin equation

in which the memory function K(t) is explicitly

and the "noise" Fp(t) is given explicitly byp(f) is given explicitly by

By carefully choosing the spectrum { j} and coupling constants { j},
the memory function can be given any assigned form. For example, if



BROWNIAN MOTION AND LANGEVIN EQUATIONS 23

the spectrum is continuous, and the sum over j is replaced by an inte-
gral, d g( ), where g( ) is a density of states, and if is a function of

, then the memory function K(t) becomes a Fourier integral,

Further, if g( ) is proportional to w2 and is a constant, then K(t)
is proportional to (t) and the resulting Langevin equation is
Markovian.

The "noise" Fp(t) is defined in terms of the initial positions and
momenta of the bath oscillators and is therefore in principle a known
function of time. However, if the bath has a large number of indepen-
dent degrees of freedom, then the noise is a sum containing a large
number of independent terms, and because of the central limit theorem,
we can expect that its statistical properties are simple.

Suppose, for example, that a large number of computer simulations
of this system are done. In each simulation, the bath initial conditions
are taken from a distribution,

in which the bath is in thermal equilibrium with respect to a frozen or
constrained system coordinate x(0). Then the averages of q and p are

Since the noise is a linear combination of these quantities, its average
value is zero. The second moments are

There are no correlations between the initial values for different js.
Then by direct calculation, using trigonometric identities, one sees
immediately that there is a fluctuation-dissipation theorem,

Because the noise is a linear combination of quantities that have a
Gaussian distribution, the noise is itself a Gaussian random variable. If
the heat bath has been constructed so that the memory function is
a delta function, then the noise is white or Markovian. This model
justifies all the assumptions that were made about Langevin equations
earlier.
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In this example, the fluctuation-dissipation theorem was obtained for
a rather specific kind of initial distribution of states. It may not work
out so simply for a different initial distribution. One must remember
that the distinction between what we call "systematic behavior" and
what we call "noise" can be arbitrary; it depends on how we decide to
define averages. Noise is not an intrinsic property of a material; it is
determined by the experiment used to measure it.

1.7 Heavy Mass in a Harmonic Lattice

Another very instructive model of Brownian motion is due to R. J.
Rubin (1960). The model is a one-dimensional harmonic lattice in
which one particle is much heavier than the rest. The heavy particle
appears to behave like a freely moving Brownian particle with a fric-
tional force proportional to its velocity. This section presents a calcula-
tion of the heavy particle's velocity correlation function.

All particles except one have the same mass m. The exceptional par-
ticle has mass M. The coordinate and velocity of the jth particle are xj

and Vj, where j goes from 0 to N - 1. Periodic boundary conditions are
used, so that Xn = x0. Later the limit of very large N will be taken.
Nearest neighbor particles are connected by harmonic springs so that
the energy is

The equations of motion are

The velocity correlation function (VCF), normalized to unity at t = 0,
is the equilibrium average

Because the equations of motion are linear, the position and veloc-
ity at time t are linear combinations of initial positions and velocities.
The equilibrium average of the product of a coordinate and a velocity
vanishes, and the velocities of different particles are not correlated,

As long as we want only the velocity correlation function, we do not
have to solve the equations of motion for an arbitrary initial condition;
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it is enough to set all initial coordinates and velocities except V0(0) equal
to zero; their contributions will vanish anyway.

The equations of motion are conveniently solved by taking Laplace
transforms (appendix 3). The Laplace transform of the jth coordinate
is

and the equations of motion for this special choice of initial condition
are

The structure of the potential energy suggests a normal mode trans-
formation to new coordinates qk,

which has the inverse transformation

After some rearrangement, the transformed equations are

where the normal mode frequencies are

A further summation over k leads to

The sum will be denoted by

This quantity is particularly simple in the limit of large N. Change vari-
ables from k to , and replace the sum over k by an integral over 0,
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When eq. (1.109) is solved for 0, one gets

where Q is defined as

The transform of the velocity is zx0, so the transform of the normalized
velocity correlation function is

In the large N limit, the approximate expression for found earlier
leads to an algebraic function of z,

The short time behavior of C(t) can be found from the large z
expansion,

(Note the change from m to M; at short times, the inertial motion of
the heavy mass dominates.) Then at short times, C is

The quadratic dependence on t is a natural consequence of time-
reversal symmetry.

The inverse Laplace transform can be found in tables if Q = 0
or 1. Otherwise, there are no known inverse transforms in terms
of standard functions. When Q = 0, one finds the Bessel function of
order 0,
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When Q = 1, the result is another Bessel function, of order 1,

After some algebraic rearrangement, the transform of the velocity
correlation function may be written in the memory function form,

On inverting the transforms, this is equivalent to

and the time dependent k(s) (which does not depend on M) is

Equations similar to eq. (1.121) occur frequently in nonequilibrium sta-
tistical mechanics. There is a convolution, with a memory function that
has a short life time, in this case of the order of (m/K)1/2. The convolu-
tion integral has a coefficient that can be very small, in this case of
the order of mIM. In the heavy mass limit, the time derivative of
C(t) is small, and this suggests a Markovian approximation to eq.
(1.121), where C(t - s) is replaced by C(t) and the integral is extended
to infinity,

The infinite time integral is

Then the velocity correlation function decays exponentially on a time
scale of the order of Mlm t0,
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In problems of this sort, with a short memory and a small coefficient,
one generally finds approximate exponential decay. But one would like
to know what the limitations are on the approximation.

One can always invert a Laplace transform by means of a contour
integral in the complex plane,

Evaluating contour integrals is an exercise in complex variable theory.
Rubin has done the complete calculation; we will not repeat it here. He
found that there is a small correction to the exponential decay at very
long times, which is bounded by

and which decays more slowly than exponentially. The exponential
decay dominates as long as

If M = I04m, the correction to the exponential has the same order of
magnitude as the exponential after about nine relaxation times.

Figure 1.7.1 The velocity correlation function C(t) as a function of time t.
Curve A is the Bessel function for equal masses. Curve B is the result of numer-
ical inversion of the Laplace transform when M = 10m. Curve C is the expo-
nential exp(-t/10).
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Sometimes one can invert a Laplace transform numerically (see
Appendix 3). Figure 1.7.1 shows C(t) for the equal mass case M = m,
where A is J0(t), B is the numerical inversion for M = 10m, and C is the
exponential exp(-t/10). Note that the asymptotic exponential works
quite well except for small t.

The preceding analysis was based on the limit of large N. Two kinds
of correction must be made if N is finite. One is that the magnitude of
the velocity correlation function is changed by terms of the order of
1 /N. The other correction limits the time over which the large N limit
applies. When the particle at j = 0 moves, it sends out sound waves that
carry away energy and information. With periodic boundary conditions,
these sound waves will eventually come back to influence that particle;
in mathematical language, the motion is "almost periodic" and has
recurrences. If N is large, recurrences occur only at times very much
longer than the exponential relaxation time. So it is quite reasonable
to take advantage of the large N limit.



2

Fokker-Planck Equations

2.1 Liouville Equation in Classical Mechanics

The foundations of nonequilibrium statistical mechanics are based
on the Liouville equation. Many of the common methods for handling
practical problems in nonequilibrium statistical mechanics, methods
that will be described in the next few sections, either avoid the Liou-
ville equation entirely or replace it by approximations. This is generally
a reasonable thing to do; simple and approximate methods have an
enormous value in science. Ultimately, however, the approximate
methods must be connected with more exact and rigorous ones. This
section presents a derivation of the Liouville equation in classical
mechanics and shows how symbolic operator solutions of the Liouville
equation can be used to deal with the properties of time correlation
functions. The Liouville equation is associated with Hamiltonian
dynamics; the corresponding equation associated with Langevin
dynamics, called the Fokker-Planck equation, is discussed in the next
section.

In classical mechanics, a system is fully specified by its coordinates
and conjugate momenta.There are usually many of these; for notational
convenience, the set of all coordinates will be denoted by the single
symbol q, and the conjugate momenta by the single symbol p. The pair
(p, q) gives the location of the system in its phase space, or the "phase
point." Further, when there is no need to be more specific, this point is
denoted for greater brevity by X. The dynamical behavior of the system

30
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is determined by its Hamiltonian H(p, q) or H(X). For now, this is taken
to be independent of time.

The motion of the system in phase space is governed by Hamilton's
equations,

In principle, this set of first-order differential equations determines
the path or trajectory X, in phase space that passes through a given
phase point X at time t = 0. The state of the system at any time fully
determines its state at all other times, both future and past. The
one-dimensional harmonic oscillator provides an easy illustration. The
Hamiltonian is

the equations of motion are

and their solution, valid for all t, is

Aside from this special case, one can seldom solve Hamilton's equa-
tions exactly. Further, one learns from research on chaotic dynamical
systems that solutions may be extremely sensitive to small changes in
the initial state, so that "exact in principle" does not always mean "exact
in practice." It may be very hard to give a precise prediction of the
future behavior of a given initial state. However, because the present
concern is with formalism, and not with practical calculations, this
difficulty may be ignored.

The Liouville Equation

In classical statistical mechanics, averages are determined by the
phase space distribution function (or phase space density) f(p, q, t)
or f(X, t). The probability of finding the system state in the region
dX around the point X at time t is f(X, t)dX. Probability is con-
served; the total probability that the system is somewhere is unity at
all times,
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As in fluid mechanics or electrodynamics, whenever an integral of a
quantity p(X) over an entire domain is conserved, there is generally a
conservation law of the form

where p is a density, V is a velocity, and pV is a flux. In the present
instance, the time rate of change of the density / is the negative of the
divergence of its flux in phase space, and the correspondences are

and

On using Hamilton's equations for the time derivatives of p and q and
canceling out cross terms, this becomes the Liouville equation for the
probability distribution function,

It is often convenient to write this in an operator form. The
Liouville operator is defined by

so that the Liouville equation is

The Liouville equation has the formal operator solution

The Liouville operator is sometimes (especially in older literature)
written with the imaginary factor i = , so that f/ t = —iLf.
There seems to be no special advantage in carrying along the extra
factor of i.

One property of the Liouville operator merits special comment
because it is so frequently used. Consider the integral of LAf over
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the entire phase space. A multidimensional version of the basic
integral,

can be used to convert an integral over the phase space volume to an
integral over the surface of that volume,

where S is a unit vector normal to the boundary. The volume integral
vanishes as long as VAf vanishes on the boundary of phase space. Typ-
ically, the system is confined to a finite region in configuration space
and has a finite energy. Then the distribution function / vanishes
for coordinates outside that region, and also at very large momenta.
Further, because L contains first derivatives, it can be distributed over
a product, L(Af) = (LA)f+A(Lf). Consequently, L is anti-self-adjoint
in phase space,

Dynamical Variables

The goal of nonequilibrium statistical mechanics is to understand the
time evolution of dynamical properties of a many-body system. These
may be some experimentally observable properties, such as the hydrody-
namic variables (mass density, momentum density, and energy density),
or they may even be some of the coordinates and momenta themselves.
For the present, their exact nature is not important. What is important is
that dynamical properties of a system are functions of its state.

A generic dynamical variable will be denoted by A(X). Because the
state changes with time, so does this variable; at time t, its value is A(Xt).
Because the state at time t depends parametrically on the initial state
X, the value of the variable at time t depends on X. This prompts some
notation that may be confusing at first but is actually quite helpful. The
symbol A will be used in three ways. If A does not contain any argu-
ment at all or contains explicitly only the argument X, as in A(X), then
it denotes the variable itself. If A explicitly contains the argument t, as
in A(t), .A(Xt) or A(X, t), then it denotes the value of the variable at
time t as it evolved from the initial state X. The value of A(t) at t = 0 is
A. (The same multiplicity of interpretations occurs in quantum mechan-
ics, where, e.g., {x) can denote a pure quantum state as a function of
position x, and (t, x) is a system's wave function as it evolves in time.)
This notation is summarized by A(t) = A(Xt) = A(X, t) and by A = A(X)
= A(t = 0).
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When the dynamical variable A is regarded as a function of both the
time t and the initial state X, its initial rate of change with time is a
function of X and can be calculated from

This contains the same Liouville operator that was defined in eq. (2.9).
Note that L operates on functions of the location X = (p, q) in phase
space. The initial rate of change is LA; the initial second time deriva-
tive is the initial rate of change of the initial first derivative, LLA, and
so on. The nth initial time derivative is

This can be used to generate a formal Taylor's series expansion of the
time-dependent dynamical variable in powers of t,

This evidently is the solution of the operator equation,

This is the Liouville equation for the evolution of a dynamical variable.
Just as the Liouville equation for the distribution function is analogous
to the Schrodinger equation in quantum mechanics, this equation is
analogous to the Heisenberg equation of motion.

The operator exp(tL) moves any dynamical variable along a trajec-
tory in phase space and is sometimes called a "propagator." It has
several interesting and useful properties. For example, it can be moved
inside a function,

and it can be distributed over products of functions,

These identities are due to the uniqueness of the trajectory that passes
through any specified phase point X.

The phase space average of a dynamical variable A at time t is
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But this is also the average of the time-dependent dynamical variable
over the distribution of initial states,

These two forms are equivalent because L is anti-self-adjoint in phase
space. This is analogous to the Schrodinger-Heisenberg duality in
quantum mechanics.

Time Correlation Functions

The Liouville operator notation provides a convenient way of manip-
ulating equilibrium time correlation functions (TCF). Some examples
are given here. The TCF of the dynamical variables A and B is

where feq is the equilibrium distribution function. This is also

and by taking the adjoint, it becomes

The exponential operator can be distributed over B and /, and recog-
nizing that the equilibrium distribution function is invariant to L, we
find

If A and B are the same quantity, their TCF is invariant to time
reversal.

The time derivative of a TCF is another TCF,

This is the TCF of A and the time derivative of B. In the same way, the
second time derivative is
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So, for example, the second time derivative of the velocity correlation
function is the negative of the force-force correlation function,

2.2 Fokker-Planck Equations

Fokker-Planck equations are a form of Liouville equation used to
treat the statistical behavior of dynamical systems with Markovian
friction and Gaussian white noise. This section contains a derivation
of the Fokker-Planck equation that corresponds to a given Langevin
equation and some simple illustrations. Some general properties
of Fokker-Planck equations will be discussed in the following
section.

Earlier sections dealt with Langevin equations and their associated
fluctuation-dissipation theorems. It was observed that linear Langevin
equations are easy to solve and that the effects of noise are easy to
work out. But it was also observed that nonlinear Langevin equa-
tions are not easy to solve; the nonlinearity, while not a problem
for numerical simulations, introduces serious difficulties in analytic
studies. One practical way to handle these difficulties is to construct
the Fokker-Planck equation that corresponds to a given Langevin
equation.

Derivation of a Fokker-Planck Equation

Let us start with a quite general Langevin equation for the dynamics
of a set of variables {a1, a 2 , . . .} denoted for convenience by a. At the
beginning, no special requirements are imposed on the noise-free part
of the dynamics, except that it is Markovian (i.e., has no memory).
However, we do require that the noise is white and has a Gaussian
distribution. The equations of motion are

or, in abbreviated form,



FOKKER-PLANCK EQUATIONS 37

where v(a) is some given function of the variables a. The noise F(t) is
Gaussian, with zero mean and the delta-correlated second moment
matrix,

Rather than looking for a general solution of these equations, we ask
for the probability distribution f(a, t) of the values of a at time t. Further,
what we really want is the average of this probability distribution over
the noise. One way to find the noise average is to start by recognizing
that f(a, t) is a conserved quantity,

Whenever a conservation law of this kind is encountered, we expect
that the time derivative of the conserved quantity or density (in
this case, f(a, t)) is balanced by the divergence of a flux, a velocity
times that density. This is the way, for example, that the Liouville
equation is derived in statistical mechanics. Here the space coordinates
are a, the density at a is f(a, t), the velocity at a is da/dt, and the
conservation law is

On replacing the time derivative by the right-hand side of eq. (2.31),
we get

This contains a random term and is called a stochastic differential
equation. We want to use it to derive an equation for the noise average
of f.

The derivation is considerably simplified by using some symbolic
operator manipulations. To begin, we define an operator L (analogous
to the Liouville operator) by its action on any function ,

This is used to write a symbolic solution of the noise-free equation,

The formal or symbolic solution (as an initial value problem) is
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Now we add the noise term,

One integration over time leads to the operator equation,

It is important to realize that f(a, t) depends on the noise F(s) only for
times s that are earlier than t. By iterating, we develop a series expan-
sion for / in powers of the noise. Equation (2.40) is substituted back
into eq. (2.39), leading to

Now we take the average over noise. The initial distribution
function f(a, 0) is not affected by the average, so the term with a single
F and the initial distribution function average to zero. The final
term contains two explicit noise factors, F(t) and F(s), and also those
noise factors that are implicit in f(a, s), but only with times earlier
than s. The noise is Gaussian and delta-function correlated; this
means that on averaging, we can pair the first factor F(t) with the
second factor F(s) or with one of the implicit noise factors in f(a, s).
(For a further explanation, see Appendix 2.) In the first case, we get
(t -- s), and is the second case we get (t — s') with s' < s. But this second

case is not allowed because of the limitation to t > s > s'. Thus only the
first two noise factors need to be paired. The average introduces a
factor B, and the delta function removes the operator e--(t--s)L.The result
is the Fokker-Planck equation for the noise-averaged distribution
function <f(a, t)>,

The first term on the right-hand side is what one had on the
absence of noise. The second term on the right-hand side accounts
for the averaged effects of the noise. At this point, B can be any
function of a.
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Several comments are in order. The derivation as given here depends
explicitly on two assumptions, that the noise is Gaussian and that it is
delta-function correlated. Otherwise, the factorization of the average
over noise will not work. In particular, the derivation will not work for
a non-Markovian Langevin equation.

Also, no fluctuation-dissipation theorem has been invoked. Nothing
has been said about requiring that <f(a, t)> must approach an equilib-
rium distribution at long times. If there is not enough friction to dampen
the heating effect of the noise, we expect that the system will "run
away" so that there is no long time steady state. If there is too much
friction for the noise, the system will cool down and "die." In fact, not
much is known in general about the long time steady state solution of
an arbitrary Fokker-Planck equation. All that we can usually do is guess
at a steady state solution, put it into the equation, and see if our
guess is compatible with v(a) and B. If a steady-state solution is found,
then it implies a relation between v(a) and B which may be called a
fluctuation-dissipation theorem.

In later uses, the angular brackets " " denoting the noise average
will be omitted; we will deal only with the averaged distribution.

Illustrations

The first illustration is the two-variable Brownian motion of a particle
moving in the potential U(x). The Langevin equations are

and the fluctuation-dissipation theorem is

The quantities that go into the general Fokker-Planck equation are

Then the Fokker-Planck equation becomes
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Note that if there is no noise or friction, the Fokker-Planck equation
reduces to the standard Liouville equation for the Hamiltonian,

With noise and friction, the equilibrium solution ( f/ t = 0) is

where Q is the partition function at temperature T.
This Fokker-Planck equation is the starting point for many useful

calculations, for example, to determine the rate at which a Brownian
particle crosses a potential barrier. The corresponding equation in
which the coordinate x is replaced by an angle and the momentum p
by an angular momentum is useful in treating molecular reorientation
in liquids.

Another example starts with the same Langevin equation, but now
we assume that the relaxation time = m/ is very much shorter than
any natural time scale associated with motion in the potential U(x).
There are several ways to use this assumption; one was discussed
earlier. Another procedure is to start with the Langevin equation,

We drop the second derivative on the left-hand side and rearrange to
get an approximate Langevin equation for x(t) alone,

This leads to a Fokker-Planck equation that is commonly called the
Smoluchowski equation,

This equation describes diffusion in an external potential; the diffusion
coefficient is
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While the Smoluchowski equation is a correct representation of the
Langevin dynamics of eq. (2.51), it is only an approximation to the
Langevin equation of eq. (2.43).

2.3 About Fokker-Planck Equations

Some Properties

Fokker-Planck equations are parabolic differential equations, but of a
special kind. Normally, only a few of the variables appear in the second
derivative part of the equation. (The Smoluchowski equation is an
important exception.) There is no guarantee of a steady state solution.
These equations are generally not self-adjoint, and little is known about
their mathematical properties. It is likely that they can have eigen-
functions and eigenvalues. These can be worked out in special cases, for
example, a planar rigid rotor or a harmonic oscillator. But there appear
to be no general theorems about the existence or completeness of
eigenfunction expansions and similar questions.

The Smoluchowski equation, as an exception to the general rule, can
be made self-adjoint by a trick. The substitution

leads to a Schrodinger-like equation for g,

The original potential U has been replaced by an effective potential Ueff

involving the force and its derivative. This transformation leads to an
equation whose properties are very well known. It has real eigenvalues
and eigenfunctions, which form a complete set. While finding solutions
may be just as hard as in quantum mechanical problems, there are
no conceptual difficulties. But for the more-general Fokker-Planck
equation, the same trick does not lead to a self-adjoint equation.

As was observed in section 1.5, non-Markovian Langevin equations
with exponentially decaying memory can be converted to Markovian
Langevin equations by increasing the number of variables. Thus, a non-
Markovian two variable Langevin equation with exponential memory
gives rise to a three-variable Markovian Langevin equation and
hence to a three-variable Fokker-Planck equation. By analogy with
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non-Markovian Langevin equations, one might be tempted to write
down the corresponding non-Markovian Fokker-Planck equation, that
is, one with memory; this is not safe.

Averages and Adjoint Operators

Sometimes we want the full solution of a Fokker-Planck equation, but
sometimes we are interested only in certain averages. These can be
found by two distinct but equivalent procedures analogous to the
Schrodinger-Heisenberg duality in quantum mechanics.

First, we can follow the evolution of some initial state f(a, t), by
solving the Fokker-Planck equation,

where the operator D is given by

The first part of this operator is the L that appeared earlier. The second
part represents the average effects of noise. The Fokker-Planck
equation has a formal operator solution,

This can be used to get the average of any dynamical property (a)
(including the special case (a) = a),

This may be called the "Schrodinger approach," since it focuses on
the evolution of a probability distribution, and the average is taken at
time t.

The second way to get the average uses the operator that is adjoint
to D defined by

Now the average can be obtained by reversing the operator in the
exponent,
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which contains the defined time-dependent variable,

This may be called the "Heisenberg approach" since it focuses on the
evolution of a dynamical observable, and the average is taken over an
initial distribution. The equation of motion for becomes

The time dependence of (a, t) is not what one would see in a single
experiment, that is, before averaging over noise. This quantity is defined
so as to give the correct time dependence after averaging over noise
but before averaging over initial conditions.

Because the two operators (D, D ) are so similar in structure,
there is usually no advantage in using one instead of the other, except
in formal operator manipulations. The solution of a Fokker-Planck
equation and its adjoint equation are equally difficult.

Green's Function in the Linear Case

A formal solution of the Fokker-Planck equation, as an initial
value problem, uses the exponential operator exp tD. A more-explicit
solution uses the Green's function G(a, t|a0),

The Green's function satisfies the same Fokker-Planck equation, but
with the special initial condition,

When the streaming function v(a) is linear in a,

the Green's function can be found easily by the following procedure.
First we take the Fourier transform of G (in the language of Appendix
2, we construct the moment generating function),
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Then on integrating by parts several times, the Fokker-Planck equation
becomes a first-order partial differential equation,

The logarithm of satisfies

This suggests that we expand In in powers of ,

The time-dependent coefficients obey simple differential equations,

But the initial value of is simply exp(i • a0), so the initial values of the
coefficients are

These equations have solutions,

(The expression for a appeared earlier, in section 1.4, in deriving
the fluctuation-dissipation theorem.) These quantities have a
simple interpretation in terms of averages and mean squared
fluctuations,

The Fourier transform is the exponential of a quadratic function of ,
and so (see Appendix 2) the inverse transform is a quadratic or Gauss-
ian function of a,

The coefficient of the exponential is the normalization factor.
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Rotational Diffusion

As an illustration of the use of Fokker-Planck equations, we will work
out the orientational time correlation function of a planar Brownian
rotator. (This was done already, very briefly in section 1.3 using a
Langevin equation). The state is specified by an angle and by an
angular velocity . The rotator has moment of inertia /. Then the
equilibrium distribution function is

The Fokker-Planck equation corresponding the Langevin equation in
section 1.3, with a change from linear velocity to angular velocity, mass
to moment of inertia, and position to angle, is

The orientational time correlation function to be considered here is

where / is an integer (periodicity in angle). According to the previous
discussion, this may be written

So we want the solution of the Fokker-Planck equation for the special
initial condition

The time-dependent solution will have exactly the same angle
dependence as the initial distribution,

Then the time-correlation function is an integral over only,

The Fokker-Planck equation can be solved easily, for this initial
distribution, by the following trick: make the substitution
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so that the Fokker-Planck equation transforms into

This looks even harder because of the quadratic nonlinearity but is
actually quite easy to solve. We look for a solution where the exponent
is quadratic,

After some cancelations, this leads to the very simple

Collecting terms, we find ordinary differential equations for a and b,

where

is the angular velocity relaxation time. Initially b(0) = 0, so that b(t) is

and then a(t) — a(0) is

When the a and b parts are combined, and the integral over angular
velocity is performed,

we find
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(This is identical to the expression found using Langevin equations.) At
short times and long times this goes as

The crossover from one behavior to the other conies at t = T.



3

Master Equations

3.1 The Golden Rule

The Golden Rule is a colloquial name for a standard formula in
time-dependent quantum mechanics. It provides a way to calculate
the rate of transition between quantum states. It is approximate
and has limited applicability; however, it is the starting point for
many treatments of rate processes. Later it will be used in the
discussion of master equations. This section gives the usual
derivation of the Golden Rule. The following section shows how it
is used to relate optical absorption spectra to time correlation
functions.

We start with an unperturbed Hamiltonian H, its orthonormalized
eigenfunctions |j) and its eigenvalues Ej,

Next we introduce a perturbation V(t), which may be time depen-
dent. This perturbation induces transitions between different
unperturbed states. Its matrix elements in the unperturbed
representation are

and its diagonal elements vanish.

48
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The perturbed quantum state is determined by Schrodinger's
equation.

We want to solve this with the condition that the initial quantum state
is the unperturbed nth state,

and we want to find the probability that the system is in a different mth
unperturbed state at time t. First we expand the actual wave function
in the unperturbed states,

We convert Schrodinger's equation to

In the initial state, aj(0) = jn. Integration over time leads to the integral
equation,

and to find the solution to first order in the perturbation, we substitute
the zeroth-order solution in the integral,

In particular, the amplitude of the mth state, when we start in the nth
state (and m n) is

In most applications, the perturbation is either independent of time
or periodic with frequency ,

For convenience, we abbreviate
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When the perturbation is time independent, the amplitude of the rath
state is

The probability of finding the system in the rath state is

which contains the time-dependent factor (t),

Regarded as a function of mn, this quantity is sharply peaked at
mn = 0. Figure 3.1.1 shows A, at t = 10, as a function of mn.

The height of the peak is t2, and the width of the peak is of the order
of 2 /t. By using the integral

we find that the area under the curve is 2 t. Then, in the limit of very
large t, the peak approaches a delta function, and

The probability of finding the system in the rath state is

Figure 3.1.1 (t)
as a function of

mn at time t = 10,
when the perturba-

tion is time-
independent.
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This probability increases linearly with t, and so its time derivative is
the rate of transition wmn from state n to state m,

This formula is the Golden Rule.
When the perturbation is periodic, with nonzero frequency, the

amplitude is

In this case, the time-dependent factor (t) is

For large t, the dependence of (t) on mn is dominated either by mn

near or by mn near . This is illustrated in a plot of (t) as a func-
tion of mn for the special values t = 10 and =l. Figure 3.1.2 clearly
shows two peaks at mn near 1 and -1.

As in the earlier discussion, the peaks have a height of the order
of t2- and a width of the order of 1/t and consequently an area of
the order of t. The two peaks can be treated as independent as long
as the width of a peak is much smaller than the separation between
the two peaks. This requires that 1/t should be much smaller than

, which is true at large enough t as long as is not zero. Of

Figure 3.1.2 (t)
as a function of
mn at time t = 10,
when the
perturbation is
periodic with
frequency =\.



52 NONEQUILIBRIUM STATISTICAL MECHANICS

course, when = 0 there can be only one peak, and this condition
can never be satisfied. As t increases, the peaks get higher and nar-
rower, and A approaches the sum of two delta functions. In the limit
of large t,

The rate of transition from state n to state m is given by

Earlier we saw that if the perturbation is independent of time, the
transition rate is

Note the lack of continuity as goes to zero; the two formulas
differ by a factor of 2. When the two peaks of A are separate,
they behave essentially independently at large t. As the two peaks
approach each other, there is a constructive interference that doubles
the area.

The occurrence of a delta function in the Golden Rule formula
always seems strange at first. It suggests that only transitions between
states of exactly the same unperturbed energy are allowed and
that these transitions have an infinite rate. But we must remember
that the delta function appears only as an approximation for the
long-time behavior of the function (t). Further, in normal use
it is always associated with sums or integrals over quasi-continuous
distributions of states. In standard quantum mechanical use, for
example in calculating scattering cross senctions, these sums are taken
over final states. However, in statistical mechanical applications, for
example in calculating transition rates of a system coupled to a
heat bath, the sums are more commonly taken over initial states. This
example will be discussed in section 3.3, which deals with master
equations.

This standard treatment clearly has flaws. In the first place, it uses
first-order perturbation theory. If we replace V by V, then A must
be small. Second, while the delta functions come from large t, the
time cannot really be taken as large as we like. The computed proba-
bility of finding the system in the mth state at time t increases linearly
with t and will become greater than unity at large enough t, which is
not allowed.

So not only must the energy spectrum be quasi-continuous, but
there must be a double limitation on the sizes of both and t. L. Van
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Hove (1955) investigated this question by means of an infinite-
order perturbation expansion and resummation. He concluded that in
the double limit of small A and large t, the probability looks roughly
like

The short time behavior (small 2t) is given by the Golden Rule. The
series in 2t sums to a decaying exponential, which is why the proba-
bility never exceeds 1. The conclusion is that the Golden Rule formula
is applicable as long as A is small, t is large, and the product 2t is of
order 1. This is called the "Van Hove limit."

3.2 Optical Absorption Coefficient

Many time correlation functions are determined by spectroscopic
measurements. For example, the frequency dependence of the optical
absorption coefficient of a substance is determined by the time
correlation function of its electric dipole moment. The derivation of
this connection is an exercise in applying the quantum mechanical
Golden Rule.

Repeating some earlier equations, we start with the Hamiltonian
H of the unperturbed system, with quantum states | a) and eigenvalues
Ea,

The time-dependent perturbation is periodic with frequency ft),

We suppose that the interaction matrix Vif = (f| V|i) has no diagonal
elements. The perturbation causes transitions from an initial state i to
a final state /. The transition rate wfi from i to f is given by the Golden
Rule formula,

We focus on the rate of energy absorption ( d E / d f ) a b s , which is
the amount of energy transferred per unit time to the system
from the applied perturbation. The rate of energy transfer is the
energy difference times the transition rate, (Ef - Ei)wfi. Since
the system starts out in thermal equilibrium, the initial state is
taken from a Boltzmann distribution with probability ;. Further,
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we are concerned with only the energy absorption at the fre-
quency , and we do not care what the final state is. So we sum
over all initial i with the Boltzmann weight i, and sum over all
final f,

On using the delta functions in the Golden Rule, this becomes

The matrix elements are symmetric in (i,f), so by switching indices in
the second term, we can combine the delta functions,

Because is the Boltzmann distribution, we can relate f to i,

and because of the delta function, the exponent in this formula can be
changed to , leading to

Now we replace the delta function by its integral representation,

so that after some rearrangement, the energy absorption is

Next, we recall that the time dependence of any quantum mechanical
operator is given in the Heisenberg representation by

which has the matrix elements
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The energy absorption becomes

The sum over / can be done immediately because the set of all states
{|j)} is complete,

so that

The sum over i produces the thermal equilibrium average,

The rate of energy absorption is determined by the Fourier transform
of the time correlation function of the perturbation V.

Now we can apply this result to the theory of optical absorption. The
electric field of an incident light wave has the amplitude E0 cos cat and
is polarized in the direction of the unit vector . The electric field inter-
acts with the total electric dipole moment M of the system; the inter-
action Hamiltonian is

(Unfortunately, there do not seem to be enough letters in the alphabet;
E was used for the energy absorbed, E0 was used for the electric field,
and Ea for the energy of the ath quantum state of the system.) Then
the energy absorbed is proportional to the square of the electric field,

If the absorbing system is isotropic, the polarization of the electric field
is irrelevant, and the average can be simplified to

To relate this to the experimentally observed absorption coefficient,
we divide the energy absorption by the energy flux S of the incoming
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light wave. This requires an extra calculation in electromagnetic theory,
which will not be done here; the energy flux is

where c is the velocity of light in vacua and n is the index of refraction.
The resulting absorption coefficient ( ) = (dE/dt)abs/S is

It is proportional to the Fourier transform of the electric dipole-dipole
time correlation function.

While this calculation used quantum mechanics, the classical limit is
easy to find. By taking the limit where Planck's constant goes to zero,
we get

This involves the classical time correlation function of the total electric
dipole moment of the system.

3.3 Quantum Mechanical Master Equations

Master equations describe the dynamics of transitions between states.
They look like the equations that describe chemical kinetics; however,
concentrations of reactants and products are replaced by probabilities
of states, and kinetic rate constants are replaced by transition rates.
Further, while chemical kinetic equations can be nonlinear, master
equations are inherently linear.

Master equations can be discussed at several levels of abstraction
(i.e., distance from reality). The earliest and simplest example is the
quantum mechanical Pauli master equation. This will be presented first.

Pauli Master Equation

A quantum mechanical system has the Hamiltonian

where H0 is an unperturbed Hamiltonian and V is a perturbation
(independent of time). The unperturbed system has eigenstates | m)
and eigenvalues Em,
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The probability that the system is in the mth unperturbed state at
time t is Pm(t). (Technically, this is the diagonal element mm(t) of
the density matrix in the unperturbed representation—more about
this in section 6.1.) The probability of occupation of the mth unper-
turbed state will change with time because this state is not an
eigenstate of the perturbed system. However, if the strength of the per-
turbation is small, then an unperturbed state can be a good approxi-
mation to the corresponding perturbed state. We suppose that
all diagonal elements of the perturbation have been included in
the unperturbed Hamiltonian, so that the perturbation is strictly
off-diagonal, Vmm = 0.

The Pauli master equation is a gain-loss equation for the probabil-
ity of occupation of a state,

The first term on the right is the rate of gain in state m due to transi-
tions from other states n; the second term is the rate of loss from state
m due to transitions to other states. The transition rates Wmn are given
by the Golden Rule,

The Pauli master equation has a microcanonical character. Transi-
tions occur only between states that have almost the same total (unper-
turbed) energy. The transition rates are symmetric in states,

This is often called "microscopic reversibility." At microcanonical equi-
librium, all Pm(eq) have the same value 1/g, where g is the degeneracy
of the unperturbed energy.

Heat Bath Master Equation

But most applications of master equations have a canonical character.
For example, the original Hamiltonian may describe the behavior of a
system that is weakly coupled to a heat bath, and we may want to know
the behavior of the system while the heat bath remains in thermal equi-
librium. This leads to a "heat bath" master equation.

The Hamiltonian is now taken to be
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where Hs operates on unperturbed system states (labeled with Roman
letters) and Hb operates on unperturbed heat bath states (labeled with
Greek letters),

Then the unperturbed product states obey

The perturbation causes transitions between these product states. The
master equation (still "microcanonical") is

The Golden Rule transition rates are

Now we assume without proof that the bath remains in thermal equi-
librium no matter what state the system is in. (This can be justified by
the methods presented in section 6.5.) Then Pm can be factored into a
nonequilibrium probability Pm(t) for the system and a thermal equilib-
rium probability p for the bath,

When this is substituted in the master equation, and a sum over a is
taken, we get

which may be rewritten as

The new transition rates (denoted by the lowercase w) are no longer
symmetric,

This master equation describes the relaxation of the system probabil-
ity distribution Pm(t) to its thermal equilibrium form Pm(eq) at the tem-
perature determined by the heat bath.



MASTER EQUATIONS 59

Even though the new transition rates are no longer symmetrical,
they are still related. The thermal heat bath distribution is propor-
tional to exp(- /kT). Then on taking advantage of the constraint on
total energy coming from the delta function in the microcanonical W,
we find

This relation is often called the "principle of detailed balance." It says
that at thermal equilibrium, the rates of the forward and backward tran-
sitions between any pair of system states, weighted by the probabilities
of the initial and final states, are equal to each other.

Illustration

One particular application of the heat bath master equation comes up
often. It involves a special perturbation Hamiltonian that is a product
of a function of system variables and a function of bath variables,

(In NMR, for example, F is a nuclear magnetic moment and G is a fluc-
tuating magnetic field; see section 6.4.) Then the transition matrix ele-
ments factor,

The thermally averaged transition rate becomes

We replace the delta function by its integral representation and
rearrange,

where mn = (Em - En)/ . Now we use the Heisenberg representation
of the time-dependent G(t),
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The sum over a leads to the matrix [G(0)G(t}] , and the sum over
gives the equilibrium average of this quantity,

The transition rate is proportional to the spectral density of a heat bath
time correlation function, (G(0)G(t))eq, evaluated at the frequency mn
of the transition.

This can be applied to the harmonic oscillator heat bath Hamilton-
ian that was used in section 1.6 to derive a Langevin equation for
Brownian motion,

The perturbation is bilinear in the system coordinate x and the heat
bath coordinates qj. Then the two factors F and G are

Because the heat bath consists of harmonic oscillators, the time corre-
lation function of G is simply

The equilibrium averages can be done quantum mechanically, and there
are occasions when this might be necessary, but the results are simpler
if we consider only a classical heat bath. Then we find

This contains the same memory function that appeared in the earlier
derivation of the Langevin equation. If the heat bath gives rise to
Markovian friction, K(t) = 2 (t), then the final result for the transition
rate is

If the system is also a harmonic oscillator, with mass M and frequency
, then matrix elements of F connect adjacent states only. The rate for

the downward transition from n to n - 1 is



MASTER EQUATIONS 61

The rate for the upward transition is determined by the detailed
balance condition,

While the preceding derivation was based on a classical harmonic
oscillator heat bath, considerably more-general situations can be
handled in the same way. An old example, (L. Landau and E. Teller,
1936) deals with inelastic energy transfer between a molecular har-
monic oscillator and a gas of inert bath molecules. The time correlation
function (determined now by the details of molecular collisions) is dif-
ferent, but the matrix elements of F are the same. The only significant
change is in the numerical coefficient of n in eq. (3.74).

The resulting heat bath master equation for a harmonic oscillator is

where k is a rate constant. A simple exercise is to calculate the relax-
ation of the average energy of the oscillator. Note that the probabili-
ties are normalized to unity, and that the average energy is

Using the master equation, and rearranging the sums, we find

For any initial distribution, the average energy decays exponentially to
equilibrium (H. Bethe, E. Teller, 1941). Equation (3.76) can actually be
solved in full generality for any initial condition (E. Montroll and
K. Shuler, 1957).

3.4 Other Kinds of Master Equations

Abstract Master Equations

Master equations are often used without any reference to under-
lying dynamical models. In general, one must have (1) a set of
states, labeled by an index n, (2) probabilities of occupation of
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these states, denoted by Pn(t), and (3) a gain-loss equation with
specified transition rates Wmn as in the Pauli master equation. The states
do not have to be quantum states, and the rates do not have to come
from a quantum mechanical calculation. However, certain require-
ments must be imposed.

The master equation may be written in two equivalent ways, either
as a gain-loss equation or as a matrix or operator equation,

The matrix D is defined by

In order to conserve probability, this matrix must satisfy the sum rule

Further, its off-diagonal elements must be positive or zero, because
transition rates cannot be negative. Then, according to standard
matrix theorems, D has at least one zero eigenvalue, and all its
other eigenvalues have negative real parts. These describe an
approach to equilibrium. An eigenvector associated with a zero
eigenvalue is an equilibrium state. If the matrix is "ergodic,"
which means that any state can be reached from any other state by a
sequence of allowed transitions, then there is only one equilibrium
state. If D has more than one equilibrium state, the process is not
ergodic, and different initial states can lead to different stationary
states at infinite time.

In a chapter on Fokker-Planck equations, there was a brief discus-
sion of the use of operator methods to deal with averages. These
methods can be applied without any essential changes to master
equations. In fact, the matrix D was introduced in order to make the
similarities clear. First, the distribution function f(a, t) is replaced by
the probability vector Pm(t). Then integration over a is replaced by
summation over m. The average of any property Am determined by the
state m is

This average can be obtained either by following the evolution of the
probability vector Pm(t),
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or by following the evolution of a defined time-dependent property,

where D is the matrix adjoint to the original D. Then the average is

Finally, note that abstract master equations may appear as discretiza-
tions of Fokker-Planck equations, and that Fokker-Planck equations
sometimes appear as continuous approximations to master equations.
The main distinction is that Fokker-Planck equations are always
parabolic differential equations, having no derivatives higher than
the second order, whereas master equations can be much more
general.

Random Walks

A common application of master equations is in the treatment
of random walks on a lattice. For simplicity, consider an infinite
one-dimensional lattice, with sites labeled by j. In this application, by
"state" we mean the location of the walker. By "transition," we mean
the movement of the walker from j to j + 1 or j - 1. The probability
that the walker is in state j at time t is Pj(t). This satisfies the master
equation

The rate of change of Pj is the rate w of arrival from j + 1 or j - 1, less
the rate of departure from j.

A typical question is: Given that the walker is at the origin at t = 0,
what is the probability that he is at site j at time t? To answer this, we
first construct the lattice Fourier transform of Pj

Then the master equation transforms to



64 N O N E Q U I L I B R I U M STATISTICAL MECHANICS

which is easy to solve as an initial value problem,

But the initial condition is Pj(0) = Then g( ,0) = 1. To find the time-
dependent probability, we invert the Fourier transform,

The resulting integral is a representation of a modified Bessel function
Ij(z),

so that the solution is

Similar calculations can be done for two- and three-dimensional
lattices.

Chemical Kinetics

Master equations are sometimes used to model chemical reaction
dynamics. Consider the bimolecular reaction

The number of A molecules is m, and the number of B molecules is n.
Because the reaction consists of converting between B and A, the total
number N = m + n is conserved.

A state of the system is specified by [m, n]. (While the index n is
redundant because of conservation, it is helpful to include it explicitly.)
Transitions are made only to neighboring states, for example, [m, n] to
[m + 1, n - 1], in which a B is converted to an A. The transition rate of
this process is expected to be the forward rate constant K1 times the
number of As times the concentration of B,

where V is the volume of the system. In the other direction, from [m,
n] to [m - 1, n + 1], an A is converted to a B. The transition rate is the
backward rate constant k2 times the number of As times the concen-
tration of A, or
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This simplistic model of a reaction ignores many important physical
questions. However, it is easy to analyze.

The master equation is constructed by accounting for losses from [m,
n] to adjoining states and gains to [m, n\ from adjoining states. The
probability of this state is Pm(t) (recalling that n = N - m is redundant).
The resulting equation is

Rather than attempting a complete solution of the master equation, we
take advantage of the size of the system. New concentration variables
are introduced,

Then in the limit of large V, we can expand in powers of 1/V, so that,
for example,

When this expansion is done on all parts of the master equation, and
higher orders of 1/V are neglected, it leads to a Fokker-Planck equa-
tion for ,

This should be compared with the Fokker-Planck equations discussed
earlier; a corresponds to C, and the quantities v and B are

In the limit of infinite V, the second derivative term goes away, and
the Fokker-Planck equation is like a noise-free Liouville equation. Then
any initially sharp distribution (C, 0) = (C - C(0)) will remain sharp,
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and the concentration precisely satisfies the chemical kinetics rate
equation,

For finite but large V, an initially sharp distribution will broaden in time.
Then there are fluctuations about the mean concentration, which are
of the order of

This calculation shows why deterministic chemical kinetics equations
can be used to describe molecular reactions.
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Reaction Rates

4.1 Transition State Theory

Transition state theory (TST) (E. P. Wigner, 1932), is a way to calculate
the rates of chemical reactions, for example, the rearrangement of a
molecule A into a different molecule B. It is based on a very simple
idea, and sometimes it works. The idea will be presented uncritically in
its most elementary form, and some questions about its implementa-
tion will be raised.

In this section, the treatment is limited to classical statistical mechan-
ics. The fully quantum mechanical version of TST is complicated by the
possibility of tunneling through potential barriers and is still an impor-
tant research topic.

We consider a system with N degrees of freedom, j = 1, 2 , . . . , N,
with coordinates xj and momenta Pj. The first question is, "How do we
define a chemical species in this phase space?" For example, we might
use a particular "reaction coordinate" X1 to separate phase space into
two regions. The region with negative x1 is species A, and the region
with positive x1 is species B. All the other coordinates and momenta
are collectively denoted by X. The phase space distribution function is
f (P 1 ,X 1 , X; t). The separation is accomplished by using the step function

(x),

67
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We can define the probability PB of being in region B (or equivalently
the concentration of B) as the ensemble average of (x1),

and PA as the ensemble average of (--X1). The time derivative of PB is
determined by operating on / by the Liouville operator and then by
taking the adjoint,

The effect of L on 0 (the derivative of the step function giving rise to
a delta function) is

This quantity is the product of a velocity pi/mi and a density (x1) and
is therefore a flux density. The integral over p1 can be split into sepa-
rate integrals over positive and negative p1. Negative p1 corresponds to
leaving region B to go to region A, so that the instantaneous rate of
loss by transitions from B to A is

The corresponding instantaneous rate of gain by transitions from A
to B is

So far, this is exact for any x1 and for any distribution function.
The essential approximation in TST is the assumption that the phase

space distribution function in regions A and B maintains a local equi-
librium form at all times. This can not really be so; a flow out of a region
will surely affect the phase space distribution in that region. For TST
to be valid, the contents of a region must relax to equilibrium much
faster than the rate of leaving that region, and returns must not be cor-
related with departures. This separation of time scales is generally hard
to justify and is generally contingent on a good choice of phase space
regions.

The distribution is determined by the Hamiltonian,
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The full equilibrium distribution is

where the denominator is the normalization constant,

Contributions from the individual regions A and B are

The equilibrium probability of finding the system in region A is PA(eq)
= QA/Q,, and in region B, PB(eq) = QB/Q. The local equilibrium dis-
tribution looks like the full equilibrium distribution, except that it is
weighted on either side by the actual amount of A and B that are
present at time t, rather than by the equilibrium amount. So, for
example, in region B the local equilibrium distribution is

When this is inserted in eq. (4.5), one gets the equilibrium flux
out of B,

which can be rewritten as a rate equation,

The rate constant kAB (after changing signs from -pl to +p1) is

In the same way, one has
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where the rate constant kBA is

The resulting rate equations are

Very often the TST rate constants are written in a form that contains
the partition function of the "transition state." This is defined by the
Hamiltonian H , which is the original H without the momentum p1l and
with x1 fixed at the dividing boundary x1 = 0. The normalization con-
stant Q is a classical partition function. The corresponding partition
function of the transition state is

Then, after doing the p1 integration in the numerator of eq. (4.14), the
rate constant is

The TST rate constant is the ratio of two partition functions. This
formula is often used to argue that there is some kind of thermody-
namic equilibrium between the state B and the transition state ; this
should not be taken seriously.

An alternative form uses the quantum mechanical partition function
rather than the classical one. The only difference here is that the clas-
sical limit of the quantum partition function contains an extra factor of
Planck's constant h for each degree of freedom, and Q has one fewer
degrees of freedom,

On changing to the quantum mechanical form, the rate constant
becomes
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But this is a cosmetic change only; in the classical limit, Planck's
constant cancels out everywhere.

This argument depends crucially on two connected assumptions.
One is that the separation between species is well defined by a specific
value of x1.The other is that the contents of regions A and B reach local
thermodynamic equilibrium very fast. Generally we don't know a priori
whether either assumption is valid. Even if we know experimentally
that transitions between A and B follow simple first-order kinetics, this
is not ex post facto evidence of rapid equilibration in each region. It is
possible that the contents of A come to a nonequilibrium steady state
instead of thermal equilibrium, with a different probability of being at
the boundary.

In typical applications, the two regions are associated with minima
of the potential energy and are separated by a high barrier where the
potential energy has a saddle point. Assume that in the neighborhood
of the minimum of region B, located at (b1, b2, . . ., bN), the potential is
diagonal,

In the neighborhood of the saddle point, located at (0, 0 , . . . , 0), the
potential energy has a maximum in the direction of x1 and the same
minimum location and frequencies in all other directions,

The partition function of region B is

where each degree of freedom gives a factor of kT. The partition
function of the transition state (omitting integration over p1 and x1) is

The resulting rate constant is
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which contains the familiar Arrhenius activation energy Us -- U0 and
the frequency factor 1/2 .

The same TST rate constant often appears in a somewhat different
context. The time correlation function of the amount of B that is
present at time t is defined by

Its time derivative is

Inserting L leads to

At short times, X1 ( t )  i s  x 1 ( 0 )  +  p 1 t / m 1  +  . . . ,  a n d  b e c a u s e  o f  t h e  d e l t a

function, the first term can be dropped, so that

Since t is positive, requires that p1 is positive. The short time limit is

This contains the same integral as in eq. (4.16). The TST rate constant,
while based on a questionable assumption about local equilibrium, nev-
ertheless gives the correct initial decay of the time correlation function.

An Example

There is a highly artificial model system for which TST works beauti-
fully. This is the escape of an ideal gas of point particles from a two-
dimensional region labeled A, bounded by curved rigid walls, through
a very small exit window, labeled w, shown in Fig. 4.1.1.

The particles do not collide with each other, but they do collide
elastically with the walls. They move in straight lines between collisions.
All particles have the same kinetic energy. A collision cannot change
the magnitude v of an individual particle's velocity, only its direction.
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Figure 4.1.1 A model
system for which TST works
well. An ideal gas of point
particles escapes from the
region labeled A through the
window labeled w.

Because the walls have a negative curvature, initially parallel tra-
jectories will diverge. This means that if all the particles start out with
the same vector velocity, but have randomly distributed initial positions,
the distribution of velocity directions will be rapidly randomized. If
the window is small, the particles will remain in the region for a long
time before escaping and consequently they undergo many random-
izing collisions. Equilibration within the region is much faster than
escape.

It is easy to find the TST escape rate,

The exit window is located at x = 0, and the unit vector normal to the
exit window is n. The first factor is the average velocity of an escaping
particle, and the second factor is the average of (x). A is the area of
the trapping region, and w is the length of the exit window. Computer
simulations of this model (H.-X. Zhou and R. Zwanzig, 1991) confirm
that TST works well in the limit of a small window.

4.2 The Kramers Problem and First Passage Times

The Kramers problem (H. A. Kramers, 1940) is to find the rate at which
a Brownian particle escapes from a potential well over a potential
barrier. One method of attack is based on the theory of first passage
times. Since first passage times have other useful applications, they will
be discussed first in a general way and then applied to the Kramers
problem.
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First Passage Times

Suppose that the motion of the set of variables a is governed by a
Langevin equation. In any single experiment, it follows a specific path
a(t) which wanders through a-space. The initial point a0 starts out some-
where in a "volume" V in this space, bounded by a "surface" V. The
first passage time is the first time that the point leaves V. Because of
the noise, repeated experiments, even with the same initial position,
lead to different paths, and hence different first passage times. The
problem here is to find the distribution of first passage times and
especially the mean first passage time.

The motion of a cloud of initial points satisfies the Fokker-Planck
equation. If we focus on only those points that have not left V by time
t, we must remove all paths that have crossed the boundary of V before
time t. This can be done by imposing an absorbing boundary condition
on V. Then the distribution of points that have not left by time t is P(a,
t), and satisfies

As before, the Fokker-Planck operator is called D, with the presump-
tion that the boundary condition has been taken into account. The
formal operator solution as an initial value problem is

Note that P vanishes at long times because of the absorbing boundary
condition; eventually all initial points leave. The integral of P over all
a in the volume V is the number of all starting points that are still in V
at time t; it depends on the initial location a0.

This also vanishes at long times. The difference S(t) - S(t + dt) is the
number of initial points that have not left before time t but have left
during the time interval dt following t and therefore determines the dis-
tribution of first passage times p(t, a0),

This provides an explicit way to find p,
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The mean first passage time is the first moment of t,

On using eq. (4.37), integrating by parts, and recalling that S vanishes
for large t, one finds

There is a more direct way to calculate , using the operator D that is
adjoint to the Fokker-Planck operator D,

Note that the exponential of the adjoint operates on the number 1. Now
the integration over a, with the delta function, replaces a by a0 on the
right. Then we can drop the subscript "0" and write

the initial location is now a. Next, operate on with the adjoint and
then do the time integral:

Only the lower limit survives; the upper limit vanishes because of the
absorbing boundary condition. Then the mean first passage time is
determined by solving the inhomogeneous adjoint equation,

The boundary condition in this equation states that any initial point on
the boundary will leave immediately; its first passage time is 0.

If a is the single coordinate x and the Fokker-Planck equation is the
one-dimensional Smoluchowski equation,

then the calculation of the mean first passage time can be reduced to
quadrature. The adjoint equation is



76 NONEQUILIBRIUM STATISTICAL MECHANICS

The coordinate x is the starting position of the Brownian particle. The
absorbing barrier is located at b, and we assume that there is a reflect-
ing barrier at a, with a < x < b. To solve the equation, divide
through by D exp[U(X)/kT], integrate once over x, multiply through by
exp[U(x)/kT], and integrate once more over x, using the boundary con-
ditions at the two limits a and b,

Only for one-dimensional systems can the solution be found so easily.
For higher dimensional systems, it is necessary to solve a partial dif-
ferential equation. Quite often one has recourse to computer simula-
tions instead.

The Kramers Problem

The Kramers problem is to determine the rate at which a Brownian
particle escapes from a potential well. Two typical situations are shown
in the following figure, in which a potential is plotted against a coordi-
nate. Figure 4.2.1A might describe a molecular rearrangement, and Fig.
4.2.1B might describe a molecular dissociation.

When the temperature is low (compared with the barrier height),
the particle will spend a lot of time near the potential minimum where
it started, and only rarely will Brownian motion take it to the top of
the barrier. Once there, the particle is equally likely to fall to either

Figure 4.2.1 Potential energy as a function of reaction coordinate in two
typical cases, A is a potential with two minima, and B is a potential that allows
escape from a single minimum.
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side of the barrier. If it goes to the right-hand side, in Fig. 4.2.1 A it will
fall rapidly to the other minimum, stay there for awhile, and then
perhaps cross back to the original minimum. In Fig. 4.2.1B, it will not
return.

When the Brownian motion is treated fully, using both position and
velocity, the problem is fairly hard and will not be done here. But when
the motion is purely diffusive, governed by a Smoluchowski equation,
and the barrier is high (or the temperature is low), it is quite easy to
find a rate of crossing. The rate of arrival at the barrier is estimated by
taking the reciprocal of the first passage time to the barrier. Because a
particle at the top of the barrier is equally likely to go either way, the
rate of crossing is one half of the rate of arrival. A general formula for
mean first passage times was derived in the previous section. The
absorbing barrier is placed at the maximum xmax of the potential U(x),
and Umax = U(xmax). The initial position is x, and the reflecting barrier at
x = a is provided by a repelling potential at x . Then the mean first
passage time from x to xmax is

When kT is small, the integral over z is dominated by the potential near
the minimum,

Then the upper limit of integration can be replaced by infinity, and the
integral is

The integral over y is dominated by the potential near the barrier and
has the quadratic expansion,

The integral over y is practically independent of x as long as x is near
the potential minimum, so the lower limit can be replaced by minus
infinity,
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The factor 1/2 appears because only half of the Gaussian is included.
The mean first passage time (MFPT) (in the high barrier limit) is

Recall that D is kT/ . The rate of arrival is 1/ , and the rate of cross-
ing, kK, is half of that, so that

Referring back to the figure, this is the rate of crossing from left to right
in Fig. 4.2.1A; there is a corresponding rate of crossing from right to
left, with a different Umin and min. In Fig. 4.2. 1B, this is the rate of escape,
since there is no return. The relation of the Kramers rate to the transi-
tion state theory rate kTST is simply

Because this calculation was based on the Smoluchowski equation,
the escape rate is correct only in the high friction limit of Brownian
motion. The low friction limit is treated in the following section.

4.3 The Kramers Problem and Energy Diffusion

In the preceding section, the Kramers problem was treated by means
of a first passage time calculation. Brownian motion over the barrier
was treated by a Smoluchowski equation, which means that the results
are applicable only in the high friction limit. If the friction is weak,
another approach must be taken. This is based on the concept of
"energy diffusion."

If there is no friction at all, the particle's energy is conserved, and its
motion in the potential well is periodic. Weak noise and friction
produce slow random changes of the energy, and this happens in times
much longer than a period of oscillation. Eventually, the particle's
energy reaches the barrier energy and the particle escapes. In this limit,
it is helpful to think in terms of new variables, replacing position and
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momentum by the action (or energy) and angle of the oscillation. The
angular distribution randomizes rapidly, and the energy distribution
drifts slowly or "diffuses."

A general method of treating slow dynamics will be presented in
section 9.3. At this point, a simple approximate treatment will be given.
The starting point is the Fokker-Planck equation for the phase space
distribution function f(x, p; t) of a particle in one dimension,

where L0 is the Liouville operator,

feq is the equilibrium distribution, determined by the Hamiltonian,

and the force is F(x) = --dU/dx. The distribution of energy can be found
from

The delta function selects all points on the surface of constant energy
E. Because the unperturbed energy is conserved, L0H = 0, the energy
distribution obeys the integrated Fokker-Planck equation,

The basic approximation is to replace the actual distribution func-
tion f(x, p; t) on the right-hand side by a function of the Hamiltonian,
so that f(x, p; t) becomes (H; t). This function is determined by requir-
ing that it leads to the correct energy distribution,

The remaining integral is the microcanonical partition function,

so that the function is
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The ratio f/feq becomes

The momentum derivative in eq. (4.60) is

leading to

Integrating by parts over momentum gives

and eq. (4.60) becomes

This can be rewritten in a "Smoluchowski" form,

which contains an energy diffusion coefficient,

The momentum integrals can be eliminated by using the identity
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Then we get

where the range of integration is over all x such that E > U(x). The inte-
gral in the numerator is related to the action defined by an integral
around a complete cycle,

The integral in the denominator is related to the derivative dI/dE,
which in turn is related to a frequency (E),

(One must remember that the integrals are over the range of x, where
U(x) < E are half of the integrals around a complete cycle.) These def-
initions provide another way of writing the energy diffusion equation,

The energy diffusion equation resembles the Smoluchowski
equation for spatial diffusion. Position is replaced by energy, and the
Boltzmann factor exp-- U(x) is replaced by (E) exp-- E. The diffusion
coefficient now depends on the coordinate E. The essential approxima-
tion in deriving this equation is to replace the general x,p dependence of
the distribution function by the particular x,p dependence of the Hamil-
tonian. Another derivation, presented in a later section, shows that this
is a good approximation in the weak friction limit.

By exactly the same procedure that was used in the preceding
section, we can calculate the rate of escape from a potential well over
a barrier. The potential near its minimum is

and the barrier energy is Eb. An absorbing boundary condition is used
there. The mean first passage time (E) to go from an initial energy E
to the barrier is given by the double integral

After inserting expressions for D and geq, this is
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Figure 4.3.1 Escape
rate as a function of

friction . This is a
schematic illustration of

the "turnover" from
small friction to large

friction.

Near the potential minimum, I and . are given by

At low temperatures, or large , the second integral is dominated by
small E" and the first integral is dominated by E' near Eb. Then we need

at small energy and the action I(Eb) at the barrier energy. Each inte-
gration gives a factor 1/ , and the MFPT is

The MFPT in the low friction limit is proportional to 1/ . The MFPT in
the high friction limit, found in the preceding section, is proportional
to .

Figure 4.3.1 shows schematically the inverse MFPT 1/ or escape rate
as a function of the friction . There must be a "turnover" connecting
the two limits; this was drawn here in a completely arbitrary way.
Finding the correct turnover is a difficult problem in mathematical
physics, which will not be discussed here.

When there is no possibility of return, the escape rate is 1/ . If,
however, the potential has two minima separated by a barrier, particles
with energy just over the barrier top will still oscillate back and forth,
and only half of the particles are likely to end up on the other side.
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Kinetic Models

5.1 Kinetic Models

Introduction

Kinetic models originated in attempts to make useful approximations
to the Boltzmann equation. However, because of their simplicity and
pictorial quality they are often used in entirely different contexts.

The Boltzmann equation was a great achievement of statistical
mechanics. It provided a complete and correct treatment of dynamical
processes in a gas at low-enough density that only two-body molecular
collisions need to be taken into account. It showed how a low-density
gas will come to thermal equilibrium at long times (the H-theorem). It
is the basis for understanding how the equations of hydrodynamics
arise and how the coefficients of viscosity, thermal conductivity, and dif-
fusion are determined by molecular interaction potentials. However,
the Boltzmann equation is only applicable to a low-density gas. Further,
many of its consequences are quite independent of the details of mol-
ecular collisions. For this reason, instead of giving a comprehensive dis-
cussion of the Boltzmann equation, a simple "kinetic model" related to
the Boltzmann equation will be discussed in a later section.

The state of a system (e.g., one molecule) is given by its posi-
tion r and its corresponding conjugate momentum p. In the following
treatment, the momentum will be replaced by the velocity v. The
number density in the "phase space" specified by position and velocity

83
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is f(r, v, t). The Boltzmann equation and its kinetic models all have the
general form

The left-hand side of this equation contains the Liouville operator for
single particle motion in a potential. F(r) is an external force acting on
the molecule, and m is the molecular mass. For the rest of this section,
the external force will be omitted. The right-hand side, usually called
the collision integral, accounts for changes in / due to molecular colli-
sions. The gas molecules move freely for awhile; then two molecules
collide, and the velocities of both molecules change. The collision inte-
gral contains the scattering cross section for a molecular collision,
and because collisions require pairs of molecules, it is quadratic in the
distribution f. This quadratic nonlinearity is what makes the Boltzmann
equation so hard to handle.

In the simplest kinetic model, the collision integral is approxi-
mated by

where A is a rate constant for the approach of the distribution function
to its form at thermal equilibrium. One flaw of eq. (5.2) as a model
for gas dynamics is that it leads to incorrect hydrodynamic equations;
it violates certain conservation laws. This will be explained more
fully later. Better kinetic models for the Boltzmann equation, called
BGK models, were developed by P. L. Bhatnagar, E. P. Gross, and
M. Krook (1954). These models also ignore details of molecular colli-
sions, replacing the correct collision integral by a simpler approxi-
mate form. BGK models lead to hydrodynamic equations that do have
the correct general structure, although with incorrect transport coeffi-
cients. They will be used in a later chapter to derive the equations
of hydrodynamics.

Kinetic Model for Rotational Diffusion

But first, a much simpler kinetic model will be used as an introduc-
tion to BGK models. It is intended only as an illustrative example of
what can be done, and not as an accurate model of any experimental
situation.

This is a kinetic model for the relaxation of angular momentum.
It will be used first to derive an equation for rotational diffusion. (The
following section contains an application of the same model to the
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calculation of orientational time correlation functions.) The system is a
planar rotator, specified by an angle 6 and an angular velocity . Its
moment of inertia is /, and the equilibrium distribution of angular
velocities is

There is no external potential, so U( ) = 0 and F( ) = 0. The phase space
density is f( , , t). At equilibrium, it has the form

(The 2 comes from the uniform distribution of orientations at equi-
librium, and the distribution ( ) is normalized to unity.) The kinetic
model equation has the same structure as the Boltzmann equation,

The angular velocity of the rotator can change because of random inter-
actions with the environment, which we might call "collisions." The col-
lisions are assumed to be thermalizing. This means that whatever
angular velocity the rotator had before a collision, its new angular
velocity after a collision is taken randomly from a thermal equilibrium
distribution. (In this model, there are no conservation laws, either for
total angular momentum or for kinetic energy.) The collisions occur at
a rate 1/ . Then we can write a gain-loss kinetic equation (omitting 9
and t in f):

In the first term on the right, angular velocities ' are removed and
thermally distributed angular velocities are gained. The second term
on the right accounts for the corresponding losses. The entire right-
hand side vanishes at thermal equilibrium.

In the kinetic theory of gases, the Boltzmann equation is used as the
starting point for deriving hydrodynamic equations. In this section, the
kinetic model equation will be used to derive a rotational diffusion
equation. This is an equation for the angle and time dependence of the
orientational density p that is obtained by integrating out all depen-
dence on angular velocity,
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One way to get the diffusion equation uses an expansion of the
angle dependence of / in Fourier series and the velocity dependence
in Hermite polynomials. For convenience, the angular velocity is
replaced by

so that the equilibrium distribution becomes the normalized Gaussian

Next, the angle dependence of the distribution is expanded in Fourier
components,

Different Fourier components are uncoupled; the kinetic equation for
a single Fourier component is

Finally, the velocity dependence of the distribution is expanded in a
series of Hermite polynomials,

When one uses the recursion formula

the kinetic equation is transformed to

The equation for m = 0 does not involve ,
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The time derivatives can be handled by taking Laplace transforms,

(Appendix 3 contains a short review of Laplace transforms.) The trans-
form of the time derivative is zf1(z) --f1(0), which requires that we know
the initial values; to make this as simple as possible (at some loss of
generality), we assume that initially the velocity dependence has its
equilibrium form, but that the angle dependence is arbitrary,

Then for m = 0, eq. (5.15) becomes

and for m = 1, 2 , . . . , eq. (5.14) gives

This infinite-order three-term recursion problem can be solved in some
generality by using continued fractions. (These quantities occur often
in nonequilibrium statistical mechanics. Appendix 4 gives a short intro-
duction to continued fractions.) The procedure is to find equations for
the ratios of successive terms; in the present case, this is done most
easily by introducing the ratios as

Then eq. (5.18) becomes

and the recursion formula becomes

This procedure generates the continued fraction
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Later a more-compact analytic form will be given.
Evaluating continued fractions can be hard. One strategy is trunca-

tion: for example, if we set Ki1 = 0, then eq. (5.22) gives an approxima-
tion for Ki0, and the continued fraction has two levels,

This is a rational function of z, the ratio of a numerator linear in z and
a denominator quadratic in z: The inverse Laplace transform can be
found from the roots of a quadratic equation and is the sum of two
exponentials in t. Or we could set K12 = 0. Then the continued fraction
has one more level, leading to the ratio of a numerator quadratic in z
and a denominator cubic in z. The resulting inverse transform is the
sum of three exponentials in t. Evidently this is a procedure that one
seldom follows for very long.

The Laplace inversion can be easier when one is able to focus only
on some limiting case. For example, if is very small, then

and the entire continued fraction reduces to

But f1,0 is a Fourier component of the angle distribution function p( ,
t), so this result is the solution of the ordinary diffusion equation in
angle space,

This equation is expected to hold only when is very small, t is much
greater than , and deviations from the assumed initial distribution
have decayed to zero. These conditions are typical limitations on the
validity of diffusion equations.
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5.2 Kinetic Models and Rotational Relaxation

In the previous section, a kinetic model was used to derive the rota-
tional diffusion equation in the limit of small T. One can use the same
kinetic model to derive an exact expression for the orientational time
correlation function without going through the derivation of a diffusion
equation. In fact, the result is precisely the continued fraction that
appeared in that derivation. As before, the time correlation function is
defined by

where / is an integer. One way to calculate this quantity is to average
exp(—il ) with the distribution function that evolves from the initial
condition

This initial condition, appropriate for the calculation of time correla-
tion functions, is in fact the one that was used as a convenience in the
preceding derivation of a diffusion equation. Then the time correlation
function is

The time-dependent solution has exactly the same 9 dependence as the
initial distribution,

Then the time correlation function is an integral over angular veloci-
ties only,

Because different Fourier components are uncoupled, the kinetic
equation for a single component is (as in the earlier derivation of the
rotational diffusion equation)

The earlier treatment was based on an expansion in Hermite polyno-
mials. A more-compact treatment will be given now.

First we take Laplace transforms in time:
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Then the transformed kinetic equation is

By using the abbreviation

we can rearrange the equation to

But now we can integrate this over and then solve for the integral,

It is convenient to abbreviate again:

With some effort, the integral can be evaluated analytically; the
result is

where Erfc is the complementary error function and a is

The inverse Laplace transform of this function is easy to find:

Further, the correlation function is the integral of the solution over
angular velocity. Then we find for the Laplace transform of the corre-
lation function:
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The complementary error function Erfc(z) has a continued fraction
expansion; when that is used, this Laplace transform is precisely the
same continued fraction that was derived earlier. It does not appear
that the Laplace transform can be inverted exactly; the results of a
numerical calculation will be presented shortly. Also, eq. (5.43) is the
solution of a convolution equation in time, which is easy to solve
numerically:

In the limit of infinite , or no interaction with the environment, the
time correlation function approaches the ideal rotator limit,

This behavior was seen earlier.
In the limit of very small , it is easiest to work with the Laplace

transforms. While this limit was already treated in an earlier section, it
may be helpful to look at it again without the complications of a general
continued fraction expansion. When is very small, the time depen-
dence of Gi(t) is dominated by the factor exp(-t/ ); the other Gaussian
factor decays much more slowly. Then the Laplace transform is

The integration is done term by term, and then two terms are recom-
bined into a single denominator,

When this is put into eq. (5.43), we immediately get
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This is the same expression that was found by the lowest order trun-
cation of the continued fraction in the treatment of rotational diffusion.
For very small , the denominator 1 + can be dropped, and

The decay of the time correlation function is approximately exponen-
tial, with a long lifetime,

This is exactly the same behavior that was found from the Langevin
equation and the Fokker-Planck equation.

The complete time dependence of the time correlation function,
for various values of , can be obtained by using the Stehfest algo-
rithm (see Appendix 3) to invert the Laplace transform numeri-
cally. The time scale was fixed by choosing I = 2kTl2. Figure 5.2.1
shows four curves, using = 10 (the lowest curve), 1, 0.5, and 0.1 (the
highest curve). The transition from Gaussian to exponential behavior
is obvious.

Figure 5.2.1 Results of numerical inversion of the Laplace transform of the
orientational time correlation function. The relaxation time takes the values
10 (lowest curve), 1, 0.5, and 0.1 (highest curve).
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5.3 BGK Equation and the H-Theorem

The BGK Equation

Now we turn to the BGK equation as an approximation to the Boltz-
mann equation, and use it to derive Boltzmann's H-theorem. In the
next section it is used to derive the equations of hydrodynamics.

First, some definitions, analogous to those used in connection with
rotational diffusion, are needed. Earlier, we used a probability distri-
bution function; here, it is more conventional to use a molecular mass
density. We define f(V, r, t) as the mass per unit volume in the six-
dimensional "phase space" determined by the spatial location r and the
molecular velocity V. The distinction between the two forms is one of
normalization only—probability distribution functions are necessarily
normalized to unity; the density f is normalized to the total mass of the
system. The main advantage of this choice, which is conventional in
kinetic theory, is that we do not have to keep track of factors of the
molecular mass m. The spatial number density is n(r, t), but it is more
helpful in hydrodynamics to use the mass density (r, t) = mn(r, t). The
fluid velocity is v(r, t), and the momentum density is (r, t)v(r, f). The
temperature is T(r, t). We could use, instead, the internal energy density
per unit mass, e(r, t). The mass density and temperature are scalar
functions of position and time; the fluid velocity is a vector in three
dimensions. These five functions are called the hydrodynamic fields
(see Appendix 5 for further discussion). Then the ordinary mass density
and the other hydrodynamic fields are related to the phase space mass
density by integrals over velocity. The mass density (recall that a factor
of m is included in the definition of /) is

The momentum density is

The molecular velocity C relative to the bulk motion of the fluid is

and the internal energy density is given by
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Note that the internal energy is defined by the mean kinetic energy of
molecular motion relative to the local fluid velocity. The local temper-
ature T is defined by equating the internal energy per unit volume to
3nkT/2,

We define the velocity average of any quantity A by

which is normalized so that the average of A = 1 is l.Then we can write

The BGK kinetic model is based on the assumption that the main
effect of molecular collisions is to drive the gas to a state of "local equi-
librium." This state is defined by a special three-dimensional Gaussian
distribution,

which gives precisely the five hydrodynamic fields.
The local equilibrium distribution is defined so that the local equi-

librium hydrodynamic fields are identical to the actual fields,

A particular consequence of these identities, used shortly to derive the
H-theorem, is
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The local equilibrium phase space density is a complicated function
of the true phase space density; first, / is used to get , v, and T, and
then these quantities are used to get the local equilibrium approxima-
tion to /. In the BGK kinetic model, the molecular collision integral is
replaced by

and the BGK equation is simply

The coefficient A is the rate of approach to local equilibrium; it is a
kind of average collision rate, and its inverse = 1/ is an average time
between collisions. We expect the approach to local equilibrium to
occur on a molecular time scale. In a gas under standard conditions, the
duration of a molecular collision is of the order of 10-12 s, the time
between collisions is of the order of 10-9 s, and a macroscopic time might
be defined as any time larger than l0-4s. The BGK model does not take
molecular collisions into account directly, so the first time is irrelevant.
The rate of occurrence of collisions is a good estimate for the rate A.
This is very large compared with the rates of hydrodynamic processes.
Thus we will be concerned mainly with the limit of very large A or very
small T.

Boltzmann's function H is defined by

(This differs in an unimportant way from Boltzmann's definition
because of the distinction between a mass density and a probability
density. If m = 1, the distinction goes away.) The rate of change of H is

The rate of change of f is given by the BGK equation,

On partial integration, the streaming term vanishes, and
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Equation (5.63) allows us to write this as

But the inequality

is generally true for any x and y. Then we have derived the H-theorem,

H can only decrease until it reaches a constant value. When it does,
/ approaches floc, and this is a solution of the BGK equation only if
all the parameters , v, and T are independent of position. All solutions
of the BGK equation approach true thermodynamic equilibrium
at long times.

5.4 BGK Equation and Hydrodynamics

Now we use the BGK equation to derive the equations of hydrody-
namics. (The treatment of the BGK equation given here is modeled on
one used by H. Grad, 1949, to solve the Boltzmann equation.)

The BGK equation is

As before, the velocity average of some function A is defined by

On multiplying the BGK equation by A and integrating over velocity,
we obtain an equation of motion for the velocity average of A,

which can be rearranged to
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or, using the notation of velocity averages,

The local equilibrium distribution was defined so that the local equi-
librium hydrodynamic fields are identical to the actual fields,

Then if A is chosen to be 1, V, or (V - v)2, there is no contribution from
the collision term to the time derivative of the average.

On using A = 1, we obtain the equation of mass conservation,

(For simplicity, the dependence on position and time is left implicit.)
The collision term has no effect. On using A = V, we obtain the equa-
tion of momentum conservation

Again, the collision term has no effect. The second term on the right
will be rewritten (using V = v + C):

where the stress tensor a is defined by

On using A = V2/2, we obtain the equation of energy conservation,

This can be further rewritten by introducing the heat current q
defined by
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Then we have

At this point, we have obtained the five hydrodynamic equations, but
we have not yet obtained the Navier-Stokes form for the stress tensor
or the Fourier heat law. The trace of the stress tensor is

where P = nkT is the local pressure. The viscous part of the stress tensor
(that part connected with shear flows) is defined by

Note that the local equilibrium velocity average of is zero. This means
that the viscous stress is governed entirely by departures from local
equilibrium.

Now we put the tensor A = VV into the equation of motion, Eq.
(5.77), leading to

Or, if we use A = VVV, we get

Note the same recursion problem that occurred in the earlier discus-
sion of rotational diffusion. The rate of change of an nth moment
involves an (n + l)th moment. If A is very large, an nth moment will
approach its local equilibrium value rapidly. This is the key to handling
the recursion.

The second moment is

and when its local equilibrium value is subtracted,

The third moment can be expanded in the same way,
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The local equilibrium value of the third moment is

Now these results can be used to derive a formula for the shear vis-
cosity. Rather than attempting this in full generality, we investigate the
simplest case: (1) a steady state where the density, temperature, and
pressure are spatially uniform, and only the fluid velocity depends on
position; (2) all nonlinear terms are neglected; and (3) the third moment
can be replaced by its local equilibrium value. Then in the steady state,
V • v = 0 because = 0, and the dynamical equation for the second
moment reduces to

or, on inserting an extra V • v = 0,

This has the standard Navier-Stokes form of the viscous stress tensor,
and the coefficient of shear viscosity is simply

If the collision rate A is proportional to the density, as in the kinetic
theory of gases, then the viscosity becomes independent of density
(J. C. Maxwell, 1860). In this kinetic model, there is no coefficient of
volume viscosity.

The same procedure can be used to derive a formula for the thermal
conductivity. To make this simple, we consider only the steady-state
case where the temperature is a function of position, the pressure is
constant, and the fluid velocity vanishes everywhere. Then V = C, and
the heat current is

The heat current at local equilibrium vanishes. Then eq. (5.91) for the
third moment yields
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We replace the fourth moment by its local equilibrium value,

When the local equilibrium second moments are inserted, and the sum
over k is performed, we find

Then the heat current is

But at constant pressure, P = nkT is independent of location, so that a
factor pkT can be moved through the gradient operator, leading to

which has the form of Fourier's heat law. The thermal conductivity is

In the BGK kinetic model, the ratio of thermal conductivity to
viscosity has the universal value

When the Boltzmann equation is used to derive expressions for shear
viscosity and thermal conductivity, the corresponding ratio differs by a
factor of 3/2,

Aside from the question of choosing an appropriate value for A,
the BGK transport coefficients cannot quite correspond to the BE
coefficients.



6

Quantum Dynamics

6.1 The Quantum Liouville Operator

For present purposes, the first thing to recall about quantum mechan-
ics is that all dynamical quantities, instead of being functions of the loca-
tion of a system in phase space as in classical mechanics, are now
represented by operators in a Hilbert space of quantum states. In par-
ticular, the quantum analog of the classical phase space distribution
function is the quantum mechanical density matrix. Since this is seldom
discussed in introductory texts on either quantum mechanics or
statistical mechanics, it may be helpful to summarize some of its basic
properties.

In quantum statistical mechanics, we no longer deal with single or
"pure" quantum states, but with "mixed" states to which statistical
weights are assigned. Recall how one calculates the equilibrium
average of any physical quantity A. First we find the energy eigenval-
ues Ej and eigenfunctions (q) of the system's Hamiltonian operator,
H,

where q denotes the system coordinates. The eigenfunctions can always
be orthonormalized so that

101



102 NONEQUILIBRIUM STATISTICAL MECHANICS

In the jth energy quantum state, the expectation value of the operator
representing A is

The probability that a thermal equilibrium system is in the jth quantum
state is

where, as usual, = 1 /kT is the inverse temperature. The sum in the par-
tition function Q is over all quantum states, including their degenera-
cies. The thermal equilibrium average of A is its expectation in the jth
quantum state, multiplied by the probability of that state, and then
summed over all states,

But it is not necessary or even desirable to use the representation in
which the Hamiltonian is diagonal; after all, one can only find these
eigenfunctions and eigenvalues in a few simple cases. The energy eigen-
functions, which form a complete orthonormal set, can be expanded in
any other complete orthonormal set of functions {fk(q), k = 1,2,3 . . .},

so that

The transformation matrix is

The inverse transformation is

The transformation matrix S connecting the two sets of states is unitary,

In this representation, the Hamiltonian operator is a matrix that is
generally not diagonal, but which can still be expressed in terms of
the energy eigenvalues,
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The matrix representing the operator exp(- ), which was diagonal in
the energy representation, now is generally not diagonal, and the equi-
librium probability distribution becomes an operator or a matrix,

This is the equilibrium density matrix.
Any dynamical quantity A has a matrix representation,

and the average in a single energy quantum state becomes

Now the thermal equilibrium average of A is

(Note that the indices m,n have been switched.) The sum over j is the
equilibrium density matrix. The average becomes

The average is the trace of the product of the matrix A and the matrix
(eq). This corresponds to the phase space integral in classical

mechanics,

Remember that the trace of a matrix is invariant to any orthogonal or
unitary transformation and that the trace of a product is invariant to a
cyclical permutation of its factors; the order of A and is not impor-
tant. Note especially that the partition function Q, defined originally in
the energy representation, is a trace and is therefore exactly the same
in any other representation.
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The Quantum Liouville Operator

Now we turn to quantum dynamics. The evolution of any state is given
by the Schrodinger equation,

(For now, we stay with time-independent Hamiltonians.) As an initial
value problem, this has the operator solution

The expectation value of any dynamical variable A at time t is

and because H is Hermitian, this can be rearranged to

This contains the time-dependent Heisenberg operator A (t), defined by

This is the quantity in quantum mechanics that corresponds to the time-
dependent dynamical variable A(t) in classical mechanics.

the Hamiltonian,

and by analogy with the corresponding discussion in classical mechan-
ics, the right-hand side will be rewritten as

which defines the quantum Liouville operator L. The classical Poisson
bracket has been replaced by the quantum commutator. This is an oper-
ator (sometimes called a "superoperator") that works on other opera-
tors rather than on quantum states. Thus it turns a matrix with two
subscripts into a new matrix with two subscripts and is specified by four
subscripts (or a "tetradic"),

The initial rate of change of A(t) contains the commutator of A with
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The explicit form of L can be found by evaluating the commutator,

The initial rate of change of A is LA; the initial second derivative is
LLA, and so on. Then, as in classical mechanics, we can construct the
formal Taylor's series in time and sum it to get

This has a tetradic representation,

On using the Heisenberg representation of A(t), it is easy to find the
explicit tetradic form of the Liouville propagator,

A particularly useful property is

which follows from the invariance of the trace to a cyclic permu-
tation. As in classical mechanics, the Liouville operator is anti-self-
adjoint.

Normally, quantum mechanics makes use of the two-sided Heisen-
berg form of time dependence; but in quantum statistical mechanics,
there are some advantages in using the one-sided Liouville form.
In particular, the dynamical equations dA( f ) /d t = LA(t) appear to be
formally the same in both classical and quantum mechanics. Only
the Liouville operator is different.

As with classical Liouville operators, modifications are required
when the Hamiltonian is time dependent. Then L is a function of time,
and the exponential operators must be replaced by time-ordered expo-
nentials or by perturbation expansions. The equilibrium density matrix
was defined earlier as the way to calculate equilibrium averages of
observables. If a system is initially in equilibrium, but then an external
time dependent Hamiltonian is switched on, the initial equilibrium
density matrix is converted into a new nonequilibrium form; but the
density matrix is still used in the same way to calculate averages of
observables.
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Suppose that a system is represented initially by the density matrix
(0). Then, the average of the observable A at time t is

But as noted earlier, the Liouville operator is-anti-self-adjoint, and the
average is also given by

which contains the time-dependent density matrix

As in classical mechanics, the average can be found two ways, either by
following the evolution of the dynamical variable and averaging over
initial conditions or by following the evolution of the initial distribu-
tion and averaging at time t. This is the statistical mechanical version
of the well-known Heisenberg-Schrodingen duality.

The time-dependent density matrix satisfies the differential equation

This is the quantum Liouville equation for the density matrix (some-
times called the von Neumann equation). It has the same formal struc-
ture as the classical Liouville equation; only the Liouville operator itself
is different.

6.2 Electron Transfer Kinetics

This section deals with a theory of electron transfer reactions (R. A.
Marcus, 1960). This may be regarded as the quantum analog of the
Kramers problem. Standard treatments of the Kramers problem
rely on classical mechanics. However, if the "system" is an electron
moving in a potential with two minima, quantum mechanics is certainly
needed. A simple model of how a classical heat bath affects quantum
tunneling is presented here and used to calculate the rate of electron
transfer.

The general idea is that a charged molecule, surrounded by a polar
medium, interacts with dielectric polarization. For the charge to jump
from one site to another, the medium must fluctuate so that energy is
conserved. This suggests that we need variables to describe the charge,
or "system," and variables to describe the polarization of the environ-
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ment or "heat bath." We start with the same Hamiltonian that was used
earlier in section 1.6. The system variables (representing the electron)
are p and x, and the bath variables (representing the polarized envi-
ronment) are {pj} and {g j) . The system Hamiltonian is

and the heat bath Hamiltonian, as before, is

The Heisenberg equations of motion for all the variables are exactly
like the classical equations except that all the variables are time-
dependent operators. The same procedure used earlier to derive the
Langevin equation can still be used here—it involves the solution of
linear equations for the bath operators and is the same for classical and
quantum mechanics. The result is a quantum Langevin equation. If the
potential function is quadratic in x, this Langevin equation is linear, and
one can proceed to a quantum theory of Brownian motion. However,
if the potential contains higher powers of the coordinate, as in barrier
crossing or tunneling problems, the quantum Langevin equation is
extremely hard to handle. Furthermore, there is no analog of the
Fokker-Planck equation.

One way to proceed is to approximate the Hamiltonian Hs by a two-
state model. Suppose that the potential energy has two minima sepa-
rated by a barrier. We introduce two quantum states, L) localized in
the left-hand well, with energy EL, and |R localized in the right-hand
well, with energy ER. The matrix elements of the system Hamiltonian
are a\ Hs \b , where a and b are either L or R. Then, the system Hamil-
tonian is represented by a 2 x 2 matrix,

Tunneling between wells is characterized by an interaction energy V,
which is assumed to be very small.

The heat bath Hamiltonian contains the system coordinate x, which
is constrained to two values, XL and XR. The coordinate operator
becomes a 2 x 2 matrix,

We assume that off-diagonal elements can be neglected so that the heat
bath does not add anything to the tunneling matrix element V.The heat



108 NONEQUILIBRIUM STATISTICAL MECHANICS

bath Hamiltonian has two forms, HL or HR, depending on whether the
system coordinate is localized at XL or XR,

Now the total Hamiltonian is

Because this Hamiltonian contains both two-state operators and
harmonic oscillator operators, it is often referred to as a "spin-boson"
Hamiltonian (two states = spin, harmonic oscillator = boson). In
general, spin-boson problems are theoretically challenging; here only a
highly simplified model is treated approximately.

If the tunneling constant V = 0, the Hamiltonian is completely uncou-
pled, and its states are easily classified. First, there is a two-component
spin state, either (1,0) for \L) or (0,1) for IK). Then there are states 1/nL)
and IvR) of the heat bath Hamiltonian,

The unperturbed states of the 2x2 Hamiltonian are (1,0) \(iL) and
(0,1) \vR), and the corresponding eigenvalues are E L = EL + L and
EVR = ER + VR.

Transitions between unperturbed states are caused by the
perturbation

its matrix element between (LI and \R) is V. The rate of transition
between states is given by the Golden Rule formula,

Next we sum over all final oscillator states and average over an equi-
librium distribution L of initial oscillator states,

As in earlier uses of the Golden Rule, the sums can be simplified by
first writing the delta function as an integral,
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Then the sums can be rearranged,

The sum over v allows us to replace EvR by HR,

and in the same way, E L can be replaced by HL,

Finally, the sum over is the equilibrium average (over the initial state),

In general, the two heat bath Hamiltonians in the exponent do not
commute. But if we assume that the heat bath oscillators can be treated
as classical, then the operators can be replaced by their classical limits,
and these do commute. The difference of the two heat bath Hamilto-
nians is

where, for convenience, we abbreviate,

(This is the initial value of the memory function for this model of
Brownian motion. It is noteworthy that the time-dependent memory
function does not occur here.) The difference is linear in the oscillator
coordinate,

and so it is easy to get the equilibrium average of the exponential. In
classical statistical mechanics, each qj has a Gaussian distribution with
the mean value and mean squared deviation,
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Then, the average of the exponential is

The quantity K(xL - xR)2 has a special significance. It is connected with
the change A in the heat bath energy ongoing from L to R, or Marcus's
reorganization energy,

Then the transition rate is

On evaluating the integral over t, we get

which is Marcus's result.

6.3 Two-Level System in a Heat Bath: Dephasing

Many problems can be modeled by a two-state quantum system
coupled to a classical heat bath. In this section, we discuss a model in
which the system is a molecule that has two quantum states, and the
heat bath affects only its energy levels. This leads to a theory of the
dephasing of spectral lines.

As an elementary model of dephasing, we use the Hamiltonian

The heat bath Hamiltonian, treated as classical, is HB. The energy dif-
ference of the two levels is h 0 + hV(B). In the following, we set h= 1.
The first term is constant; the second term leads to fluctuations in the
energy difference due to motions of the heat bath. Note that in
this example the Hamiltonian has no off-diagonal terms. The density
matrix is
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The diagonal elements of give the probability of finding the system
in either state.

The spectral line shape is determined by the dipole-dipole time cor-
relation function. The molecular dipole moment operator is the matrix
of the dipole moment for a two-state system. We assume that the mol-
ecule has no permanent dipole moment, so that

The off-diagonal elements of determine the average transition
dipole moment,

and thus they determine the dipole time correlation function and the
spectral line shape. In general, each individual ij is still a matrix in the
bath coordinates, but when the heat bath is classical, it can be treated
as a function of the bath coordinates and momenta.

The equation of motion for the density matrix (remember h = 1) is

The individual elements are uncoupled:

We assume that the heat bath is classical, so that the commutator can
be replaced by the corresponding Poisson bracket or the classical Liou-
ville operator LB; for example,

In the following, we focus on this particular matrix element. The inte-
gral over all bath variables is denoted by c12(t),
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The equilibrium bath distribution is f(B), and

As an initial condition, we assume that the bath is initially in
equilibrium,

so that c12(0) = 1. The dipole time correlation function is proportional
to the real part of C 1 2 ( t ) .

There are two ways to proceed, one exact and the other approxi-
mate. First we look at the exact procedure. A new variable g(t, B) is
defined by

On substituting in eq. (6.65), we obtain

where the time-dependent V is

As with all classical dynamical variables, this depends parametrically
on the initial values of B. It is easy to integrate eq. (6.72):

The initial value of g is f(B), and the desired result is

The actual value depends on the specific form of heat bath dynamics.
Since this is intended to be a calculation that illustrates methods, we
are entitled to choose a simple heat bath. Suppose that V is linear in
some quantity that is coupled to a heat bath of harmonic oscillators in
the way used in section 1.6 as a model for Brownian motion. Then we
can construct a heat bath with appropriate frequencies and coupling
constants so that V(t) has a Gaussian distribution with zero mean and
with the second moment,
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The time integral of V(t) also has a Gaussian distribution. Then the heat
bath average of the exponential in eq. (6.75) is

The double time integral can be worked out just as in elementary
Brownian motion theory; the result is

If there are no fluctuations, c12 oscillates periodically in t, and the spec-
tral line is sharp. The effect of the fluctuations is to modify the phase
of the oscillation, called "dephasing." At long times, c12(t) is exponen-
tially damped, with a rate .

In this example, the heat bath was chosen deliberately to allow an
exact solution. Generally we can't do that, and approximate methods
are needed. A useful one is as follows. Start with eq. (6.65) and inte-
grate over the bath. The integral of LB vanishes, and

Next, integrate eq. (6.65) once, as an initial value problem, using the
assumed initial value of 12,

When this is inserted in the preceding equation, the first term drops out
because the first moment of V vanishes,

The integral is formally second order in V. Now a crucial assumption,
to be verified shortly, is that as long as we want only results to second
order, 12(t, B) may be replaced by the local equilibrium form,

in the right-hand side. With this assumption, eq. (6.81) becomes

which contains the same memory function as in eq. (6.76),
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Equation (6.83) can be solved by Laplace transforms,

Because the memory function has such a simple form, it is easy to invert
the Laplace transform, leading to a sum of two exponentials,

The approximate solution agrees with the exact solution at short
times:

At long times, and for small 7, they also agree:

The approximate solution is based on the local equilibrium assump-
tion in eq. (6.82). This can be justified by the following argument. Define
the difference between the correct 12 and its assumed form c12f,

From eq. (6.65), one finds

This has the operator solution
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The first term vanishes; with the initial condition in eq. (6.70),
(0) = 0. Then (t) is of first order in V and contributes to dc12/dt

only to third order in V. The second-order result in eq. (6.83) is
unaffected.

Finally, one must be cautious in making Markovian approximations.
In eq. (6.83), replacing t' by t - t' leads to

The usual Markovian approximation involves dropping the t' in c12 and
then extending the time integral to infinity,

This is wrong. The reason is that if 0 is large, c12 is no longer a slow
variable. Only the product exp(i 0t) c12(t) is slow. The correct Markov-
ian approximation is

6.4 Two-Level System in a Heat Bath:
Bloch Equations

Another example of a two-level system in a heat bath is a spin-1/2
nucleus in a magnetic field that fluctuates due to motions of the heat
bath. Here we derive the Bloch equations for the time dependence of
the average magnetization and expressions for the relaxation times T1

and T2. (The same derivation can be applied to a two-level molecular
system with a more-general Hamiltonian than the one used in the last
chapter.)

The nucleus has a magnetic moment that is proportional to its spin
angular momentum, = ( x, y, z), which is given explicitly by the Pauli
spin matrices,

The coefficient of proportionality will be included in the definition of
the field strength. The nucleus interacts with a magnetic field having
two different sources. One is an externally imposed constant field in
the z direction, with strength 0/2, and the other is an environmental
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fluctuating field V/2. (The extra factor h/2 is added to cancel a later
factor 2/h.) Now the two-level Hamiltonian H is

(A center dot indicates the dot product of two vectors.) The total
Hamiltonian is

The heat bath Hamiltonian HB is treated for simplicity as classical, and
the bath variables are denoted by B. The fluctuating magnetic field V
is a function of B. The equilibrium density matrix is

The time-dependent density matrix is p(t, B), and throughout we use
deviations from equilibrium, for example, p = p - p(eq).

Manipulations of spin matrices are simplified by

where = 1 if ijk is a cyclic permutation of 123, % = -1 if ijk is a cyclic
permutation of 321, and % = 0 otherwise. The same quantity appears
in the cross product of two vectors,

Any 2x2 matrix can be expressed as a sum of the four spin matri-
ces. In particular, the deviation of the density matrix from equilibrium
is
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The coefficients mj are found by taking the trace,

The average magnetization is obtained by integrating over the bath
variables, and its deviation from equilibrium is

Because the equilibrium density matrix is independent of time, the
deviation from equilibrium 8p satisfies the same Liouville equation
as ,

where LB is the classical Liouville operator for the bath. When the
expansion in eq. (6.106) is put into this, and some spin algebra is worked
out, we get four equations for the coefficients mj.

It is convenient to use a 3 x 3 matrix representation,

so the three-component vector m = (mx, my, mz) satisfies

Now we can follow essentially the same procedure as in the preceding
chapter. One time integration gives



118 NONEQUILIBRIUM STATISTICAL MECHANICS

We need an initial condition. As before, the equilibrium bath distribu-
tion is f(B). We restrict the treatment to initial conditions where
the density matrix is determined by specified initial deviations of the
averages,

The component m0(0,B) starts at 0 and remains there. The other com-
ponents are mj(0, B) = f(B) j, 0 . Return to eq. (6.109) and integrate
over the bath variables. This gives

Now insert eq. (6.116). The initial value term drops out; we require that
the bath average of the fluctuating field vanishes:

The remaining part is

This equation is still exact. Now we make a local equilibrium approxi-
mation in the last term, replacing m(t) by

This leads to an approximate equation for the average spin
matrices,

where the memory kernel is

The classical propagator can be moved to the left, producing W(t),
and using to denote a bath average, K becomes a time correlation
function,
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In working out the matrix products, we need

The resulting matrix K(t) contains many terms involving the bath
average of a product of Vs. We assume that only the diagonal elements
survive the average,

so that

This is the memory kernel in the non-Markovian eq. (6.122). As ii
the last section, this equation is correct as it stands (when V is small)
but because R can be fast, ( ; t) is not necessarily slow, and it is no
safe to make a Markovian approximation. First we must remove R, thei
make the Markovian approximation, and finally restore R. So wi
change variables,

Then g obeys

If the fluctuations are small, K is small, and g is a slow variable. Then
we can replace g(t - t') by g(t) and extend the t' integral to infinity,

Restoring R, we get the correct Markovian approximation to eq.
(6.122),
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When the matrix product is worked out, the resulting Bloch equations
contain a new frequency 1 and two relaxation times, T1 and T2,

(Here we assume that kx = ky.) The constants are

The first two Bloch equations can be combined to give

and its complex conjugate. These can be solved easily for the averages
and used to find the time correlation function, for example, of x,

Suppose the nucleus is subjected to a periodic external magnetic
field in the x direction, so the perturbation Hamiltonian is

The energy absorption, as in section 3.2, is determined by

and is therefore proportional to
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The absorption spectrum consists of Lorentzians centered at frequen-
cies ± 1, each with the width 1/T2. Note that there are two distinct con-
tributions to this line width, one from kx and one from kz.

This argument rested on the local equilibrium approximation in eq.
(6.121). This can be justified in exactly the same way as in the preced-
ing chapter. The error made in this approximation contributes to the
rate of change only in the third order of V and cannot affect the second-
order result.

6.5 Master Equation Revisited

The quantum mechanical or Pauli master equation, discussed exten-
sively in section 3.3, treats the effects of a weak perturbation on tran-
sitions between unperturbed quantum states. Here the general method
used to treat two-state models in the preceding chapters is applied to
deriving the master equation. After that, a projection operator method
is used to derive a generalized master equation that is formally valid to
all orders of the perturbation.

As in section 3.3, the total Hamiltonian H consists of an unperturbed
energy H0 and an interaction energy V giving rise to transitions
between unperturbed states,

In the unperturbed representation, H0 is diagonal and V has no diago-
nal elements. The probability of finding the system in the j'th unper-
turbed state at time t (or the diagonal part of the density matrix in
the unperturbed representation) is P j j ( t ) .

The derivation starts with the quantum mechanical Liouville equa-
tion for the time-dependent density matrix (t),

where L = L0 + Lv is the Liouville operator. Because the unperturbed
Hamiltonian is diagonal, the tetradic form of the operators are
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and the tetradic form of the Liouville equation is

Following the same scheme as in the last two sections, we integrate the
Liouville equation once,

and substitute this back into the Liouville equation,

This is still exact.
The master equation contains only the diagonal elements of the

density matrix, but the Liouville equation mixes diagonal and off-
diagonal elements. On taking the diagonal part, the first term in the
right hand side drops out, (L )jj = 0, because the unperturbed Hamil-
tonian is diagonal. We restrict our attention to only those situations
where the density matrix is initially diagonal (often called the assump-
tion of initial random phase),

Then, exp(-L0t) (0) remains diagonal and the second term in the right
hand side drops out because (Lv) j j , l l= 0. The third part of the right hand
side remains,

If the initial density matrix is diagonal, this is exact.
Now we make the same crucial approximation as in the preceding

sections; we replace the complete density matrix in the sum by its
diagonal part,

The result (after switching t and t - s) is

Now we can write
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The memory kernels satisfy a sum rule,

which is a direct consequence of

On using the sum rule, eq. (6.155) becomes

We need to evaluate Kii:kk only for j k. The memory kernel becomes

When the sums and products are worked out, one gets (for j k)

where jk = ( j - Ek)/ . The resulting equation is

The rate of change of any diagonal element is of the order of V2, and
so it is a good approximation to replace pjj(t - s) and kk(t - s) by p j j ( t )
and Pkk(t) in the right hand side (the Markovian approximation). Then
the time integral over s can be done, and the result is
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For large t, the quantity sin( t)/ is very much like a delta function in
ft>; its height is t and its width is of order 1/t, and its integral over is
. If the delta function approximation is inserted in eq. (6.162), one gets

the standard Pauli master equation,

containing transition rates given by the Golden Rule.
For this to be correct, one needs to find many unperturbed states

within the width of the function sin( t)/ that led to the delta func-
tion. This width is small, of the order of l/t because t is large, of the
order of 1/V2. Fortunately, in typical applications of the Golden Rule,
the unperturbed states have energy levels that are inverse to the size
of the system, either a large number of particles n or a large volume v.
Then the spectrum is almost dense, and the delta function approxima-
tion is useful as long as t « O(n) or O(v).

Aside from the choice of a special initial state, the only approxima-
tion that was made is eq. (6.152). But a simple calculation, like the one
done in the previous chapters, leads to (s) - kk(s )S k l = O(V ). The
error is therefore of third order in V.

Projection Operator Method

As in the preceding sections, at a particular point of the derivation an
exact distribution function was replaced by a simpler one that carried
only limited information. In the present case, this can be done by means
of a projection operator (S. Nakajima, 1958; R. Zwanzig, 1960). This is
a simple illustration of a general procedure that will be treated more
completely in following chapters. The diagonal part of any matrix A is
obtained by the tetradic operator P,

so that

By repeating the process, one sees immediately that PPA = PA. The
property P2 = P means that P is a projection operator. This operator
will be used to separate diagonal and off-diagonal parts of the density
matrix.

The master equation involves only the diagonal elements of the
density matrix, but the Liouville equation mixes diagonal and off-
diagonal elements. When j = k, L0 drops out, and the Liouville equa-
tion becomes
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Because V has no diagonal part, only the off-diagonal part of the
density matrix contributes to the right hand side. This suggests that we
should find out how the off-diagonal part is controlled by the diagonal
part.

To do this, the entire density matrix is partitioned into diagonal and
off-diagonal parts by projecting with P,

and

Operating on the Liouville equation by P and (1 - P), one gets two
coupled equations,

We have already looked at the first of these equations; because PL0 =
0, only the second term survives and L is replaced by Lv. Earlier we
found (od) by an iterative procedure. Now we solve for it formally. The
solution uses the exponential operator exp((l - P)Lt). It contains the
initial value of p(od) and the history of p(d) from 0 to t,

This is substituted into the first equation, leading to

As before, we limit ourselves to situations where the density matrix
is initially diagonal. Then p(od)(0) = 0, and the second term in this
equation can be dropped. The result is a formally exact equation
that contains only the diagonal part of the density matrix. Because
PL0 = 0 and L0P = 0, the initial and final Liouville operators in the last
equation can be replaced by Lv. On switching t and t - s, eq. (6.172)
becomes
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The memory kernel here is a generalization of the one found earlier:

This is formally second order in V, and more V dependence comes from
the Liouville operator in the exponent. These memory kernels satisfy
the same sum rule as before.

While eq. (6.173) is formally exact, it is not particularly useful
because of the projection operator in the exponent. If, however, we are
only interested in terms of order V2, Lv can be dropped from the
exponent:

Then the projection operator in the exponent can be removed because
the tetradic product PL0 = 0. The memory kernel becomes

This is precisely the expression found earlier.

Heat Bath Master Equation

The same procedure can be used to derive the heat bath master equa-
tion discussed in section 3.3. The projection operator has two parts.
First, the actual bath dependence is integrated out and replaced by the
equilibrium bath distribution. Second, the system density matrix is
replaced by its diagonal part. With an initial condition of this
form (diagonal in system, equilibrium in bath), the derivation follows
easily.
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Linear Response Theory

7.1 Static Linear Response

A system is in a state of thermal equilibrium, and then a weak exter-
nal field is turned on. How does the system respond? For example, we
might want to know how much current is induced in an ionic solution
by an electric field. This is the kind of question treated by linear
response theory.

If the applied field is held constant for a very long time, so that the
system can come to equilibrium in the presence of the field, finding the
response is a problem of equilibrium statistical mechanics. But if we
want to know the transient response to the applied field, or if the field
varies periodically in time, then it is necessary to go beyond equilib-
rium statistical mechanics. This section deals with the response to
a static force. The following section presents the theory for a time-
dependent force.

It is useful to see first how the equilibrium linear response is deter-
mined. The system is described by an unperturbed Hamiltonian H(X).
The applied field is denoted by E. The coupling of the system to the
field is described by the energy -M(X)E, where M(X) is some known
function of the state of the system. For the following discussion, the
exact nature of E and M is not important; but it is helpful to keep in
mind the often-used example where E is an electric field and M is a
total electric dipole moment. The perturbed Hamiltonian is H(X, E) =
H(X) - M(X)E.
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First we calculate the response using classical mechanics. The unper-
turbed distribution function denoted f(X) is

where Q is the unperturbed partition function. Averages taken with
the unperturbed distribution are denoted by { >. The corresponding
perturbed quantities are

In classical statistical mechanics, one can easily expand the perturbed
system about the unperturbed system. This is where the corresponding
quantum mechanical treatment differs; if the operators H and M do not
commute, one has to be careful about ordering operators. We return to
this later. To first order, that is, in linear response, one finds

so that the expansion of the perturbed distribution is

These equations contain the unperturbed equilibrium average (M),
coming from the first-order expansion of Q(E). For simplicity, from
here on we restrict the discussion to cases where (M) = 0.

At this point, we can ask for the average of any dynamical variable
A(X), denoted by A; E . A(X) could be, for example, the quantity
M(X) itself. The result is

where the coefficient AM is given by

If we choose for A the total electric dipole moment M, then %AM is a
kind of dielectric susceptibility. Whatever our choice of A, the quantity
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AM describes the average linear response A; E produced by the
applied field.

The quantum mechanical version of this derivation uses an opera-
tor expansion of the perturbed distribution function. This expansion
can be derived, for example, by starting with the Laplace transform of
the equilibrium distribution with respect to ,

This quantity obeys the operator identity

or, to first order in E,

On inverting the Laplace transform, the second term leads to a
convolution,

(Note that since this is a convolution, one can switch and - ,
thereby obtaining expressions that are equivalent but look different.)
For notational convenience, we take advantage of the Heisenberg rep-
resentation of the time dependence of any dynamical quantity, using
the imaginary time ,

so mat the expansion becomes

One further bit of notation is helpful. We define the "Kubo transform"
of the operator M by a tilde,



130 NONEQUILIBRIUM STATISTICAL MECHANICS

In the classical limit, this approaches M. (Note that if the equilibrium
average of M vanishes, so does the average of its Kubo transform.) The
partition function has the expansion

and the susceptibility is

The quantum perturbation theory differs from the classical theory only
in the replacement of M by its Kubo transform.

An identity derived by switching - and is

7.2 Dynamic Linear Response

Linear Response in Classical Mechanics

The dynamical version of the preceding perturbation theory is quite
straightforward. To find the time-dependent average of a dynamical
variable A, we use the time-dependent distribution function f(X; t),
which evolves from some given initial distribution function f ( X ; 0). As
in the equilibrium theory, we look for the way that f(X; t) is affected by
the extra perturbing Hamiltonian -M(X)E(t) , where E(t) is now a time-
dependent external field.

The time-dependent distribution function obeys the Liouville
equation,

in which L0 is the unperturbed Liouville operator. L0f is the Poisson
bracket of H and /, and L1f is the Poisson bracket of -M and /. To find
the first-order response to E(t), we expand / in powers of E, using f0

and f1 to denote the terms of zeroth and first order in E,

Then on collecting terms of order zero and one, the Liouville equation
gives
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Suppose that the system is in thermal equilibrium before the field is
turned on (at t = 0). This initial condition is the one most commonly
used in applications and is the only one considered here. Then f(0) =
feq and the preceding two equations are to be solved with the initial
conditions,

The first equation has the obvious solution

because L0
f
eq = 0. The second equation is an inhomogeneous first-order

differential equation, and the initial value vanishes, so it has the oper-
ator solution

But f0(s) may be replaced by feq. Recall that L1feq is a Poisson bracket,
and written out in a more explicit form,

But because feq is exp(- )/ , the derivatives transform to

The square bracket in this equation is in fact minus the Poisson bracket
of H and M, or L0M, or the time derivative (overdot) of M,

Then the perturbation to / is

Now we use this to rind the time-dependent average of some quantity
A(X), The result is
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In typical applications, the equilibrium averages of both A and M
vanish. From here on we assume that this is so. The exponential Liou-
ville operator can work backwards on A(X), generating the ti
dependent A(t — s; X); and the phase space integral gives an equilib-
rium average,

This suggests defining the time-dependent analog of the static
susceptibility,

Then, after switching t-s and s, we have obtained the standard linear
response formula (R. Kubo, 1957),

If a constant external field is switched on at t = 0, and we ask for the
response at infinite time, the preceding equation becomes

To verify this integral representation of AM, note that in , the time
derivative can be moved from M to A(t), with a change of sign. The
time integral of the time derivative of A is A( ) - A(0). The equilib-
rium average (A( )M(0) vanishes; at infinite time, there is no correla-
tion of A(t) and M(0). What remains is just A(0)M(0))eq = AM-

Because the preceding calculation was restricted to first order in the
perturbation, the effects of different external forces Ej(t) are additive.
Further, one may ask for the time dependence of a number of differ-
ent response functions At. If the perturbation has the form - i,Mi,Ei(t),
then the total response is a sum of the responses to individual forces
Ei(t), as
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Linear Response in Quantum Mechanics

The quantum mechanical version of this theory differs from the classi-
cal mechanical theory in three important ways. First, the phase space
average of a dynamical variable A is replaced by the quantum average,

Second, the classical Liouville operator, defined as a Poisson bracket,
is replaced by the quantum commutator,

Third, the classical Liouville equation for the phase space distribution
function is replaced by the quantum Liouville equation for the density
matrix,

Despite these changes, most of the preceding derivation carries over
without change in quantum mechanics.

The Hamiltonian is still H(t) = H0 + H1E(t). The corresponding
quantum Liouville operator is still L(t) = L0 + L1_E(f). The quantum
Liouville equation is formally the same,

We expand to first order in E,

and get equations for the two parts,

and

As before, the first equation has the solution,
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and the formal operator solution of the second equation is

The average of some variable A is

where the response function is

Now we encounter another version of the difficulty seen already in
the quantum theory of the static susceptibility. In the classical mechan-
ical theory, we were able to derive L1feq = feqLoH1, but the derivation

fails in quantum mechanics because the operators do not commute.
There are several ways around this difficulty. The first uses the defini-
tion of the Liouville operator as a commutator and the invariance of a
trace to a cyclic permutation,

This does not look much like a conventional time correlation function.
However, as we shall see shortly, there are many ways of writing (t).
Another approach starts with the commutator of H1 and exp(- 0),
and with the definition

This quantity vanishes at = 0 and satisfies the differential equation

On integrating over , we obtain

which leads to
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One should not be surprised that this contains the Kubo transform,
because it turned up in the earlier treatment of the static quantum
susceptibility; then,

The response function involves the time correlation function of the
dynamical variable A at the real time t, and the perturbation H1,

As in the classical case, this may be written in a variety of forms by
moving around Liouville operators and Kubo transforms.

Frequency Dependent Response

The frequency-dependent form of the preceding linear response
formula is of great interest because of its utility in describing certain
experiments. Quite often, a measurement of some linear response is
made by switching on a periodically varying field, waiting until tran-
sients have died out, and then measuring the response at the frequency
of the perturbation. For example, if the perturbation is a periodic
electric field and the response is an induced electric current, the results
of the measurement are described by a frequency-dependent
conductivity.

The entire measurement process is contained in eq. (7.33). An arbi-
trary field is switched on at t = 0; this means that E(t) = 0 for earlier
times t < 0. The response A; t is obtained for later times t > 0 and van-
ishes for earlier times t < 0. (This is "causality"—a response cannot
come before the cause of the response.) The Fourier transforms of these
quantities are

The second form of each transform is allowed because in this experi-
ment both E and (A) vanish for negative t. In fact these integrals are
Laplace transforms, with the transform variable z replaced by i . Now
take the Fourier transform of eq. (7.33). This is also the Laplace trans-
form of that equation, and we know that the Laplace transform of a
convolution is the product of the individual transforms,
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Then eq. (7.33) becomes

This equation, containing the frequency-dependent response function
( ), is valid for all frequencies, no matter what the actual time depen-

dence of E was. If a field with frequency 0 is switched on at t = 0, its
Fourier transform contains components at all other frequencies, asso-
ciated with the switching-on step function; and the transform of the
response also contains components at all other frequencies, describing
the decay of initial transients.

The response function ( ) is a one-sided Fourier transform of (t)
and is complex. Its real part is the cosine transform of (t), and its imag-
inary part is the sine transform. Suppose that an experiment provides
only the frequency dependence of the imaginary part of ( ):Then, by
inverting the sine transform, the time dependence of (t) can be found.
Taking the cosine transform provides the real part of ( ). Thus the
imaginary part determines the real part. The procedure works back-
wards too; the real part determines the imaginary part. This is called
the Kramers-Kronig relation. To use it in practice, one needs good data
over a wide range of frequencies.

7.3 Applications of Linear Response Theory

This section presents several applications of linear response theory. The
first application is to the calculation of the mobility of a single ion in
solution. The ion has a charge e and interacts with an external uniform
electric field E in the x direction. The perturbation Hamiltonian is
-eE(t)x. (This is the product of a charge e and the electrostatic poten-
tial -E(t)x.) The quantity M is e x.The mobility of the ion is its average
velocity (v), so we choose

Then linear response theory leads to a formula for the mobility of the
ion,



LINEAR RESPONSE THEORY 137

The mobility is determined by the ion's velocity correlation function.
(This quantity was introduced in section 1.2; its time integral is a
diffusion coefficient.) If the velocity correlation function decays
exponentially, as in Brownian motion theory,

then the frequency-dependent mobility is

The zero frequency limit is el .
Another standard application of linear response theory is to find an

expression for the frequency-dependent magnetic susceptibility of a
material. In this case, M is the total magnetic moment of the system,
E(t) is replaced by the time-dependent magnetic field B(t), and A is
taken to be the magnetization M/V, where V is the volume of the
system. The magnetic susceptibility % is defined by

Then linear response theory provides

A rearrangement, using the adjoint properties of L0, leads to a more
useful form. As in the earlier general discussion, the Liouville operator
can act to the left on M(t), producing the time derivative -dM(t)/dt, and
the time derivative can be moved in front of the average,

Next, an integration by parts is performed:
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At long times, or equilibrium, the magnetization vanishes; conse-
quently, the long time limit of the time correlation function (M(t)M}eq

is zero. The final result is

The zero frequency part of this equation is the familiar relation
between equilibrium magnetic susceptibility and fluctuations in the
magnetic moment. If the magnetic dipole correlation function decays
exponentially,

then the frequency-dependent susceptibility has the familiar form,

Any more-complicated frequency dependence is a clear indication that
the magnetic dipole time correlation function has a more-complicated
time dependence. This is an example of how spectral information can
provide dynamical information.

The last application to be discussed now is the theory of energy
absorption in an electric field. If the perturbation is the interaction of
an applied field E(t) = E0 cos( t) with an electric dipole moment M (the
component in the direction of the field), and the response is the elec-
tric current J = dM/dt, we obtain Ohm's law,

The response function is

On expanding the cosine, we find
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We expect that the response function decays to zero at long times and
is integrable. Then, at long times the upper limits of the two integrals
can be replaced by infinity,

The rate of energy dissipation (Joule heating) at time t is j; t E(t). We
average this over a long time; the sine term drops out and the cosine
term gives a factor of 1/2,

This is the energy absorbed by the system per unit time. Recall that an
earlier section presented another quite different calculation of the same
quantity. The two results do not appear to be the same, but they are,
once one takes account of some important identities relating various
time correlation functions in quantum mechanics.

Some Identities

The derivation of these identities begins with the symmetrized corre-
lation function

This particular correlation function is symmetric in t, C(-t) = C(t). To
see this, we note that by shifting the time origin, AA(-t) = (A(t)A) and
A(-t)A = AA(t) .Then the definition of C(t) leads directly to the time

symmetry. This correlation function has the spectral density (defined by
the Fourier transform)

When written out in detail in the energy representation with the abbre-
viation

The Fourier integration produces two delta functions,
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We can eliminate the second delta function by switching m and n in the
second term,

Because is a Boltzmann distribution, we can write

The delta function allows us to replace mn by . We substitute in the
preceding equation,

But this is proportional to the Fourier transform of AA(t) ,

The same reasoning leads to two more identities,

and

Because C(t) is even in t, its spectral density is real, even in on, and
is a cosine transform,

Next, we consider the relation of the symmetrized correlation func-
tion to the one that is generated by Kubo theory,

The Fourier transform of this function is
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The delta function allows us to change the exponent from mn to . The
A integral is easy, and the remaining sum can be converted back to a
Fourier integral,

On using one of the earlier identities, eq. (7.85), we can finally write

The right-hand side is real and even in , so the left-hand side is the
cosine transform,

By applying the identity eq. (7.84) and canceling, this is converted to

Let us return to the calculation of energy absorption. For this appli-
cation, we replace A by the current J,

Then, according to the earlier calculation, the energy absorption is

Finally, we note that in Fourier integrals, a time derivative is equivalent
to a factor i , and J = dM/dt, so that
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Then the resulting energy absorption is identical with the formula
derived in an earlier section by means of the Golden Rule,
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Projection Operators

8.1 Projection Operators and Hilbert Space

Theoretical treatments of nonequilibrium systems are often based on
master equations or Langevin or Fokker-Planck equations. When we
use such models, we typically do not hope for a complete, detailed, and
exact treatment of a problem. Rather, we tend to think in terms of
approximations in which irrelevant details are omitted and only those
aspects of the problem that appear to be physically important are
included. This is a standard approach to the theoretical analysis of
complex situations; when it is used with common sense, it is a very
productive one.

But in constructing approximate models, we should always keep in
mind certain questions. Do we know that the approximate model has
a more exact statistical mechanical basis? For example, can a hypothe-
sized nonlinear Langevin equation actually be obtained from a well-
defined Hamiltonian? Do we know how to improve on a chosen
approximate model? That is, do we know what was left out and how
to put it in if we wish? Projection operator methods provide some
answers.

We have already seen how projection operators can be used to
derive quantum mechanical master equations (section 6.5). This section
provides an introduction to projection operators in a form that is moti-
vated by their use in deriving Langevin equations. The following sec-
tions provide a formal derivation of a non-Markovian linear Langevin
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equation for a set of dynamical variables, a demonstration that it
reduces to a Markovian Langevin equation if the variables are "slow,"
and some understanding of the limits of validity of linear Langevin
equations. The results are essentially the equations that were intro-
duced in section 1.4. Later chapters will deal with nonlinear Langevin
equations and their corresponding Fokker-Planck equations.

Matrix Form of the Liouville Equation

The Liouville equation for the dynamical variable A(t),

is a linear differential equation in A. The linearity suggests construct-
ing a matrix representation of the dynamics.

Any dynamical quantity A(X) can be expanded in an infinite set of
functions j(X) in the Hilbert space of all functions of X. This is like
what one customarily does in quantum mechanics. Each function j is
like a vector in this Hilbert space. Then A is itself a vector in Hilbert
space.

In order to make expansions, we need a rule for forming the inner
product (or dot product) of two vectors A and B. The inner product is
denoted in a nonspecific way by (A, B). The actual rule to be used may
depend on circumstances in a way that will be discussed later. However,
it may help the reader to keep in mind one particular choice, because
it turns out to be a common one,

where * denotes the complex conjugate. Once an inner product has
been selected, then the set j(X) can be constructed so that its individ-
ual vectors are orthogonal and normalized,

Now we can expand any time-dependent dynamical variable A(X, t)
in this orthonormal set,

where the coefficients are
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When the expansion is put into the Liouville equation, the resulting
equation takes on the simple matrix-vector form,

where the Liouville operator is replaced by its matrix representation,

mn is
anti-Hermitian, and the exponential operator exp(tL) is unitary. The
effect of a unitary operator on any vector in Hilbert space is to rotate
it without changing its magnitude.

A similar expansion can be made to convert the Liouville equaton
for a phase space distribution,

into a vector-matrix equation. The expansion is

The coefficient b j(t) is the time-dependent average of the function

and obeys the matrix equation

when the special inner product of eq. (8.2) is used. The matrix Ljk is the
same as in eq. (8.7).

All of the above is exactly what one does in quantum mechanics,
except that the Liouville operator is a first-order differential operator
and the Hamiltonian operator is second order.

There is usually not much practical advantage in going from a rep-
resentation involving partial differential equations to another repre-
sentation involving infinite matrices. However, the expansion suggests
a way of finding Langevin equations for macroscopic dynamical vari-
ables. The process works because we are usually interested in only a
small subset of the vectors that define the whole Hilbert space.

If the expliocit inner product in eq. (8.2) is used, then the matrix lmn is
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The set of dynamical variables {Aj(X)} in the Langevin equation are
vectors in Hilbert space. They are usually not orthonormal, but this can
be fixed by the Gram-Schmidt process. First we normalize A1, this gives
one unit vector. Then we select A2, subtract enough of Al to make
a vector that is orthogonal to A\, and normalize it. This gives a
second unit vector, orthogonal to the first. We continue this process
of successive subtraction, orthogonalization, and normalization, until
all members of the set are accounted for. The result is an ortho-
normal set corresponding to {Aj}, and along with it, a subspace of the
complete Hilbert space. Any linear combination of the As lies in
this subspace.

Why should we go through all this? The reason is that macroscopic
equations of motion are approximately self-determined. In hydrody-
namics, for example, the density, temperature, and fluid velocity at time
t are determined by the same quantities at an earlier time. Details of
individual molecular motion are not relevant. Following this example,
we hope more generally that the dynamical behavior of any chosen set
{A} will be concentrated in the subspace spanned by {A}. We hope that
the initial values of variables that are orthogonal to the chosen set are
unimportant. In this hope, we call members of the set {A} "relevant"
dynamical variables and variables orthogonal to the set "irrelevant."
Statistical mechanics does not tell us what the relevant variables are.
This is our choice. If we choose well, the results may be useful; if we
choose badly, the results (while still formally correct) will probably be
useless.

Of course, this hoped-for deterministic behavior does not really
happen. While by definition A starts out in the relevant subspace, in
time the Hilbert space rotation generated by exp(tL) will take A(t) out
of this subspace, so that it picks up contributions from the initial values
of the irrelevant variables. This gives rise to the noise in the Langevin
equation.

Partitioning

One way to focus on the dynamics of a particular subset of all
dynamical variables, used already in the derivation of the generalized
master equation, is to partition the Liouville matrix. This can be done
formally with projection operators. First, some mathematically simple
examples are used to show how the general problem is going to be
treated.

By far the simplest nontrivial problem is two-dimensional. Then any
dynamical variable is represented by the two component vector (a1, a2).
The Liouville equation becomes a pair of linear equations for the two
coefficients,
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Suppose that we are interested in only the coefficient a1, which will
be referred to as "relevant," and we do not care what the other
"irrelevant" coefficient a2 is doing. Then we solve the second of these
equations for a2,

and we put this back into the equation for a1,

The result of this rearrangement is an equation of motion for a1(t) in
which the other coefficient a2 appears only as an initial value a2(0). If
this initial value vanishes, or if we are willing to ignore its effects,
regarding them as irrelevant "noise," then the relevant coefficient a 1 ( t )
satisfies its own equation. (As an example, it may happen that we are
only interested in the average of a1 over some initial distribution of a2

and that the average of the initial a2 vanishes.) Note that this equation
is now non-Markovian.

Exactly the same procedure can be used for a Hilbert space of N
dimensions. We may treat the first n coefficients as a vector a1 in the
relevant subspace of n dimensions, and the remaining N- n coefficients
as the vector a2 in the orthogonal or irrelevant subspace. Then L11 is
a matrix of order n x n, Lu is of order n x (N — n), L21 is of order
(N - n) x n, and L22 is of order ( N - n ) x ( N - n). The preceding scalar
equation has been written so that it is still correct with this vector rein-
terpretation of the symbols. The rate of change of a1 has two parts; one
is the effect of the history of a\ back to the initial time, and the other
is the effect of the initial conditions of the irrelevant coefficients a2, or
"noise." Clearly, elimination of variables transforms a Markovian (i.e.,
no memory) equation into a non-Markovian equation. Also, the effects
of the eliminated irrelevant variables are very much like the noise in
Langevin equations.

Projecting

The procedure just described involved partitioning of a vector and
matrix. This can be done in mathematical notation by introducing a
matrix projection operator,
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where the second matrix is used solely to indicate the dimensionality
of the partitions of the first matrix. Note that this matrix is idempotent;
that is, it obeys the condition PP = P, which is a general requirement
for a projection matrix. Then a more abstract vector-matrix equation
for a is

and the partitioned vector and matrices are

In this form, all vectors still have dimension N, although a1 has (N -n)
zero elements and a2 has n zero elements. Similar statements apply to
the matrices, all of which are N x N. There is no problem in reinter-
preting eqs. (8.13) and (8.14) in the full space.

The Subspace of the Relevant Variables

The systems we are concerned with generally involve an infinite-
dimensional Hilbert space. The subspace of interest is spanned by rel-
evant variables. The orthogonal part of the whole space is spanned by
irrelevant variables. Projection onto the relevant subspace is a parti-
tioning of the sort just discussed. While the projection can be specified
by constructing all the relevant unit vectors, it is easier to specify it by
the abstract operator P. Given any set {A}, the projection operator
acting on any variable B is given explicitly by

where the inner product (B, A) has the dimensionality of the vector A,
and the inner product (A, A) is an n x n matrix. The ordering of symbols
in this formula is designed so that it is easy to put in subscripts if
desired:

If the variables {A} have already been orthonormalized, then (A, A) is
the identity matrix. Note that the inner products are numbers and not
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dynamical variables. It is easy to verify that P is a projection, that is,
PP = P. If B lies in the subspace spanned by {A}, then PB also lies in
that subspace and is the same as B.

It is especially important, and fortunate, that we need to specify only
the relevant variables in order to make a projection onto the relevant
subspace. We don't need to take on the task of enumerating all the irrel-
evant variables. The orthogonal part of Hilbert space, with its infinity
of coordinates, is selected by the operator (1 - P).

Another somewhat different example of partitioning or projecting
was used in the derivation of the generalized master equation. There,
the density matrix was partitioned into a relevant diagonal part and an
irrelevant off-diagonal part.

8.2 Derivation of Generalized Langevin Equations

This section presents a derivation of generalized Langevin equations
(H. Mori, 1965) of the form that was briefly mentioned in section 1.4,

The starting point is the Liouville equation, and the resulting eq. (8.20)
can be regarded as a mathematical rearrangement of the Liouville
equation. The derivation to be given here is based on abstract opera-
tor manipulations (J. T. Hynes and J. M. Deutch, 1975) that were
designed to get to the desired result as quickly as possible. First we
separate the Liouville operator into two parts,

Next we use an operator identity,

This can be verified either directly by differentiation or indirectly by
taking Laplace transforms and using the convolution theorem. Next, we
operate with both sides of this equation on the quantity (1 - P) L A.
On the left-hand side, we get
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In the last line, we use A(t) = exp(tL) A, and we recognize that the inner
products are numbers that commute with the operator exp(tL).

On the right-hand side, we define

this will turn out to be the "noise" term in the Langevin equation. Then
the right-hand side becomes

Finally, we define the matrices and K by

If the inner product is such that L is anti-Hermitian, then this is also

The result of this formal algebraic manipulation is

This is, by construction, a rearrangement of the original Liouville equa-
tion; it is a mathematical identity without immediate physical meaning.
However, it surely looks like the Langevin equations discussed earlier.
The first two terms on the right-hand side describe the systematic part
of the motion of the chosen relevant variables, as determined by their
initial values, and the third term gives the effects of the initial values of
the irrelevant variables.

There are subtle differences between this equation and the exact
Langevin equation derived earlier for a system interacting with a heat
bath of harmonic oscillators. The position and velocity of the system
may be taken as the relevant variables, and all the heat bath coordi-
nates and momenta as irrelevant. The present derivation leads to a gen-
eralized Langevin equation that is inherently linear in the system
variables. The earlier derivation led in general to a nonlinear Langevin
equation. Only if the system Hamiltonian is quadratic in position do
the two equations agree. The reason for the disagreement in general,
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and the agreement in the case of a harmonic system, lies in the differ-
ence between phase space and the Hilbert space of dynamical variables.
In phase space, we do not regard x and x2 as different dynamical vari-
ables: If we know x, then we know x2. But in Hilbert space, x and x2 are
different vectors, not necessarily parallel. They contribute differently to
the evolution of any A(X; t). If the system and heat bath are both har-
monic, then the Liouville operator converts any linear combination of
coordinates and momenta into another linear combination; the sub-
space of linear combinations of the basic variables is dynamically
closed. There is no reason to distinguish between phase space and the
linear subspace. If, however, the system is not harmonic, the Liouville
operator takes one out of this linear subspace. Then the two Langevin
equations become different.

Up to this point, the derivation did not discriminate between classi-
cal mechanics and quantum mechanics. The Liouville operator could be
classical or quantum. The derivation involved only some symbolic
manipulation of operators and variables. Also, the exact nature of the
inner product (A, B) was never mentioned. What finally determines
what inner product to use is the requirement that the average of the
noise must be as small as possible. The following section deals with the
treatment of noise.

8.3 Noise in Generalized Langevin Equations

If the equation just derived is to be regarded as a conventional
Langevin equation and not just as a mathematical identity, then the
quantity F(t) ought to have the properties that are expected of
Langevin noise. In particular, its average over some initial nonequili-
brium distribution should vanish. So we digress briefly on the con-
struction of initial nonequilibrium distribution functions.

Initial Nonequilibrium States

We know how to treat thermal equilibrium in statistical mechanics; we
generally use the Gibbs distribution function or density matrix. This is
easy because there is only one thermal equilibrium state. (Micro-
canonical, canonical, and grand canonical ensemble distribution func-
tions all give rise to the same macroscopic thermodynamics; they differ
only in the kinds of fluctuations that are allowed.) But there are many
possible nonequilibrium states. How can we find the appropriate dis-
tribution function for any given one of these? This is a central problem
of nonequilibrium statistical mechanics, and it is a hard question to
answer in a general way. Two simple recipes are commonly used, one
of which is operationally sound but limited in applicability, and the
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other more generally applicable but not so well justified. Fortunately,
the two recipes lead to similar conclusions.

One approach is to start with an equilibrium state, with a Hamil-
tonian H and canonical distribution function,

and switch on an constant external field E with the same perturbing
Hamiltonian -ME that was used in the last chapter. (Again we assume
that the equilibrium average of M vanishes.) We wait long enough for
the system to come to a new equilibrium state in the presence of this
field. Then at t = 0, we switch off the field. Now the system has once
more the original unperturbed Hamiltonian H but is in a state
described by the nonequilibrium distribution,

The average of M in this initial state is

This can be solved to replace the field strength E by the initial average,

In all that follows, we are concerned only with small deviations from
equilibrium, so the quadratic term will be neglected. Then the initial
nonequilibrium distribution, to first order in deviation from equili-
brium, is

Having an initial state, we can now determine the time dependence
of the average of any variable A. (We assume that its equilibrium
average vanishes.) The average, to first order in deviation from equili-
brium, is
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The relaxation of (A; t) back to its equilibrium value follows the time
correlation function of A and M. In particular, we find for A = M,

This construction of an initial nonequilibrium state corresponds to
a well-defined experimental process. But it is limited to situations where
we have at our disposal an external field and as was noted earlier, there
are very few fields that are experimentally available. We can always
assume the existence of a hypothetical field that couples to some arbi-
trarily chosen variable M and proceed with that. Because this proce-
dure cannot be carried out in a real experiment, we have no way of
knowing whether it is reliable.

Another approach that is commonly used relies on a maximum
entropy argument. This is one of the standard textbook ways of justi-
fying the Gibbs ensemble. The procedure is to start with the Boltzmann
entropy,

impose two constraints,

where U is some assigned energy, and then maximize the entropy
subject to the constraints. The variational calculation introduces two
Lagrange multipliers a and , and the maximum entropy solution is

The normalization constraint leads to

and the energy constraint leads to

which should be inverted to give as a function of the assigned U. All
of this is familiar equilibrium statistical mechanics. Perhaps the best
argument in favor of the maximum entropy method is that it leads to
correct results.

Now we add a further constraint, that the average of some variable
M has the assigned value m. Then the maximum entropy calculation
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requires another Lagrange multiplier, which we choose to denote by
 E, and

Just as before, the constraints lead to

Then and E are functions of the assigned U and m.
If the chosen variable M is a constant of the motion, then this pro-

cedure leads to a good equilibrium distribution. But generally it is not,
and then the resulting distribution cannot be stationary in time.
Whether this maximum entropy distribution can actually be a valid
initial distribution for a real nonequilibrium experiment is not certain.
The maximum entropy argument suggests, however, that it is as good
a guess as we are likely to make. Further, when the maximum entropy
argument is applied to the case where we can make an initial non-
equilibrium state by applying an external field, the result is the same.

This procedure can be used to construct a quite general initial non-
equilibrium distribution. We start with a chosen set of dynamical vari-
ables [ A i , j = 1, 2, . . .}. For generality, we allow complex quantities and
add complex conjugates in the appropriate places. Their equilibrium
averages all vanish. If we assign average values {aj} to these variables,
the maximum entropy distribution is

and the Lagrange multipliers { j) are determined by the assigned
averages,

To save space we abbreviate

This can be solved for the s by inverting the matrix M. In vector-matrix
form, the solution is
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Time-dependent averages of these variables can be found by multi-
plying the initial distribution by A(t) and integrating,

to lowest order in deviation from equilibrium. Again we see how the
nonequilibrium averages follow the time dependence of the equili-
brium time correlation functions (Onsager's regression).

All of this discussion has been based on classical statistical mechan-
ics. The quantum version differs only in the way one expands the expo-
nential of two noncommuting operators. As in the previous treatment
of linear response to an external field, the only change that must be
made is to replace the variables [A] in the expansion by their Kubo
transforms,

Averaged Noise

Now we can return to the properties of noise in the formally exact
Langevin equation. The hope is that the average of the noise (F(t))
vanishes or at least is negligibly small. The average is taken over a sta-
tistical ensemble of initial conditions that is not at equilibrium but close
to equilibrium. Without any further discussion, we use the maximum
entropy distribution,

from eq. (8.45). The Lagrange multipliers are connected to the initial
averages (in vector-matrix form) by

Having chosen an initial nonequilibrium ensemble, now we can
average the Langevin equation over the initial state,

If the future behavior of (A; t) is determined by its present and earlier
values, and not by irrelevant variables, then the average of F(t) over the
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initial ensemble must be negligible in comparison with the other terms
in the equation.

The average of F(t) over initial conditions is, to first order in 7

The first term, which is independent of 7, is the equilibrium average of
F(t) and must vanish. Since an initial equilibrium state stays in equi-
librium for all time, we can replace (A; 0} by (A)eq = 0 everywhere in
the averaged equation, and so the equilibrium average of the remain-
ing F(t) must also vanish.

The second term is of order 7and is therefore first order in the initial
deviation from equilibrium. The other terms of the averaged Langevin
equation, that contain (A; t) are also first order in deviation from equi-
librium. To have a sensible Langevin equation, at least to this order, we
must somehow arrange that the O ( ) term in the average of F(t) will
vanish, or

Up to this point, even though the quantities i , K(t), and F(t) all
involve the chosen inner product, we did not need to know what it was.
Now we can force this average to vanish by making the right choice of
inner product. It is evident that the inner product that was suggested
earlier,

will work. To verify this, note that if we make this choice, the integral
in eq. (8.55) is just the inner product of F(t) and A. But by construc-
tion, F(t) lies entirely in the subspace that is orthogonal to {A}; if F(t)
is expanded in powers of t, every term in the expansion contains the
factor (1 - P). With this particular choice of inner product, the average
of F(t) vanishes automatically to first order in 7

The result is that (F(t)) is of order 2. The average of the "noise" is
second order in deviations from equilibrium, while the other terms in
the averaged Langevin equation are all first order in deviations
from equilibrium. Thus the averaged noise is negligible for an initial
state that is close enough to equilibrium. In this sense, the exact eq.
(8.39) in the preceding chapter can be used as an approximate Langevin
equation. This use, however, is restricted to linear or near-equilibrium
transport processes. In treating nonlinear processes, (F(t)) cannot be
neglected; the separation into "systematic" and "noisy" terms is not
under control.
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Quantum Mechanics

The preceding treatment of noise was based on classical statis-
tical mechanics. As in the discussion of linear response to an external
force, the only significant change in quantum mechanics is in the use
of the Kubo transform. Once we have chosen an inner product, re-
placed the classical Liouville equation by its quantum form, and
replaced the phase space distribution function by the density matrix,
the derivation is exactly the same as with classical mechanics. To
average the noise, we need an initial nonequilibrium density matrix. Its
first-order term contains the Kubo transform of A. When we average
the noise over this initial state, we encounter the quantity (F(t)A*)eq
in first order. To make this vanish, we must define the quantum
mechanical inner product by

Then the average noise is second order in deviation from equilibrium
The QM inner product must be used in calculating i and K.

8.4 Generalized Langevin Equations—
Some Identities

This section presents several mathematical identities involving gener-
alized Langevin equations.

Non-Markovian Fluctuation-Dissipation Theorem

One consequence of the general theory just presented is a non-
Markovian version of the fluctuation-dissipation theorem. When the
inner product is chosen to be the equilibrium average, we may rewrite
the memory kernel in the form:

where we have used the anti-Hermitian property of L, and we
have inserted a redundant factor (1 - P) to get F(0) = (1 - P)LA. This
equation is in fact a generalization of the fluctuation-dissipation
theorem,

This is like the result found in section 1.6, dealing with a harmonic oscil-
lator heat bath. This is a mathematical identity, holding even if the
initial distribution is not close to equilibrium.
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Time Correlation Functions

Another useful consequence of this mathematical treatment is that
equilibrium time correlation functions of the variables {A} satisfy
similar equations of motion, but without the noise term. The time
correlation function is defined by the inner product of A(t) and A(0),

If the inner product is the equilibrium average, then C(t) is the usual
equilibrium time correlation function. To get the equation of motion
for this matrix, we start with the Langevin equation and take its inner
product with the initial A(0), which is just the variable A. The noise
term leads to (F(t), A), which vanishes because F is orthogonal to A.
The result is

Equilibrium time correlation functions satisfy exact linear transport
equations. This provides a powerful method for finding explicit expres-
sions for i . and K; one works backwards from information about the
time correlation function. For example, i is the initial time derivative
of C.

It is worth noting, in this connection, the special connection of C(i)
to the relaxation of (A; t),

which we found in section 8.2. This was a consequence of the same
special choice of initial state that we used in deriving the Langevin
equation.

The generalized fluctuation-dissipation theorem is exact for any
inner product in which L is anti-Hermitian, and the equations for equi-
librium time correlation functions defined as inner products are exact
for any choice of inner product.

Eliminating the Projection

The memory kernel K in the generalized Langevin equation involves
projected dynamics, with the operator exp(l — P)Lt. This means that its
calculation is likely to be hard. The response of an equilibrium system
to an imposed external field does not require any projection operator,
and its calculation, involving conventional dynamics, is likely to be
easier. There is a simple relation between these two theories, which
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allows us to write the memory kernel in a way that does not contain
projection operators.

The linear response of a system to the perturbation H' = -A E(t) is
given by

and the response function is connected simply with the equilibrium
time correlation function of A, C(t) = (A(t) A),

The Laplace transform of this equation is

But the generalized Langevin equation provides an expression for the
transform of the same time correlation function,

By combining the last two equations, we find the connection

This can be solved for the memory kernel,

The memory function in the generalized Langevin equation is con-
nected to the response to an external field. This connection can also be
used to treat the combined response to an initially nonequilibrium state
and to an external field.

Combined Responses

The treatment of linear response to an external field supposed that the
system was initially in equilibrium; the treatment of Langevin equations
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supposed that there was no time-dependent external field. These two
treatments can be combined easily by noting that the effects of an initial
deviation from equilibrium and an imposed field are additive. By taking
Laplace transforms, we can write

The first term is the response to an initial deviation from equilibrium;
the second term is the response to an imposed field. Equation (8.68)
provides an expression we can use to eliminate the response function
0, and so by multiplying out, the average obeys

The inverse Laplace transform of this equation, its time-dependent
version, is

Note that the right-hand side contains the quantity

which is the deviation of the average from what it would be if the
system were in local equilibrium at time t. A special case, arising in
the treatment of electrolyte solutions, is known as the Nernst-Planck
equation.

8.5 From Nonlinear to Linear—An Example

Earlier, we noted a subtle difference between Mori's linear generalized
Langevin equation and the exact Langevin equation for a nonlinear
system interacting with a harmonic oscillator heat bath. ("Nonlinear"
means here that the potential energy contains higher powers than qua-
dratic.) We now use a special example to see how these two levels of
description are related. This example is simple enough to allow an
explicit calculation of the noise and memory function in Mori's equa-
tion. We find that noise in the linear generalized Langevin equation
comes not only from noise in the nonlinear Langevin equation but
also from certain explicit effects of the nonlinearity. The same holds for
the memory functions. This change in memory functions, when it occurs
in connection with fluid transport coefficients, is sometimes called
"fluctuation-renormalization." We return to this connection later in a
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discussion of the long time asymptotic decay of the velocity correlation
function of a particle in a fluid.

In this special example, the system Hamiltonian is

The parameter b measures the strength of the nonlinearity; we look for
the Mori memory function in the limit of small b. For convenience, the
system mass is set equal to 1. The heat bath is the same one used in
section 1.6. The exact nonlinear Langevin equation for this model was
derived there:

where the memory function and noise are labeled by a subscript N to
indicate that they are appropriate to the nonlinear problem,

The correlation function of the noise is the generalized fluctuation-
dissipation theorem,

The average is over a constrained equilibrium heat bath.
We can apply Mori's procedure to the same Hamiltonian, by

projecting onto the subspace of the variables x and v. The projection
operator is explicitly

The equilibrium second moments are
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which defines the frequency  0. Then Mori's procedure leads to the

exact linear equations of motion

The memory function and noise are distinguished here by the subscript
L to indicate that they are appropriate to the linear Langevin equation.
The noise is given explicitly by the operator expression,

and the memory function is the equilibrium correlation function of
FL(t),

The average is over the unconstrained thermal equilibrium distribution.
It is easy to work out the relationship of FL to FN in the limit of small

b. The frequency 0 to first order in b is

The complete Liouville operator may be separated into a linear part L0

and a perturbation L1;

Then (1 - P)Lv separates into two parts,

To first order in b, the second term is

The projected time evolution operator may also be expanded to first
order,

To first order, the total force FL consists of three terms,
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The first term, denoted by F0(t), is easy to evaluate. When the operator
L0 operates on any linear combination of variables {x, v, Pj, q,}, it pro-
duces a new linear combination of these variables. Further, the projec-
tion (1 - P) maintains this linearity. Thus the projected time evolution
operator converts a linear combination into a new linear combination.
This suggests the structure

where the coefficients { , , j, vj} are functions of time only. F0 obeys
the operator equation

On substituting the assumed form of F0, the effect of the projection is
contained in

When coefficients of the dynamical variables are collected, one finds
that the coefficients obey the linear equations

Furthermore, the initial values of the coefficients are

Thus (t) vanishes for all t. The equations for i; and vj are ordinary
harmonic oscillator equations that can be easily solved:
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and finally, the equation for (t) can be integrated to give

The result is an expression for F0(t),

which is clearly identical to the earlier FN(t).
The third term in FL(t) vanishes. It can be written as

But F0 is independent of v, and L1F0(s) vanishes, so the entire term
vanishes.

The second term in FL requires further attention:

On taking the time derivative, one finds

But the term with the projection can be dropped, PL0F1 = 0, because
the two inner products (L0F1, x) and (L0F1, v) both vanish. Thus F1(t)
is determined by the unperturbed (i.e., linear) motion of the system
and bath,

The total random force in the linear Langevin equation, to first order
in the nonlinearity parameter b, is

This is evidently not the same force that appears in the exact nonlin-
ear Langevin equation.

Because FN falls in the linear subspace and F1 falls in the comple-
mentary subspace, they are orthogonal for all times. This means that
the memory function KL(t) separates into two parts,
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(Recall that L0 is the complete Liouville operator for the linearized
system, b = 0.)

This example makes it clear that different kinds of noise can appear
in a Langevin equation, depending on the level of description. The noise
in the nonlinear Langevin equation appears to be more "intrinsic"; in
particular, by making an appropriate choice of heat bath parameters,
FN can be approximated by white noise. However, its statistical prop-
erties are simple only for a particular class of initial distributions.
The noise FL in the Mori Langevin equation, which is what one would
see in a study of fluctuations in an equilibrium system, differs from
FN because of nonlinear effects. The Mori memory function KL(t) will
have a Markovian part, connected with the intrinsic white noise, but
also a non-Markovian part coming from the nonlinearity in the system
Hamiltonian. This turns out to be a common situation.

8.6 Linear Langevin Equations for Slow Variables

Many dynamical variables of practical interest are "slow"; their rates
of change are controlled by a small parameter A,

One example has already appeared, in the derivation of the master
equation. Here we discuss linear Langevin equations for slow variables.

In the generalized Langevin equation, the quantity   , containing
one factor LA, is of order A, and the memory kernel K, containing two
factors of LA, is formally of order 2. In the limit of small A, the time
convolution of the generalized Langevin equation can be replaced by
its Markovian approximation,

But the memory kernel still contains the exponential of the pro-
jected Liouville operator (1 - P)L, and this is hard to work with. For-
tunately, however, the projection operator can be dropped when one
deals with slow variables. The argument is as follows. We start with the
identity
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Then we recall that, from the definition of the projection operator,

and this quantity, containing one factor of LA, is of order A. Conse-
quently, the difference between projected and ordinary dynamics is of
the same order,

The general formula for K(t) is

Because the factors on the left side of the inner product all start with
(1 - P), we can insert a redundant (1 - P) in front of the LA on the
right side,

Finally, we use eq. (8.106) to simplify the exponential operator,

To second order in A, the memory kernel involves the conventional (i.e.,
unprojected) time correlation function of the quantity (1 - P)LA or
LA--i  A.

Then the Mori linear Langevin equation for a slow variable, or a set
of slow variables, has the standard form

In particular, the hydrodynamic variables, mass density, momentum
density, and energy density, and in a multicomponent mixture, compo-
sition, are all slow variables.

Self-Diffusion

A first example is self-diffusion. Here the dynamical quantity of inter-
est is the concentration C(x, t) of the tagged particle at x and t. (We
assume that the concentration depends on only one coordinate.) This
has the spatial Fourier transform,
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The Fourier component is a function of the position R of the tagged
particle,

Its rate of change is

where V is the velocity of the tagged particle. Because i is the average
of an odd function of V, it vanishes. The memory function to second
order is

It contains the familiar velocity correlation function V(f)V . The
average concentration obeys

In the long wavelength or small q limit, Aq is a slow variable, and we
can make the Markovian approximation

This is the Fourier transform of the diffusion equation

and the self-diffusion coefficient is the familiar time integral of the VCF.

Hydrodynamics

Hydrodynamic variables, the mass density, momentum density, and
energy density of a fluid, are also slow. In an N-body system, particles
are labeled j = 1, 2, 3, . . . and are located at positions Rj.The jth parti-
cle has mass mj, momentum pj, and energy j Spatial Fourier compo-
nents of the mass, momentum, and energy densities are labeled by the
vector q,
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The time derivative of any of these sums can be expanded in powers
of q,

The zeroth order term vanishes because the total mass, total momen-
tum, and total energy are conserved quantities, invariant to the Liou-
ville operator. This leaves the first-order term. The magnitude of the
Fourier vector q is the small parameter required for a "slow" variable.
If q is small enough, the hydrodynamic variables are slow.

A particular application is to shear flow, where the fluid velocity vx(y,
t) points in the x direction and varies spatially only in the y direction.
This particular velocity field satisfies a special case of the Navier-Stokes
equation,

The Fourier expansion of the momentum density vx is

so the rate of change in eq. (8.119) is

This is the xy component of the molecular stress tensor P; its time
correlation function determines the shear viscosity ,

A Warning

As was seen earlier, in the discussion of quantum mechanical models
where a two-state system interacts weakly with a heat bath, one must
be careful about deciding what is to be treated as "slow." It may happen
that even though the memory function K is small, the i coefficient can
still be large. This has to be taken into account when making a Mar-
kovian approximation. Fortunately, applications to self-diffusion and
hydrodynamics do not face this difficulty because there i is already
small, of order q.



9

Nonlinear Problems

9.1 Mode-Coupling Theory and Long Time Tails

This chapter deals with nonlinear Langevin equations and related
topics. The first topic is mode-coupling theory.

Mode-coupling theory refers to a family of techniques that were
invented to explain anomalous properties of certain transport coeffi-
cients. This chapter presents one particular version of the theory, due
to L. Kadanoff and J. Swift (1968). Another version is discussed in the
following sections.

The anomalous properties referred to occur in two quite different
contexts. One is critical phenomena. For example, the thermal conduc-
tivity of a fluid shows singular behavior in the neighborhood of the
critical point of the liquid-gas phase transition. Because a detailed treat-
ment of such behavior requires a thorough knowledge of the equilib-
rium theory of critical phenomena, which is beyond the scope of this
book, we will not go further into critical dynamics.

The other context is "longtime tails." B. Alder and T. Wainwright (1968)
made an extensive computer study of the molecular dynamics of a hard
disk fluid (d = two dimensions) and a hard sphere fluid (d = three dimen-
sions). They observed that the velocity correlation function of a tagged
particle in the fluid decays for a long time as an inverse power of the time,

169
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The specific power is determined only by the dimensionality of the
system. Later, similar behavior was seen for the stress time correlation
function that leads to the fluid viscosity. This kind of asymptotic behav-
ior is called a "long time tail."

Mode-coupling theory is ultimately based on the Hilbert space
picture of dynamics that was discussed in section 8.1. This starts with a
complete orthonormal set of functions j(X) of the position X of the
system in phase space, with the inner product

Then any time correlation function, in particular the VCF, can be rep-
resented by the expansion

Clearly this shifts the dynamical problem from finding V(t) into finding
etL

 j. In general, this is a hard problem, but for some special functions
(Pi it is easy. These are the functions that can be constructed from slow
variables.

In the present example, self-diffusion, one slow variable is the con-
centration C(r, t) = (R0(y)-r) of the tagged particle at position r. This
(approximately) satisfies a diffusion equation with noise,

On taking a spatial Fourier transform,

the diffusion equation becomes

R0 is the position of the tagged particle; then

and if the noise can be ignored, Cq(t) is approximately
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When self-diffusion takes place in a fluid, diffusive transport can be
modified by convective transport due to fluctuations in the fluid veloc-
ity v(r, t). But hydrodynamics tells us that the fluid velocity is another
slow variable. The explicit form of its spatial Fourier transform, vq, is

where pj and Rj are the momentum and position of the jth particle. One
of these particles, j = 0, is the tagged one, and V = p0/m.

Now we return to the Hilbert space expansion of the VCF. Most of
the functions j are unrelated to the slow variables and may be called
"fast." These give a contribution to the VCF that decays rapidly.
However, some of the j can be constructed from slow variables and
give a slowly decaying contribution to the VCF, a long time tail. An
obvious first choice for j is one of the variables Cq or vq; these may be
called "single mode" functions. However, they cannot contribute to the
VCF; the inner products vanish,

because V is independent of position, and if q 0, Cq and vq are not.
The next simplest choice for j is a product of two slow variables or

modes, hence the name "mode-coupling." So that the inner product
with V does not vanish, this product must contain one factor of vq to
provide a velocity to match V, and translational symmetry requires that
this be accompanied by one factor of C -q. Then this inner product is

(Recall that V = p0/m.) For normalization, we also need the inner
product

Then, on replacing the index m by the wave vector q, the normalized
expansion function is
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As a result of translational invariance, these functions are orthogonal,

Further, because the time evolution of both vq and C_q is given by linear
equations with coefficients that depend on q, their time correlation is
orthogonal,

Then the VCF is

where + . . . refers to the contribution from neglected higher order
mode-coupling products. Because the Liouville operator can be dis-
tributed over products, the effect of e'L is

The fluid velocity is a vector depending on q and can be decomposed
into longitudinal ( ) and transverse ( ) parts,

To make the discussion simpler, we assume that the fluid is incom-
pressible and approximately satisfies the Navier-Stokes equation,

Then the transverse Fourier components satisfy

Here we abbreviate lp = v, the kinematic viscosity. If the noise is
neglected, the time evolution of vq is given approximately by
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In an incompressible fluid, there is no longitudinal part. The TCF of the
transverse part is

The resulting VCF is

In the limit of a large system, the sum over q can be replaced by an
integral,

where Ld is the area or volume of the system. The mass density is

and the q integral leads to

Note that this result is not correct for short times. The integration
over q should be terminated at large q when 1/q is of the order of a
molecular size; this cut-off removes the singular behavior at small t but
does not affect the long time behavior.

The 1/t decay at long times for d = 2 means that in this approxima-
tion, the self-diffusion coefficient in a two-dimensional fluid, which is
the integral of the VCF over all time, does not exist. This is consistent
with Stokes' paradox, that the hydrodynamic friction on a particle
moving in a fluid does not exist in two dimensions.

Another use of this process is to derive the long time tail of the stress
correlation function that determines the viscosity of a fluid. As seen in
the last section, the stress tensor is quadratic in particle velocity. Then
it couples naturally with a product of two fluid velocity modes, vqv-q.
The result is that the stress correlation function has a long time tail
t-3/2 in three dimensions.
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Clearly the success of this method depends critically on an intelli-
gent choice of product modes. One should always check to see whether
more-complex mode-couplings are likely to contribute significantly, but
this is usually not easy to do. A method based on nonlinear Langevin
equations for slow variables, described in a later section, provides a
more systematic procedure.

Mode-coupling theory leads to a separation of time scales—part of
a time correlation function decays very rapidly and part decays slowly.
The transport coefficient determined by this TCF is non-Markovian at
long times. For example, the non-Markovian diffusion coefficient now
depends on a Laplace transform variable z,

(The q integral must be cut off when l/q reaches a molecular size.) The
denominator in the integral contains the "bare" diffusion coefficient D,
and the resulting expression is a non-Markovian or "renormalized"D.
It is often suggested that better results can be obtained if one replaces
the "bare" D in the denominator by D. This leads to a self-consistent
mode-coupling equation to be solved for D,

This approximation generally has no real justification.

9.2 Derivation of Nonlinear Langevin and
Fokker-Planck Equations

Introduction

The linear Langevin equations derived in earlier chapters, while for-
mally exact, are useful only for systems near equilibrium. They
inevitably lead to linear transport laws for averaged variables and
cannot be used to treat nonlinear transport processes. It is possible to
use the same procedure to derive nonlinear Langevin equations; the
idea is to expand the projected space to include not only first powers
of the dynamical variables {Aj} but also higher powers, for example,
product variables {Aj, Ak}. This is the basic idea of the mode-coupling
theory that was discussed in the last section. An easier procedure (S.
Nordholm, 1975) provides both Langevin and Fokker-Planck equations
for nonlinear processes at the same time.
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Section 2.2 gave a conventional treatment of Fokker-Planck equa-
tions. We started there with a postulated Langevin equation for a set
of variables a, with a possibly nonlinear streaming term v(a),

we assumed that the noise F(t) was Gaussian and white, with the second
moment

and we derived the resulting Fokker-Planck equation for the noise-
averaged distribution function,

In this section, we derive equations of this form starting with the
Liouville equation. As in the derivation of generalized Langevin equa-
tions, some of the results are formally exact, but structurally complex,
with non-Markovian behavior in time and nonlocal behavior in a-space.
As such, they are not pleasant to look at and not likely to have much
practical utility. However, when the dynamical variables are "slow," as
in section 8.6, the results of the derivation reduce to the simple form
given above. Further, the results provide a straightforward statistical
mechanical method for calculating the streaming velocity v(a) and the
"diffusion coefficient" B. In this section, we consider only the formal
derivation. The slow variable approximation is discussed in the follow-
ing section.

Reduced Distribution Functions

The main technical problem in deriving Fokker-Planck equations from
the full-phase space Liouville equation is that they describe the evolu-
tion of reduced distribution functions. In Brownian motion, for
example, the reduced distribution function contains only the velocity V
and position R of the Brownian particle. The full distribution function
f(X, t) depends on the entire set of phase space coordinates and
momenta denoted by X. These variables can be separated into system
variables (position and velocity of the Brownian particle) denoted by
S, and heat bath variables denoted by B, so that X = (S, B). The reduced
distribution function g(S, t) is obtained from the full distribution
function by integrating out the bath variables,
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(Note that we have switched notation. From here on, we use g when
referring to reduced distribution functions and reserve / for the com-
plete phase space function.)

Reduced distribution functions can also be constructed by using
delta functions. In the present case, we can ask for the probability
density that the system variables S = (V, R) take on the numerical
values s = (v, r); then this can be written as the full phase space average
of the product S(R -- r) (V -- v) of two delta functions, abbreviated by

(S - s),

Often we want to deal with properties of a system other than a subset
of its coordinates and momenta. Let us focus on a particular property
A(X) of the system. The probability that this variable has a numerical
value in the interval between a and a + da is denoted by g(a, t)da,

If this variable is not one of the canonical coordinates or momenta of
the entire system, we can not get g(a, t) by integrating over "bath" vari-
ables, but we can still use the delta function procedure. Then the
reduced distribution function or probability density can be found from
the phase space average,

The delta function selects that part of phase space in which the dynam-
ical variable A has the specified numerical value a. This "surface of con-
stant A" is analogous to the surface of constant energy that is often
used to define the equilibrium microcanonical ensemble. The phase
space average of the delta function is the total probability of finding
the system on the particular surface of constant A(X) labeled by the
parameter a. Note that because of the delta function, the integral of g
over a is normalized to unity,

The exact time dependence of distribution functions is determined
by the Liouville equation, which describes motion of a system in phase
space X. Reduced distribution functions contain only the parameters
a and do not refer directly to phase space. Changing to a reduced
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description of the dynamics requires careful attention to the distinction
between functions of X and variables that do not depend on X. When
dealing with a set of dynamical variables, we denote the set itself by the
uppercase vector A and its numerical values by the lowercase a. Often,
for brevity, we omit the phase-space position X from A(X). The delta
function (A - a) denotes the product of delta functions for each
individual element of the set.

There are two ways to proceed. In one, a projection operator is used
to separate the Liouville equation for the phase space distribution
function into relevant and irrelevant parts. An alternative procedure,
the one to be followed here, makes use of the generalized Langevin
equation derived in section 8.2. The idea is to replace the original
variable A by a new dynamical variable G(a), indexed by the
parameters a,

Because A is a function of the phase point X, G is defined in the com-
plete phase space. This new variable carries information about all
powers of A. At time t, this variable is G(a, t) = (A(t) — a), and its
average over a given initial phase space distribution is

The desired reduced distribution function is the phase space average
of the dynamical variable G. The formal calculation of such quantities
is precisely what the generalized Langevin equation is good for.

The Derivation

The only significant modification of the derivation of Langevin equa-
tions given earlier is to replace A by (A - a). We do not subtract the
equilibrium average of the variable, but keep the whole quantity. This
average is

The inner product ( ,) of two different variables (taking advantage of
properties of delta functions) is

This is diagonal in the indices a and a', and so its inverse is
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The projection operator is defined by

For brevity of notation, it is convenient to introduce the conditional
equilibrium distribution feq(X; a) in phase space. This is distinguished
from the complete equilibrium distribution by explicitly including the
parameters a. The conditional distribution is made by selecting out of
the complete equilibrium distribution only those phase points that lie
on the specified surface A(X) = a. It has the general form

The denominator provides phase space normalization for the condi-
tional distribution,

The average of any B with this distribution will be denoted B; a ,

Then the projection of any B is simply

On using the results of section 8.2, the generalized Langevin
equation for G(a, t) is

The streaming term i has the general form

With the notation of conditional averages, this is
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The Liouville operator is a first-order differential operator in the space
X, and we can use the chain rule of differentiation,

When the conditional average is put in explicitly, i is

Because (A -- a) (A -- a') = (A -- a) (a -- a'), we can rewrite
this as

This contains the average of the rate of change LA in the conditional
equilibrium ensemble, which will be denoted by V(a),

So the first term in the right hand side of the Fokker-Planck equation
has the standard form,

and eq. (9.53) is the statistical mechanical formula for V. (Note that this
is only part of the full v(a) in eq. (9.29). There are further contributions
from the equilibrium distribution geq.)

Now we turn to the memory kernel and follow the same procedure
that we used to get from i a,a'< to V(a),

Then after integrating by parts over a', we get
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At this point, it is convenient to use the abbreviation

Now eq. (9.47) becomes

This is clearly a complicated equation and not much use in its present
form. We will see that it becomes much simpler if the dynamical vari-
ables A are "slow" in the sense that was discussed earlier.

Before going to the slow variable limit, however, we can derive from
this equation both a nonlinear Langevin equation and its correspond-
ing Fokker-Planck equation. To get the Langevin equation, we just mul-
tiply eq. (9.58) by a and integrate over all a, using

Several integrations by parts lead to

Because G is a delta function, the first term on the right hand side is
just V(A(t). In the second term, because G is a delta function of the
difference between A(t - s) and a', integration over a' produces a func-
tion of A(t -- s). The third term is a function of t. Without writing this
out in greater detail, this is clearly a generalized nonlinear Langevin
equation.
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But we can also use eq. (9.58) to get the corresponding Fokker-
Planck equation. This merely involves averaging over an initial phase
space distribution. The average G(a, t) becomes g(a, t). If the initial
distribution is one of constrained equilibrium,

then (1 - P)f(X, 0) = 0, and the average of the noise term F(a, t) van-
ishes. The result is a generalized Fokker-Planck equation (R. Zwanzig,
1961).

9.3 Nonlinear Langevin Equations and Fokker-Planck
Equations for Slow Variables

As in the discussion of linear Langevin equations, the nonlinear
Langevin equation and Fokker-Planck equation derived in the last
section are considerably simpler if the variables A are "slow." Then LA
contains a smallness parameter A, so that LA is of the order of A. The
streaming velocity v, containing one factor of LA, is of order A, and the
diffusion coefficient B, containing two factors of LA, is formally of
order 2. We have seen that to order 2, the operator exp[(l - P)Ls]
can be replaced by exp[Ls], leading to a more conventional time cor-
relation function,

The quantity (1 -- P)LA (A -- a) has the very simple form,

it contains the fluctuation of the actual rate of change LA from its
conditional equilibrium average V.

The time scale for appreciable changes in the dynamical variables
A.(X, t) is of the order of 1/ and can be very long when A is small. The
decay time of the time correlation function is determined by the exact
Liouville operator and has nothing to do with A. The slow change in A
allows us to replace A(X, s) by A(X, 0) = A in the delta function,
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The inner product contains a product of two delta functions; then we
can replace one of them, (A -- a'), by (a -- a'), and rewrite the inner
product as a conditional equilibrium average,

The diffusion coefficient for slow variables is local in a-space. The coef-
ficient of the delta function will be denoted by B(a, s) with a single a,
and the term of order A? will be omitted. This quantity is

The second factor LA can be replaced by LA - V(a) without any effect
on B.

In the slow variable limit, eq. (9.58) becomes

Finally, we note that if we are not interested in fine details of time
dependence, the slow variable limit allows us to make a Markovian
approximation; the time-dependent kernel decays rapidly on the time
scale of the slow variables. Then G(t - s) at time t - s is essentially the
same as G(t) at time t, and we need only the time integral of the kernel.
This will be denoted by B(a) without the variable s,

By making a Markovian approximation, we obtain

with statistical mechanical expressions for the coefficients,

B(a) is the integral of the time correlation function of the fluctuation
of the rate of change of A, LA - V(a), calculated in the con-
ditional equilibrium ensemble. Both V and B can depend on the
variables a.
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The result of these manipulations, eq. (9.69), is an approximate
Langevin equation for the dynamical variable G = (A - a). The average
of this equation over some constrained equilibrium initial distribution
is a Fokker-Planck equation,

This is the main result of this section.
The Langevin equation for the complete G can be used to derive a

nonlinear Langevin equation for the first power A by means of

The result is

So the streaming velocity in eq. (9.62) has three parts,

where a is to be replaced by A.(X). Note that the quantity

can be regarded as a thermodynamic force driving the system to
equilibrium. The noise is

Illustration

Calculating the functions V and B is not generally easy. An exception
is for the special model of Brownian motion discussed earlier, a non-
linear system interacting with a harmonic oscillator heat bath. The same
notation will be used here. The dynamical variable A and its rate of
change LA are the two-component vectors
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The average of LA in the constrained equilibrium ensemble, that is, an
average over the heat bath variables qt and pj for fixed x and p, is

So the streaming term in the Fokker-Planck equation is

The fluctuating part of LA is the vector

The time correlation function of the fluctuation is the square matrix

Again, the average is taken over the heat bath variables at fixed x and
p and as earlier the result is

The (p ,p) element of B is precisely the memory function K(s) that was
derived there. The diffusion coefficient B is the time integral of K, and
the Fokker-Planck equation (the x-dependent part of geq cancels out) is

Noise and Initial States

The nonlinear Langevin equation derived in this section contains a
noise that is orthogonal to all functions of the variables A, so that it
averages to zero if the initial distribution is determined entirely by
some function of A. In the same way, the associated Fokker-Planck
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equation obtained by averaging a distribution function over noise is
valid only for the same kind of initial distribution. A linear Langevin
equation for A was derived in section 8.2,

The subscript L is used to distinguish the memory function and noise
from those appearing in the nonlinear equations. This equation is gen-
erally exact, since it is a formal rearrangement of the Liouville equa-
tion; but it is useful only if the average of the noise over an initial
distribution vanishes. This limits its applicability to initial states that are
very close to equilibrium. An illustration of the relationship of linear
to nonlinear Langevin equations was given in section 8.5.

9.4 Kinds of Nonlinearity

The Langevin equation for slow variables that was discussed in the
preceding chapter contains three functions of the chosen variables, a
streaming velocity V(a), a diffusion coefficient B(a), and an equilibrium
distribution geq(a). Each of these can contribute nonlinear terms to the
Langevin equation.

The equilibrium distribution may have a single minimum as a func-
tion of a; in this case, we can usually expand about the minimum, and
then the distribution is approximately Gaussian,

Or, the distribution may have several minima; then we are likely to be
dealing with some reactive barrier crossing problem or with a phase
transition. In the following discussion, we consider for simplicity only
the Gaussian distribution.

The streaming velocity V(a) is given by the constrained average

The denominator is the equilibrium distribution geq. The constrained
average is awkward to deal with. However, we can derive its series
expansion by taking moments of V. The first three are
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The expansion of V starts out with linear and quadratic terms,

The coefficients are determined by the moments. The zeroth moment
leads to a condition that V must satisfy

The first moment leads to

This is the quantity that appears in linear response theory,

The second moment is

We use the Gaussian character of geq to relate the fourth moment to
second moments,

so that on multiplying by inverses of M we find

Quantities like these will appear in the treatment of mode-coupling
theory to be presented shortly.

The same general procedure can be used to find an expansion of
B(a) in powers of a,

The zeroth-order term, independent of a, is proportional to the rate
matrix K that appears in linear response theory,
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Very little is known about higher order terms in this expansion. In the
following, we will assume that B is approximated by B(0), and we omit
the superscript.

When the equilibrium distribution is Gaussian, and F is Gaussian
white noise, the Langevin equation is

The corresponding Fokker-Planck equation is

In many applications, the nonlinear part of V comes from a convec-
tive term, for example, v • Vv in the Navier-Stokes equation or V • vC in
the diffusion equation. From here on, we consider only nonlinearities
that are quadratic in a, as in eq. (9.91). As in earlier discussions of
Fokker-Planck equations, the linear part of V is combined with the dis-
sipative term,

The nonlinear part is denoted by 8V,

The Fokker-Planck equation may be separated into linear and non
linear parts,

where the linear part is

and the nonlinear part is

The Green's function for the linear part,
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was derived in section 2.3.

9.5 Nonlinear Transport Equations

Here we show how nonlinear Langevin equations can lead to non-
linear transport equations for the averages of dynamical variables and
to a "fluctuation-renormalization" of transport coefficients.

As before, the dynamical variables are denoted by a = {a1 , a2, . . .}•
To keep the algebra as simple as possible, we assume that the dynam-
ical variables have already been orthogonalized and normalized to
unity,

The equilibrium distribution is Gaussian. We assume that the stream-
ing velocity,

has the familiar linear part and a quadratic nonlinearity V,

ijk are given by eq. (9.97),

The coefficients satisfy the identity

The Langevin equation is

and the corresponding Fokker-Planck equation is

The coefficients vioj
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Now we use the Fokker-Planck equation to find an equation for the
average aj ,

Then its rate of change is

This contains the average of a product of two as. The error made in
replacing the average of a product by a product of the averages depends
on the degree of sharpness of the a-space distribution g(a, t). This sug-
gests consideration of the cumulants of the distribution.

Cumulants are defined as follows. Given a distribution, we evaluate
its generating function,

which depends on the variables £. We take the logarithm of this quan-
tity, denoted by C( ), and expand it in powers of the s,

The coefficients cj, cjk, cjkl, . . . are called the first, second, third, . . . cumu-
lants of the distribution. The cumulants are a measure of the shape of the
distribution. Since ( ) can be expanded directly in powers of the s, with
coefficients that are various moments of the distribution, the cumulants
are clearly related to the moments; the first three cumulants are

Note that if the underlying distribution is Gaussian, the third and higher
cumulants all vanish.
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Now we return to the solution of the Fokker-Planck equation. By
integration we find an equation of motion for the generating function,

This provides an equation for the cumulant generating function,

Note that a term quadratic in C has appeared. When the function C is
expanded in powers of , and terms of the same order are collected, we
obtain a series of equations for the various cumulants,

The equation for the second cumulant must be symmetrized in j and k,
as indicated by "+ transpose." In the equation for the third cumulant,
terms containing the nonlinear coupling Vjkl have not been written
down explicitly; these terms contain the fourth cumulant.

Perturbation Expansion

The goal of the perturbation expansion is to find an equation of motion
for the average of the first cumulant or mean value to second order in 8V.
This means that we have to find the second cumulant to first order in 8V.
To do this, we first have to estimate the third cumulant. To zeroth order,
the differential equations for cjkl are linear equations with constant coef-
ficients. The time dependence of cjkl(t) is determined by the initial value
cpqr(0) and by some complicated time-dependent coefficients l jkl ,pqr(t)
that we do not need to know here. The formal solution is

To get the second cumulant, we take advantage of the symmetry
to rewrite Kjk + Kkj as
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and rewrite eq. (9.126) as

This has the matrix operator solution (found by integrating and using
the transpose of the matrix 0 on the right),

This contains the initial value cmn(0) -- mn. If the initial distribution
g(a, 0) is Gaussian, with arbitrary first cumulant but with equilibrium
second cumulant, then the initial value terms in eqs. (9.127) and (9.130)
vanish, so that c jk(t) = jk + O( V) and c j k l(t) = O( V). For simplicity, we
will emphasize this special case, but we will write IVT for "initial value
terms" in the various equations that follow, in order to be reminded
that such terms can appear.

Next, we substitute the zeroth order values of cjk and cjkl in the O( V)
terms of eq. (9.125), and we use the symmetries Vjkl = V j lk and Vjkl+ Vljk

= —Vljk to simplify terms. This leads to

Now we can find the second cumulant to first order in 5V (as before,
by integrating and using the transpose of the matrix ),

If the system is linear, the second cumulant maintains its equilibrium
value. To first order in nonlinearity, the second cumulant is driven away
from its equilibrium value by the first cumulant. To put this differently,
in a nonequilibrium and nonlinear system, correlations that are not
present initially must develop in time. Now we substitute this second
cumulant in eq. (9.124), which becomes, after some rearrangement,
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where jm is an extra memory function,

The original matrix jk that appears in the linear term has been con-
verted into a new one containing the additional non-Markovian
memory function jm(s). This is sometimes called a "fluctuation renor-
malization" of the "bare" transport coefficient,

If one wants to go beyond this simple second-order perturbation
theory, calculations become very much more difficult.

The renormalized transport coefficient derived here is exactly what
one gets from the simplest application of the Kadanoff-Swift scheme
discussed earlier. The mode-coupling formula for the extra rate con-
stant is

The product modes (orthogonal and normalized) are defined by

As shown in section 9.4, (LAi, AjAk) = 2Vijk. After some algebraic
manipulation, eq. (9.136) can be converted to eq. (9.134).
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The Paradoxes of
Irreversibility

For many years, certain "paradoxes," usually called the reversibility
paradox and the recurrence paradox, have plagued the development
of nonequilibrium statistical mechanics. For some time, they led to
the belief that there is a fundamental contradiction between Hamil-
tonian dynamics and the irreversibility that we see everywhere. Even
now they are often taken seriously. The subject of this chapter is why
there is no fundamental contradiction.

What is meant by irreversibility? Consider a simple experiment.
When we put an ice cube into a glass of water, the ice cube melts
and the water gets slightly cooler. This experiment has been done
countless times, and there have been no reports of the spontaneous
reappearance of the ice cube. In human experience, the melting is
irreversible.

To be more quantitative, we can use thermodynamic measurements
to find the total entropy of both the ice cube and the glass of water
before they were brought together, and we can find the total entropy
of the final glass of cooler water. We observe that the total entropy has
increased. This experiment, and many like it, are summarized in the
second law of thermodynamics. In human experience, entropy increases
irreversibly.

The paradoxes of irreversibility originated as objections to Boltz-
mann's H-theorem about the inevitable increase of entropy. The first
objection, usually called the "reversibility paradox," was raised by Lord
Kelvin and by Loschmidt. In modern terms, this paradox is that the one-
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way character of irreversibility (the ice cube always melts and never
reappears) appears to violate time-reversal symmetry. The fundamen-
tal equations of motion of any conservative system are invariant to
the substitution of --t for t, or they are symmetric to time-reversal.
Consider the dynamical trajectory of the ice cube experiment. At the
moment t = 0 that the ice cube is put into the glass of water, the dynam-
ical state of the system is a point X0 in phase space. As the ice melts,
this point moves to Xt at time t. After awhile, the state looks like a glass
of cooler water, and no ice cube is present. Now we somehow reverse
all velocities, which has the same effect as reversing time. In the same
elapsed time t, the state must return to the original X0, and the ice cube
is back. The paradox is that even though there is an initial state where
unmelting must occur, we never see it happen. (An interesting excep-
tion is the Hahn spin echo experiment. When magnetic fields are
present, invariance to time-reversal requires that when the signs of all
velocities are changed, the sign of the magnetic field must also be
changed. Thus nuclear spin relaxation can be approximately reversed
by changing the sign of a magnetic field.)

The second objection was raised by Zermelo and by Poincare and is
usually called the "recurrence paradox." Typically, the motion of any
many-body system is confined to the surface of constant energy in
phase space. If ergodic theory applies, the trajectory of the system
passes, not precisely, but arbitrarily closely, to any assigned position
on that surface. Given enough time, it does so arbitrarily often. So any
given state of the system will recur to within any assigned accuracy. Any
nonequilibrium state that was passed through once will be visited again,
or "recur," if one waits long enough. The ice cube should eventually
reappear, but we never see it happen.

Understanding the dynamics of an ice cube in a glass of water is not
easy. However, we can learn a great deal from analysis of simple models.
The coupled harmonic oscillator model of Brownian motion that was
discussed in section 1.7 is especially helpful.

Let us perform a thought-experiment, to observe the decay of the
velocity v0 of a particular particle in a one-dimensional harmonic
lattice. The experiment starts with a lattice in thermal equilibrium. This
means that all initial coordinates and velocities are drawn from an equi-
librium ensemble. At t = 0, particle j = 0 is struck by a neutron, so its
initial velocity becomes enormously larger than the thermal velocities
of the other particles. By solving the equations of motion, we find that
the velocity v0(t) at time t has two parts. One is proportional to the
initial velocity and also to the velocity correlation function. The other
part is a linear combination of time-dependent terms proportional to
all other initial conditions. It looks like noise. The VCF for this model
was found in section 1.7. When all the masses are equal, the VCF of a
chain of N particles (with periodic boundary conditions) is
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where the frequencies are

In the limit of infinite N, the sum can be replaced by an integral,
and the result is the Bessel function C(t) = J0(t). In the heavy mass
limit, where the observed particle is much heavier than the others, C(t)
is approximately a decaying exponential function of the absolute
value of t.

We consider first the reversibility paradox. The VCF decays to
zero at long times, and it is an even function of t, invariant to
the replacement of t by --t. This means that irreversible decay of
the average velocity is compatible with time-reversal symmetry.
Why can't one run the trajectory backwards? As the initially large
v0 decays, it affects all the other variables—sound waves are pro-
duced that carry away energy and momentum. If we want to
reverse the trajectory, we can't just reverse v0; we have to reverse
all the velocities that were developed as a result of the decay of v0.
While this can be done in a computer simulation, it is very hard to
do experimentally, since it requires more information than is usually
available.

Now we turn to the recurrence paradox. When the number N of par-
ticles is finite, the expression for C(t) given in eq. (10.1) is what math-
ematicians call an "almost periodic function." It is not truly periodic, as
long as the frequencies k are incommensurate; however, C(t) will recur
to any assigned value c infinitely often. Figure 10.1 shows C(t) = C(t)
--J0(t) for N = 101.

The VCF of this 101-particle lattice is very well approximated by the
infinite lattice Bessel function up to t 180, when the finite size of the
chain begins to be felt.

Figure 10.1.1 The
deviation of the VCF
of a 101 particle chain
from the VCF of an
infinite chain, as a
function of time.
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At much longer times, the finite sum appears to behave erratically,
as shown in Fig. 10.2, where 500 < t < 1000.

In this region, the Bessel function is bounded by 0.036. The fluctua-
tions in C(t) are of the order of 0.1.

The mean frequency of return of C(t) to some assigned value c
was worked out by M. Kac (1943). Its reciprocal is a mean recur-
rence time (C). In the equal mass case, the recurrence time is
approximately

In the present illustration, where N is small, typical recurrence times
are (0.1) 12, and (0.5) 4 . 1011. When N is very large, recurrences
to the order of c l /N 1 / 2 are frequent. Recurrences to values of the
order of N0 require a time that increases exponentially with N. We may
conclude that while recurrences of small fluctuations happen fre-
quently, major recurrences are not likely ever to be seen. What we know
about irreversibility is obtained by experiments on a human time scale.
The ice cube will eventually reappear, but we won't be around to see
it happen.

At least for simple models and for certain initial conditions,
irreversible decay is observed over a very long time, and while major
recurrences will happen in finite systems, they are highly infrequent.
These are natural consequences of equations of motion that have
time-reversal symmetry. We don't have to worry about the paradoxes
of irreversibility.

Figure 10.1.2 Apparently random behavior of the VCF of a 101 particle chain
at long times, 500 > t > 1000.
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But we still have to worry about the choice of initial conditions. It is
possible, in principle, to create initial conditions maliciously, so that
bizarre behavior might be observed. However, such conditions would
be very hard to accomplish experimentally. In much of the theory dis-
cussed in this book, an initial state is drawn from a particular and famil-
iar kind of statistical ensemble. In Brownian motion, the environment
is assumed to be in constrained equilibrium. In deriving the quantum
mechanical master equation, the initial density matrix is assumed to be
diagonal. In Kubo's linear response theory, the initial ensemble is in
thermal equilibrium. In deriving generalized Langevin and Fokker-
Planck equations, the initial ensemble is assumed to be in constrained
equilibrium. In all of these cases, the goal is to separate the time depen-
dence of a dynamical variable into a systematic part and noise. The
ensemble average of the noise vanishes, and the ensemble average of
the systematic part remains.

So the final issue is to understand why the initial states that we can
construct experimentally are characterized by such simple ensembles.
We can always assert that an ensemble is just a model of reality that
can be confirmed by experiment. This brings us to the essential mystery
of statistical mechanics, whether equilibrium or nonequilibrium—why
do such models work in the first place?



Appendixes

Appendix 1

First-Order Linear Differential Equations

Many times in this book it is necessary to solve linear inhomogeneous
first-order differential equations. The first example appears in section
1.1. The basic rules are reviewed here. The most general equation to be
discussed is

There are many ways to derive the solution of this equation. One simple
way starts with the substitution

Then, on taking the time derivative, we get

or on multiplying through with exp(--at),

198
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Now this is integrated over t. The initial value of y is y(0) = x(0). The
result is

On using the relation between y(t) and x(t), we obtain the general
solution

To check this solution, note that x(t) has the right initial value and sat-
isfies the starting differential equation. An alternate form is obtained
by replacing s by t -- s:

It is important to note that the symbols in this equation can have
various interpretations, and much advantage has been taken of this. The
solution was found for the simplest case, where x(t) is a scalar function
of t, a is a constant, and b(t) is a given scalar function of t. Suppose that
we have to solve a second-order differential equation,

Define the vector function X(t), the matrix A, and the vector B,

Then the second-order differential equation becomes a first-order
matrix equation,

This has a solution in the form of eq. (A1.6), but with matrix
exponentials,

An nth-order differential equation with constant coefficients is
equivalent to a system of n coupled first-order equations. Then X(t) is
a vector function of t, of dimension n; A is a constant matrix of dimen-
sion n n, and B(t) is a vector function of t. The above solution is still
formally correct. The derivation in this case follows exactly the same
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steps, except with vectors and matrices; and they are all kept in their
proper places. The symbol exp(tA) is itself a matrix, defined by the
series expansion of the exponential.

A third interpretation is that X(t) is an infinite dimensional vector
function of t or a function of some auxiliary variables denoted by u; A
is a constant infinite dimensional matrix or an operator in the space of
u, and B(t) is a function of u and t. The differential equation is now an
operator equation. As in the finite matrix case, the above solution is
still formally exact, and all operators are in their proper places. Exam-
ples arising in this book are where X is either some distribution func-
tion or some dynamical observable, and A is a Liouville operator,
Fokker-Planck operator, or diffusion operator.

Appendix 2

Gaussian Random Variables

Any quantity A is called a Gaussian random variable if its probability
distribution (a), defined by

has the Gaussian or normal form,

This distribution has several familiar properties: It is normalized to
unity (all integrals are from — to + ),

the mean value of a is

and the mean squared fluctuation of a is M,

A quantity of special importance is the moment generating function
G( ),
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According to the last equation, the Gaussian distribution function is the
inverse Fourier transform of G,

All of these familiar statements have a simple extension to a set of
Gaussian random variables A = {A1,A2, . . . ,An}. The distribution func-
tion (a) depends on a = {a1 , a2,. . . , an}. Integration is performed over
n variables and is denoted for convenience by the abbreviation

The mean values and mean squared fluctuations are

The generating function is the average of exp(i jaj) and has the form

The distribution function itself has the form

and involves both the inverse of M and its determinant. The matrix M
must be positive definite; otherwise, there are linear relationships
between members of the set A. The normalization factor can be veri-
fied by using an orthogonal transformation to a new set of variables, bj

= kTjkak, and by finding that matrix T which diagonalizes M. Then, in
this new representation, all of the integrals factor, and the determinant
appears as a product of the eigenvalues of M. But the determinant is
invariant to an orthogonal transformation. So it is the same determi-
nant that appears in the original representation.

The multivariate Gaussian or normal distribution has two important
properties. First, if we integrate over any subset of the starting set a, the
remaining variables still have a Gaussian distribution. This is most
easily seen using the distribution function n(a) and the generating
function Gn( ) for an n-variable set. Integration over the last member
an leads to n--1 and Gn--1. But this integration corresponds to setting
equal to zero in The
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resulting generating function is still the exponential of a quadratic form,
and so the resulting distribution function is still Gaussian.

The other important property is that any linear combination of
Gaussian random variables is itself a Gaussian random variable. To see
this, use some appropriate transformation T such that b1 is the desired
linear combination of the as. Then integrate out the remaining b2,
b 3 , . . . , bn to get the Gaussian distribution of b1.

The properties of multivariate Gaussian random variables that
have just been presented are helpful in understanding what is meant
by "Gaussian random noise." Replace the discrete index j by the
continuous index t (or time). Replace sums over j by integrals over
t. The mean value of the noise corresponds to a and vanishes. The
second moment of the noise corresponds to the matrix M. If the
noise is white (or delta-function correlated), this means that the matrix
M is diagonal.

A useful device for calculating averages with the Gaussian distribu-
tion is based on the identity

Then the average of (aj -- aj)F(a), where F is an arbitrary function of a,
is given by

and by partial integration, using the above identity, we find

This can be used, for example, to work out averages of products. For
simplicity of notation, take all aj = 0. Then, by applying this formula to
the calculation of the fourth moment, we find

and for the sixth moment, we find

and so on. In this way, any average of any product of as can be reduced
to a sum of products of Ms by successive pairing of indices.

A useful application is to Gaussian white noise. Consider, for
example, scalar noise with the second moment
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Then one finds that the fourth moment of the noise is

Appendix 3

Laplace Transforms

Many of the dynamical problems encountered in nonequilibrium sta-
tistical mechanics are most easily handled using Laplace transforms.
This appendix gives a short summary of essential facts about Laplace
transforms.

The definition is

The carat A is mostly used to denote the transform; the script is also
used. The transform of a time derivative is

The transform of the second time derivative is done by
iterating:

The transform of an integral is

or, by exchanging the order of integration,
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The transform of a convolution of two functions / and g is the product
of the transforms of the two functions:

The transforms of some familiar functions are

Inverting a Laplace transform is generally harder. The easiest way is
to use tables of transforms and inverse transforms. As a last resort, one
can write the inverse transform as a contour integral in the complex z
plane,

where the contour is a straight line parallel to the y axis, located to the
right of all singularities of f(z) in the z plane. Then the various devices
for evaluating contour integrals of complex variables can be tried.

A numerical algorithm for inverting Laplace transforms that often
seems to work remarkably well is due to H. Stehfest (Comm. ACM 13
(1970): 47-49). It fails when f(t) has discontinuities, sharp peaks, or rapid
oscillations. Since time-correlation functions generally do not suffer
from these pathologies, the Stehfest algorithm is usually worth trying.
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Appendix 4

Continued Fractions

Continued fractions are a useful tool in nonequilibrium statistical
mechanics, yet they are seldom mentioned in mathematics courses for
scientists. Here is a summary of some essential facts about continued
fractions. First, there are two common ways to represent them,

The first form is a more graphic representation, and the second is more
economical of space. If any an+1 vanishes, the continued fraction termi-
nates at the nth level. Then, by multiplying out, it can be written as a
single fraction with a numerator Nn and a denominator Dn,

For example, truncation at n = 2 gives

An infinite continued fraction is said to converge if this ratio has a limit
as n goes to infinity.

An interesting special case is where all the an = 1 and all the bn

are integers. Then the continued fraction is a representation of an
irrational number between 0 and 1. (If the continued fraction
terminates, clearly it represents a rational number in this interval.)
Another special case is where the continued fraction is periodic; for
example,

Note the appearance of f in the denominator. This is a quadratic equa-
tion determining /; generally, the numerical value of a periodic con-
tinued fraction is an algebraic number.

A practical procedure for computing continued fractions numeri-
cally is based on matrix multiplication:
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which is initialized by N--1 = 1, N0 = b0, D--1 = 0, D0 = 1.
A common application of continued fractions is to solve the vector-

matrix equation

where L is a symmetric tridiagonal matrix,

The equation is solved by Laplace transforms; the transform variable
is z. Then the equations of motion, for the particular initial condition
chosen, are

The first of these can be rearranged, on dividing by x0, to

All of the other equations have the same general form because they
have no initial value term,

This provides a recursion relation connecting ratios of successive terms,

and application of this recursion produces the continued fraction



APPENDIXES 207

as a useful representation of the solution of the vector-matrix
equation.

Appendix 5

Phenomenological Transport Equations

One of the goals of nonequilibrium statistical mechanics is to provide
a molecular basis for the phenomenological transport equations. This
appendix gives a brief summary of these equations.

The diffusion equation is the simplest of the phenomenological
transport equations. It determines the time t and space r dependence
of the concentration C(r, t) of a diffusing species. First, there is a con-
servation law,

where J(r, t) is a flux. All conservation laws have this form; the integral
over the entire confining volume is

The integral over the volume is converted to an integral over
the bounding surface S of the volume (da is a surface area times a
unit normal directed out of the volume). But if the diffusing
species cannot leave the volume, or is conserved, the flux must
vanish on the bounding surface. The total concentration is constant in
time.

The flux is given by Fick's law,

where D is the diffusion coefficient. When these two equations are com-
bined, we obtain the familiar diffusion equation,

The hydrodynamic equations also appear first as conservation
laws. The mass density of the fluid is (r, t), and the local velocity of the
fluid is v(r, t). The product v is the local momentum density of
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the fluid. Then (for simplicity of notation, the space and time depen-
dence are left implicit),

expresses conservation of mass. The next (actually the second,
third, and fourth) equation is a statement of conservation of
momentum,

The first term on the right is the flux of momentum. The quantity a in
the second term is called the stress tensor. It is introduced so that
momentum is in fact conserved. Part of the stress tensor is the local
equilibrium pressure P(r, t) of the fluid, and the remainder (r, t)
involves deviations from equilibrium,

where I is the unit tensor. When deviations from equilibrium are small,
the remainder has the Navier-Stokes form,

In this equation, 77 is the coefficient of shear viscosity, and v is the
coefficient of volume viscosity. v is the velocity gradient tensor. Often
one writes (Vv) as v .

The final hydrodynamic equation is a statement of energy con-
servation. The total energy density is the sum of the internal
energy density E and the kinetic energy of the bulk flow of the fluid,
E + v2/2. The internal energy depends on the local temperature
and mass density or on any other pair of thermodynamic quantities
(pressure and entropy are often used). The equation of conservation
of energy is

The first term contains the flux of total energy. The second term
contains energy production by work done against internal stresses
(including pressure). The final term contains the heat flux q; when
the deviation from equilibrium is small, this is given by the Fourier
heat law,

where K is the coefficient of thermal conductivity.
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The preceding five equations, augmented by the Navier-Stokes stress
tensor and the Fourier heat law, describe an enormous range of physi-
cal phenomena. Their solution, even in very simple circumstances, can
lead to great mathematical difficulty. Our concern here, however, is with
their molecular foundation rather than with their solution.
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example of one-dimensional

harmonic lattice 195--196
objection to Boltzmann's H-

theorem 194
recurrence time 196

Reversibility paradox
example of one-dimensional

harmonic lattice 195
objection to Boltzmann's H-

theorem 193--194
one-way irreversible character

appearing to violate time-
reversal symmetry 193--194

Rotational diffusion
derivation of equation 84--88
evaluating continued fractions

by truncation 88
kinetic model 84--88

Shear viscosity
coefficient 99
deriving formula 99
ratio to thermal conductivity

100
time correlation function

determining 168
Slow variables

diffusion coefficient 182,
186--187

equilibrium distribution
185--187

Fokker-Planck equation 183
Langevin equation 183
streaming velocity, Langevin

equation 185--186
Smoluchowski equation

first passage times 75
Fokker-Planck equation 40--

41
substitution leading to

Schrodinger-like equation
41

Spectral density
absorption coefficient

proportional to, of dipole-
dipole time correlation
function 12

correlation function 139
Fourier transform of time

correlation function 8
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Spin-boson Hamiltonian,
electron transfer kinetics
108

Static linear response
determining equilibrium

127--129
electric dipole moment 128
Kubo transform 129--130
quantum mechanical version

129--130
quantum perturbation theory

130
unperturbed and perturbed

distribution function 128
unperturbed and perturbed

partition function 128
Stokes-Einstein formula, friction

coefficient 12
Stress tensor

hydrodynamics 97
Navier-Stokes form of viscous

99
Stress time correlation function

deriving long tail time 173
long time tails 170

Superoperator, quantum
commutator 104

Taylor's series expansion, time-
dependent dynamical
variable 34

Thermal conductivity
deriving formula 99--100
Fourier's heat law 100
heat current 99--100
mode-coupling theory 169
ratio to viscosity 100

Time correlation functions
combining Bloch equations 120
derivation for orientational

89--92
determining properties of

systems out of equilibrium 7
dipole-dipole correlation

function 12--14

equilibrium fluctuations in
particle number 15

fluctuating magnetic field 60
fluctuation, nonlinear for slow

variables 184
frequency dependence of

optical absorption
coefficient 53

generalized Langevin
equations 158

integral over angular velocities
only 89

Langevin equation 7--10
Liouville operator notation

35--36
mean squared displacement

11--12
orientational, of planar

Brownian rotator 45--47
spectral density 8
statistical behavior of time-

dependent quantity 7--8
Stehfest algorithm 92
transition state theory 72
two-level system in heat bath

118--119
using partition functions 8
velocity correlation function

8--11
Time derivative, Laplace

transforms 203
Transition state theory

alternative form using
quantum mechanical
partition function 70--72

approximation 68
escape rate 73
example of ideal gas escape

from two-dimensional
region 72--73

flux density 68
Hamiltonian 68--69
model system 73f
partition function of transition

state 70--71
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Transition state theory (cont.):
phase space distribution

function 67
probability of being in region

68
rate constant 69--70
rate constant as ratio of two

partition functions 70
rate equations 69--70
rates of chemical reactions 67
relation of Kramers rate to,

rate 78
time correlation function 72
transitions between regions by

simple first-order kinetics 71
Transport equations

diffusion equation 207
hydrodynamic equations

207--208
phenomenological 207--209

Two-level system
approximate methods 113--

115
caution for Markovian

approximations 115
density matrix 110--111
dipole time correlation

function 111--112

equation of motion for density
matrix 111

exact solution procedure
112--113

heat bath, Bloch equations
115--121

heat bath, dephasing 110--115
spectral line shape by dipole-

dipole line correlation
function 111

Velocity correlation function
Brownian particle 10--11
connection with self-diffusion

coefficient 8--10
fluctuation-dissipation theorem

11
heavy mass in harmonic lattice

24--28
Hilbert space expansion 171
ion mobility 137
long time tails 169--170
mode-coupling theory 171--173
random behavior at long times

196f
von Neumann equation,

quantum Liouville equation
106
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