Chapter 8

Plasmons and Plasma Screening

In this chapter, we discuss collective excitations in the electron gas. As
mentioned earlier, collective excitetions are excitations that belong to the
entire system. The collective excitations of the electron gas (= plasma) are
called plasmons. These excitations and their effect on the dielectric con-
stant are discussed in Chap. 1in the framework of classical electrodynamics.
In this chapter, we now develop the corresponding second-quantized for-
malism, which reveals that electron—electron pair excitations occur which
influence the dielectric constant and other properties in fundamental ways.
The excitations in the electron plasma are responsible for screening of the
Coulomb potential, effectively reducing it to a potential whose interaction
range is reduced with increasing plasma density. A simplified description
of the screening iz developed in terms of an effective collective excitation,
and this is referred to as the plasmon pole approximation.

8.1 Plasmons and Pair Excitations

In order to analyze elementary excitations of the electron plasma, we com-
pute the dynamical evolution of & charge density fluctuation. In the for-
malism of second quantization, we evaluate the equation of motion for the
expectation value of the electron charge density operator
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defined in Eq. (7.24). In a spatially homogeneous equilibrium system, this
expectation value would vanish for ¢ #£ 0, however, we assume here a spa-
tially inhomogeneous charge density distribution.



To simplify the notation in the remoinder of this book, we suppress from
now on the superscript © for operators, unless this is needed to avoid mis-
understandings. Furthermore, the spin index is only given where necessary.
In all other cases, it can be assumed to be included in the quasi-momentum
subscript.

In the following, we can also drop the subscript e of the charge den-
sity operator, since we discuss only electrons in this chapter. With this
gimplified notation Eq. (8.1) becomes
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To obtain the equation of motion for {pg), we use the Heisenberg equation
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with the electron gas Hamiltonian
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Evaluating the commutators on the RHS of Eq. (8.3), we get for the kinetic
term
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where we have again introduced the frequencies
€L = Ek/fi and €kgq = E\k—q\ = E|k_q‘/;{i e (86)

For the Coulomb term, we obtain
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After renaming p to - p, using V_, = ¥}, and rearranging some operators,
we see that the first and second term and the third and fourth term become
identical.

Collecting all contributions of the commutator in (8.3), and taking the
expectation value, we obtain
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Since we are interested In {pq), we have to solve Eqg. (8.8) and sum
over k. However, we see from Eq. (8.8) that the two-operator dynamics is
coupled to four-operator terms. One way to proceed therefore would be to
compute the equation of motion for the four-operator term. Doing this we
find that the four-operator equation couples to six-operator terms, which in
turn couple to eight-operator terms, etc. Hence, if we follow this approach
we obtain an infinite hierarchy of equations, which we have to truncate at
some stage in order to get a closed set of coupled differential equations.

Instead of deriving such a hierarchy of equations, we make a factoriza-
tlon approximation directly in Eq. (8.8}, splitting the four-operator expec-
tation values into products of the relevant two-operator expectation values.
For the one-component plasma under consideration, we choose the combi-
nations
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as relevant, assuming that these terms dominate the properties of our sys-
tem. This approximation scheme is often called random phase approzima-
tien (RPA}. In (8.9), fk denotes the carrier distribution funection which
iz the Fermi—-Dirac distribution function for electrons in thermodynamic
equilibrium. However, our approximations are also valid for nonequilib-
rium distributions.

A hand-waving argument for the random phase approximation is to say

that an expectation value (aLakf> has a dominant time dependence
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These expectation values occur under sums, so that expressions like
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have to be evaluated. Since terms with k # k' oscillate rapidly they more
or less average to zero, whereas the term with k = k” gives the dominant
contribution.

Technically, when we make the RPA approximation, we pick specific
combinations of wave numbers from the sums on the RHS of Eq. (8.8),
factorize the four-operator expectation values into the expressions (8.9),
and ignore all other contributions. For example, in the term
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where Vy = V_, since the Coulomb potential depends only on the absolute
value of q. Now we commute ag in (8.12) to the left:
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Factorizing the four-operator expectation value and using (8.9) yields
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Similarly, for the second Coulomb term in Eq. (8.8),
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we zelect p = ( and commute the first destruction operator to the left to
get

iV,
P ?q ((aL_qap’>6p’,k - (aTk—qak—qa;g’—an’» ’ (826

p’



or, after factorization,
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Inserting the approximation (8.14) and (8.17) into Eq. (8.8) yleld
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In order to find the eigenfrequencies of the charge density, we use the ansatz
(o _qai)(®) = e ol ai(0) (8.19)
in Eq. (8.18] to obtain
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Dividing both sides by A{w+id+€p_q—€g), summing the resulting equation
over k, and multiplying by —e/L®, we find
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We see that (pq) cancels, so that
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Introducing the first-order approximation P1(g,w) to the polarization func-
tion P(g,w) as
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we can write Eq. (8.22) as
VP aie=1 . (8.24)

The real part of this equation determines the eigenfrequencies w = wy:
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where we let § — 0.

To analyze the solutions of Eq. (8.25), we first discuss the long wave-
length limit for a three dimensional plasma. Long wave length means A —
oo, and hence ¢ oc 1/A — 0. We expand Eq. (8.25) in terms of ¢ and drop
higher-order corrections. Using
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where we have set w, o = wo. The first term vanishes since, after evaluation
of the sum, it is proportional to the distribution function for & — oco. So
we are left with
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Partial integration gives
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showing that in the long wave-length limit, ¢ — 0, wgo = wyy, 6., we
recover the classical result for the eigenfrequency of the electron plasma.
The only difference to the plasma frequency defined in Eq. (1.26) is the
factor of 1/eg which results from the fact that we include the background
dielectric constant in the present chapter.
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Fig. 81 Graphical solution of Eq. (8.25). The full lines are a schematic drawing of part
of the LHS of Eq. (8.25) and the line “1” is the RHS of Eq. (8.25).

Next, we discuss the solution of Eq. (8.25) for general wave lengths.
First we write the LHS of Eq. (8.25) in the form
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This expression shows that poles occur at
Wg = €htg — €k = % cos @ + zim (8.33)
and
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where @ iz the angle between k and q. As schematically shown in Fig. 8.1,
we can lind the solutions of Eq. (8.25) as the intersections of the LHS of
Eq. (8.25) with the straight line “1”, which is the RHS of Eq. {8.25). From
Fig. 8.1 we see that these intersection points are close to the poles of the
LHS.

For illustration, we dizcuss in the following the situation of a thermalized
electron plasma at low-temperatures. Here, we know that the extremsa of



the allowed k values are k' = +kp. Considering only w, > 0, we obtain
from FEq. (8.33)
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for cos@ = —1. From Eq. (8.34) we get no solution for cos® = —1 and for
cosf) =1 we obtain
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Fig. 82 The thick lines show the boundary of the continuum of pair excitations at
T = 0K, according to Eqgs. (8.35) and (8.36), respectively. The thin line is the result of
Eq. (8.37).

As shown in Fig. 8.2, Egs. (8.35) and (8.36) deline two parabolas that are
displaced from the origin by +kg. The region between these parabolas for
wg > 0 is the region where we find the poles. Physically these solutions
rapresent the transition of an electron form k to k4 ¢, i.e., these are pair
excitations. They are called pair excitations because the palr of states k
and k & q is involved in the transition. The region between the parabolas
iz therefore called the continuuwm of electron—pair excitations. These pair



excitations are not to be confused with electron—hole pairs, which we discuss
in later chapters of this book. Note, that the pair excitations need an empty
final state to occur, and at low temperatures typically involve scattering
from slightly below the Fermi surface to slightly above.

The lack of empty final states for scattering with small momentum trans-
fer prevents conduction in an insulator, although there is no lack of elec-
trons. When a plasma, mode hits the continuum of pair excitations, it gets
damped heavily (Landau damping), causing the collective plasmon excita-
tion to decay into pair excitations. At finite temperatures the boundaries
of the pair-excitation spectrum are not sharp, but qualitatively the picture
remains similar to the T' = 0 result.

8.2 Plasma Screening

One of the most important effects of the many-body interactions in an
electron plasma is the phenomenon of plasma screening. To discuss plasmsa
sereening quantum mechanically, we start with the effective single particle
Hamiltonian
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where
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is the gum of the Coulomb potential V (r) of a test charge and the induced
potential Vi q(r) of the screening particles. The effective potential V, y; has
to be determined self-consistently. The Fourler transform of Eq. (8.38) Is
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Using the random phase approximation in the last two terms and taking
the expectation value vields
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We assume that the test charge varies n time as exp(—i{w+i¢)¢), where w+
8 establishes an adiabatic switch-on of the test charge potential. Making
the ansatz that the driven density has the same time dependence
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Eq. (8.42) yields
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where Pl again is the polarization function defined in Eq. (8.23) and p, is
defined in Eq. (8.2).

The potential of the screening particles obeys Poisson’s equation in the
form
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Taking the Fourier transform and using (8.46), Poisson’s equation becomes
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Inserting (8.48) into the Fourier-transform of Eq. (8.39):
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yields
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Here, we introduced Vi(g,w) as the dynemically screened Coulomb potential.
The dynamic dielectric function e(g,w) is given by
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or, using Eq. (8.23)
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Lindhard formula for the longitudinal dielectric function

The Lindhard formula describes a complex retarded dielectric function,
i.e., the polez are in the lower complex frequency plane, and it includes
spatial dispersion (g dependence) and temporal dispersion (w dependence).
Eq. (8.53) is valid both in 3 and 2 dimensions. In the derivation, we some-
times used the 3D expressions, but that could have been avoided without
changing the final result. Note, that the expectation value fy of the par-
ticle density operator is equal to the Fermi—Dirac distribution function fz
for a thermal plasma. However, Eq. (8.53) is valid also for nonequilibrium
distribution functions.
The longitudinal plasma eigenmodes are obtained from

Rele(q,w)] =0 or 1= V,Re[P!(q,w)] . (8.54)

longitudinal eigenmodes

This equation is identical to the plasma eigenmode equation (8.25). Hence,
our discussion of plasma screening of the Coulomb potential and of the col-



lective plasma oscillations obtained from e(g, w) = 0, shows that screening
and plasmons are intimately related phenomena.
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