2 Find the eigenvalues and the eigenvectors of these two matrices:

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 and $A + I = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}$.

A + I has the ____ eigenvectors as A. Its eigenvalues are ____ by 1.

4 Compute the eigenvalues and eigenvectors of A and A^2 :

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \quad \text{and} \quad A^2 = \begin{bmatrix} 7 & -3 \\ -2 & 6 \end{bmatrix}.$$

 A^2 has the same ____ as A. When A has eigenvalues λ_1 and λ_2 , A^2 has eigenvalues ____. In this example, why is $\lambda_1^2 + \lambda_2^2 = 13$?

1 (a) Factor these two matrices into $A = S\Lambda S^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}.$$

- (b) If $A = S \Lambda S^{-1}$ then $A^3 = ()()$ and $A^{-1} = ()()$.
- 31 (a) If $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ then the determinant of $A \lambda I$ is $(\lambda a)(\lambda d)$. Check the "Cayley-Hamilton Theorem" that $(A aI)(A dI) = zero \ matrix$.
 - (b) Test the Cayley-Hamilton Theorem on Fibonacci's $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. The theorem predicts that $A^2 A I = 0$, since the polynomial $\det(A \lambda I)$ is $\lambda^2 \lambda 1$.