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Fundamentals of Matrix Algebra

4.1 INTRODUCTION

In Chapter 3 matrix notation was used in writing state variable descriptions of dynamic
systems. In this chapter a more careful and complete development of matrix algebra
and some matrix calculus is presented from first principles. If the matrix usage in the
preceding chapter posed no difficulty for the reader, then the introductory parts of this
chapter can be treated as a review. The more advanced notions in this chapter, many of
which are introduced in the problems, will still be worthwhile. If the earlier intro-
duction of matrices caused the reader some uncertainty, then at least that exposure
provided motivation for careful study of the present chapter. Experience shows that
the similarities between matrix algebra and scalar algebra have a way of lulling the
unwary into a sense of complacency. The usual scalar manipulations often seem to
carry over and yield correct results. But ignoring the crucial differences will ultimately
cause embarrassing or silly results.

Modeling, design, and analysis of control systems are the major subjects of this
book. However, matrix theory and linear algebra are useful in almost every branch of
science and engineering. The investment of time and effort that is required to work
carefully through this and the next two chapters will pay dividends in deeper under-
standing, greater insight, and better computational skills later on.

4.2 NOTATION

Matrices are rectangular arrays of elements. The elements of a matrix are referred to
as scalars and will be denoted by lowercase letters, a, b, a, B, etc. In order to define
algebraic operations with matrices, it is necessary to restrict these scalar elements to be
members of a field. A field & is any set of two or more elements for which the
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122 Fundamentals of Matrix Algebra Chap. 4

operations of addition, multiplication, and division are defined, and for which the
following axioms hold:

Ifae%andb €F,then(a +b)=(b +a)EF.

(ab) = (ba) € F.

There exists a unique null element 0 € & such that a + 0 = a and 0(a) = 0.

If b #0, then (a/b) € .

There exists a unique identity element 1€ & such that 1(a) = (a)1 = (a/1) = a.
For every a €% there is a unique negative element —a €% such that
a+(—a)=0.

7. The associative, commutative, and distributive laws of algebra are satisfied.

AL S A S

Note that the set of integers does not form a field because axiom 4 is not
necessarily true. Some examples of fields are the set of all rational numbers, the set of
all real numbers, and the set of all complex numbers. The set of all rational polynomial
functions also forms a field. Such functions are ratios of two polynomials b(s)/a(s),
where a(s) and b (s) are polynomials in a complex variable s (or z) with real or complex
coefficients. Most matrices used in this book are assumed to be defined over the
complex number field. For simplicity, many examples will be further restricted to real
numbers, with the integers being a special subset. However, many control problems
are posed in terms of transfer function matrices, so the field of rational polynomial
functions is important. Matrices with polynomial elements also occur. The set of
polynomial elements do not form a field because axiom 4 fails. Polynomial elements
must be considered as members of the broader class of rational polynomial functions,
just as integers are considered as special members of the field of rational numbers.

Boldface uppercase letters will be used to represent matrices, such as

42 16
A=|5 3
8 1

Horizontal sets of entries such as (42 16) and (5 3) are called rows, whereas vertical
sets of entries such as (42 5 8) are called columns. It will often be convenient to
refer to the element in the ith row and jth column of A as g;. Rather than explicitly
displaying all elements of A, the shorthand notation A = [g; ] will sometimes be used. If
A has m rows and n columns, it is said to be an m X n (or m by n) matrix. In that case,
the indices i and j in the shorthand notation indicate collectively the range of values
i=1,2,...,mand j=1,2,...,n In particular, when m =n =1, the matrix has a
single element and is just a scalar. The subscripts are then unnecessary. If n = 1, the
matrix has a single column and is called a column matrix. The column index j is then
superfluous and is sometimes omitted. Similarly, when m =1, the matrix is called a
row matrix. Whenever m = n, the matrix is called a square matrix. In general, m and n
can take on any finite integer values.

The four state variable system matrices {A, B, C, D}, the input vector u, the
output vector y, and the state vector x were introduced in Chapter 3. These quantities
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will receive major attention throughout the book. However, the same symbols also will
be used in a more generic way in the discussions of matrix algebra.

4.3 ALGEBRAIC OPERATIONS WITH MATRICES
Matrix Equality

Matrices A and B are equal, written A = B, if and only if their corresponding elements
are equal. That is, a; =b; for 1<i=m and 1=j =n. Of course, this means that
equality can exist only between matrices of the same size, m X n in this case.

Matrix Addition and Subtraction

Matrix addition and subtraction are performed on an element-by-element basis. That
is, if A=[a;] and B = [b;] are both m X n matrices, then A+ B=C and A—-B=D
indicate that the matrices C = [c;] and D = [d;] are also m X n matrices whose ele-
ments are givenbyc; =a; + byandd; =a; — b;fori=1,2,...,mandj=1,2,...,n.

Matrix Multiplication

Two types of multiplication can be defined. Multiplication of a matrix A = [a;] by an
arbitrary scalar a € ¥ amounts to multiplying every element in A by a. That is,
aA = Aa = [aag;].

Multiplication of an m X n matrix A = [ag;] by a p X ¢ matrix B = [b;] is now
considered. In forming the product AB = C, it is said that A premultiplies B or equiv-
alently, B postmultiplies A. This product is only defined when A has the same number
of columns as B has rows. When this is true, that is, when n = p, A and B are said to be
conformable. The elements of C = [¢;] are then computed according to

n
Cj = 2 Qi by
k=1
Clearly, the product C is an m X g matrix.

12 3 11 3 5 | 4
EXAMPLE 4.1 LetA—[4 5}7B—[2 4 8],andC—[_5].Then

2(1) +3(2) 2(3) +3(4) %$+3®q:[8 18 %]
4(1) +5(2) 43)+5(4) 4(5)+508)] |14 32 60

e-[@u-BL o3

The products BA, CA, and CB are not defined. |

AB=[

Once the mechanics of matrix f)roducts are mastered, the notational advantages
when dealing with simultaneous equations become clear. Matrices with purely nu-



124 Fundamentals of Matrix Algebra Chap. 4

meric entries provide good introductory examples, but the algebra being developed is
much more general than this.

EXAMPLE 4.2 Consider the three coupled differential equations of Example 3.4. Ignoring
initial conditions, the Laplace transforms are ;

(s> + a15% + azs + as)yi(s) + assy2(s) — asys(s) = ui(s)
—(ass + as)yi(s) + (s° + ass + as)yxs) + 2a4sys(s) = ux(s)
—asy1(s) + (s + as)ys(s) = us(s)

By deﬁmng the 3 X 3 matrix with complex polynomial elements as

[(s° + a5 + ass + a3) a,s —a;
P(s) = —(ass + as) (52t ass +as)  2ass
1 —as 0 (s + as)

and the 3 X 1 column vectors as

[y1(5) wi(s)
Y(s) = | y2(s) U(s) = | uals)

Ly3(s) us(s)
these equations are compactly written as _
P(s)Y(s) = U(s) |
Kronecker Product

Other less frequently used definitions of products of matrices can be defined. One
which will be found useful in Chapter 6 is the Kronecker product, written A X) B. Each
scalar component a; of the first factor is multiplied by the entire matrix B. There are no
conformability-like restrictions on the dimensions of the factors A and B that enter into
such a product. If Aisn X mand Bisp X g, then A (X B will be of dimension np X mgq.
Note that AX B # B (&) A, although these two products both have the same size. An
example illustrates the Kronecker product definition.

[au a12:|®|:b11 by bm}:{auB alZB]

a an by by by axB  ayB
aubn  anbyp aubis apby  apbyn  apbi
anby  anbn anby apby apby  apby

aynby anbyp anbis apby anby, anbys
anby  aubn anby apby apby anbxn

Division
Division by a matrix, per se, is not defined. Thus it is not meaningful to “solve for”” Y(s)

in Example 4.2 by dividing out the P(s) matrix. An operation somewhat analogous to
division, called matrix inversion, is discussed later.
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The Null Matrix and the Unit Matrix

As a necessary part of scalar algebra, axioms 3 and 5 for number fields introduce a null
element and an identity element. Correspondingly, the null matrix 0 is one that has all
its elements equal to zero. Then, A + 0 = A and 0A = 0. Note, however, that the null
matrix is not unique because the numbers of rows and columns it possesses can be any
finite positive integers. Whenever necessary, the dimensions of the null matrix will be
indicated by two subscripts, 0,,,. Another difference of major importance exists be-
tween the scalar zero and the null matrix. In scalar algebra, ab = 0 implies that either a
or b or both are zero. No similar inference can be drawn from the matrix product
_} ﬂ and B = B 2] and form the
product AB. Although neither A nor B are null matrices, one or the other of these
factors possesses properties which are in some sense (to be made clear later) somewhat
like a zero. In matrix algebra there are varying degrees of ‘“‘behaving like zero” of
scalar algebra. A null matrix is a very strict, hard zero that has every property to be
expected from the scalar zero. It will be seen later that matrix concepts of determinant,
rank, trace, eigenvalue, singular value, and matrix norm can all be related to a matrix
having some property associated with scalar zero.

The identity, or unit, matrix 1 is a square matrix with all elements zero, except
those on the main diagonal (i =j positions) are ones. The unit matrix is not unique
because of its dimensions. When necessary, an n X n unit matrix will be denoted by 1I,.
The unit matrix has algebraic properties similar to the scalar identity element—
namely, if A is m X n, then I,, A= A and Al, = A.

AB = 0. For a simple verification, let A = [

1.4 THE ASSOCIATIVE, COMMUTATIVE, AND DISTRIBUTIVE LAWS
OF MATRIX ALGEBRA

Many of the associative, commutative, and distributive laws of scalar algebra carry
over to matrix algebra, as summarized next:

A+B=B+A, A-B=A+(-B)=-B+A
A+(B+C)=(A+B)+C, d(A+B)=aA+aB
«A=Aa,  A(BC)=(AB)C
A(B+C)=AB+AC, (B +C)A=BA+CA

One major difference exists between scalar and matrix algebra. Scalar multiplica-
tion is commutative, i.e., ab = ba. However, matrix multiplication is not commutative,
i.e., AB # BA. In many cases the reversed product is not even defined because the
conformability conditions are not satisfied. Even when both A and B are square so that
AB and BA are both defined, they need not be equal. It is for this reason that it is
necessary to distinguish between premultiplication and postmultiplication.

].ThenAB——,—[—z 14]andBA=[_1 5]. |

EXAMPLE 4.3 LetA=[2 3],3:[‘1 L

1 8 0 4 -1 33 4 32
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4.5 MATRIX TRANSPOSE, CONJUGATE, AND THE ASSOCIATE MATRIX

The operation of matrix transposition is the interchanging of each row with the column
of the same index number. If A = [a;], then the transpose of A is AT = [a;;]. The matrix
A is said to be symmetric if A=A”. If A= —A’, then A is skew-symmetric. An im-
portant property of matrix transposition of products is illustrated by

(AB)T=BTA7, (ABC)"=CTBTAT, ...

The conjugate of A, written A, is the matrix formed by replacing every element in
A by its complex conjugate. Thus A = [@;]. If all elements of A are real, then A = A.
If all elements are purely imaginary, then A = —A.

The associate matrix of A is the conjugate transpose of A. The order of these two
operations is immaterial. Matrices satisfying A = AT are called Hermitian matrices.
Skew-Hermitian matrices satisfy A = —A”. For real matrices, symmetric and Hermitian
mean the same thing.

4.6 DETERMINANTS, MINORS, AND COFACTORS

Determinants are defined for square matrices only. The determinant of the n X n
matrix A, written |A|, is a scalar-valued function of A. The familiar form of the
determinants for n =1, 2, and 3 are

n=1 |A|=an

n=2 'Al =danan —apay
n=3 |A| = ayyay az + apayas + a;3ay asn — apan as — a; ay as
— 4110303

There is a common pattern which can be generalized for any n. Each determinant has
n! terms, with each term consisting of n elements of A, one from each row and from
each column. However, the general pattern is inefficient for evaluating large deter-
minants. Usually, a larger-order determinant is first reduced to an expression involv-
ing one or more smaller determinants. The methods of Laplace expansion and pivotal
condensation can be used for this purpose. Also, the basic properties of determinants
can be used to simplify the evaluation task. Some of these methods are discussed later.

Notice that a square null matrix and the matrix B = B 3] , which was used in the

discussion of the null matrix, both have zero determinants. Square matrices with zero
determinants do possess some of the behaving like zero properties mentioned earlier.
For example, the transfer function matrix equation from Example 4.2,

P(s)Y(s) = U(s)

can have a nonzero output Y(s) even though U(s) is zero if the 3 X 3 matrix P has a zero
determinant (for certain values of the complex variable s). This is in agreement with
our concept of transfer function zeros for scalar systems. More often the input-output
system transfer function would be expressed as
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Y(s) = H(s)U(s)

and the zeros of the square transfer function matrix H(s) could be defined as the values
of s which make [H(s)| = 0. The implication now is that nonzero inputs U(s) can cause
zero outputs Y(s). After matrix inversion is introduced, it will be seen that the zeros of
P(s) are the poles of H(s). However, since determinants are defined only for square
matrices, they are not the most general tool for measuring when a matrix behaves in
some sense like zero.

Minors

An n X n matrix A contains n’ elements a; Each of these has associated with it
a unique scalar, called a minor M;. The minor M,, is the determinant of the
n —1 X n — 1 matrix formed from A by crossing out the pth row and gth column.

Cofactors

Each element a,, of A has a cofactor C,,, which differs from M,, at most by a sign

change. Cofactors are sometimes called signed minors for this reason and are given by
Cog = (=17 My,

Determinants by Laplace Expansion

If A is an n X n matrix, any arbitrary row k can be selected and |A| is then given by

|A| = 2 a,;C);. Similarly, Laplace expansion can be carried out with respect to any
j=1

arbitrary column J, to obtain |A| = 2 a; C;. Laplace expansion reduces the evaluation
i=1

of an n X n determinant down to the evaluation of a string of (n — 1) X (n — 1) deter-

minants, namely, the cofactors.

EXAMPLE 4.4 Given A= g g é . Three of its minors are
2 0 3
Mu:B §‘=5, M22=|§ ;’=4, and M32=l§ ;‘=1
The associated cofactors are
Ci=(-1)’5=-5, Cr=(-1)4=4, Cu=(-11=-1
Using Laplace expansion with respect to column 2 gives |A| = 4C,, = —20. [

Pivotal Condensation

Pivotal condensation [1], also called the method of Chio [2,3], reduces an n X n
determinant to a single (n — 1) X (n — 1) determinant and thus avoids the long string of
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determinants encountered with Laplace expansion. Let a,, be any nonzero element of
A. This is called the pivot element. An (n — 1) X (n — 1) determinant is formed, with
each of its elements obtained from a 2 X2 determinant. Each 2 X 2 determinant
contains a,,, one other element from row p, one other element from column g, and
the fourth element is from the fourth corner of the rectangle defined by the previ-
ous three elements. Let the (n —1) X (n —1) determinant be called |A|. Then
|A| = [1/(a,,)"~*]|A|. Although the procedure looks complicated, in actual applications
the large number of 2 X 2 determinants easily reduce to their numeric values. The
method is best illustrated by an example.

EXAMPLE 4.5 Let A be a 4 X 4 matrix and assume that a,; ¥ 0. Then
a; Az a2 a3 a3 dig
dz1 Az dzz Az ;A

|A] =__1__3 az1 Az Az Az dzz  dzq
(a23)"||as; ass a ass a3z Az

dz1 Az dzp Az dz3  Azg

d4q1  Ag3 dg Qg A3 Aqa

Note that the pivot element a; is in the same location relative to the other elements within each
2 X 2 determinant as it is in the original A matrix. ]

Useful Properties of Determinants

If A and B are both n X n, then |AB| = |A|[B|.
Al=[AT.
If all the elements in any row or in any column are zero, then |A| =0

. If any two rows of A are proportional, |A| = 0. If a row is a linear combination of
any number of other rows, then |A| = 0. Similar statements hold for columns.

5. Interchanging any two rows (or any two columns) of a matrix changes the sign of

its determinant.

6. Multiplying all elements of any one row (or column) of a matrix A by a scalar o
yields a matrix whose determinant is a|A|.

7. Any multiple of a row (column) can be added to any other row (column) w1thout
changing the value of the determinant.

.

4.7 RANK AND TRACE OF A MATRIX

The rank of A, designated as r, or rank(A), is defined as the size of the largest nonzero
determinant that can be formed from A. A zero determinant is interpreted in terms of
the zero of the number field being used. Therefore, a matrix with rational polynomial
entries is considered singular only if its determinant is identically zero and not just if its
determinant happens to have a zero value for certain isolated values of s or z. The same
notion applies to the determination of rank for these matrices. The maximum possible
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rank of an m X n matrix is obviously the smaller of m and n. If A takes on its maximum
possible rank, it is said to be of full rank. If A is n X n (square) and has its maximal
rank 7, then the matrix is said to be nonsingular. We see below that nonsingular
matrices can be inverted, but singular matrices have no inverse.

Nonsingular matrices do not possess any of the properties of behaving like zero,
whereas singular matrices do. The generalization to nonsquare matrices is accom-
plished by the concept of rank. Note that null matrices always have a zero rank.
Heuristically, full-rank matrices will not have zero-like behavior, whereas rank-
deficient matrices, those having less than full rank, will. The amount by which they are
rank-deficient, i.e., ’

q =min(n, m) —r,

is called the degeneracy, or nullity, of the matrix A. This concept appears repeatedly in
later chapters.

The rank of the product of two or more matrices is never more than the smallest
rank of the matrices forming the product. For example, if 7, and rp are the ranks of A
and B, then C = AB has rank r¢ satisfying 0 =< r; < min{r,, r3}.

Let A be ann X n matrix. Ther:zn the trace of A, denoted by Tr(A), is the sum of the

diagonal elements of A, Tr(A) = > a;. If A and B are conformable square matrices,

i=1 _
then Tr(A + B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA). From the definition of the trace
it is obvious that Tr(A”) = Tr(A). From this it follows that Tr(AB) = Tr(B" A).

1 5 8 1 -1 8
EXAMPLE4.6 LetA=|3 -1 2|.B=|3 -3 2| Then|A|=-112,s0that7, =3 and A
4 -4 6 4 -4 6 v

is nonsingular. Also, Tr(A) = 6. The matrix B has [B| = 0, so rp < 3. Crossing out column 2 and
row 3 of B gives a 2 X 2 determinant with a value —22, so rz = 2. The trace of B is Tr(B) = 4.
Forming AB and BA shows that 745 =2 and rp4 =2. Also, Tr(A + B) = 10 Tr(A) + Tr(B) and
Tr(AB) = 100 = Tr(BA). Note that Tr(AB) # Tr(A)Tr(B). : ‘"

4.8 MATRIX INVERSION

The inverse of the scalar element a is 1/a, or a ', It satisfiesa(a ') = (a™})a = 1. If an

arbitrary matrix A is to have an analogous inverse B = A", then the following must
hold:

"BA=AB=1

Because of conformability requirements, this can never be true if A is not square. In
addition, A must have a nonzero determinant, i.e., A must be nonsingular. When this
is true, A has a unique inverse given by

CT )

Al=
Al
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where C is the matrix formed by the cofactors C;. The matrix C7 is called the adjoint
matrix, Adj(A). Thus the inverse of a nonsingular matrix is

A'= Adj(A)/A

. Then A™' does not exist

1 1] o 1 2] o_
EXAMPLE 4.7 Let A—[z 2], B—[3 4], D=

— N A
W AN
wn W =

since |A|=0. Since |B|=-2, B™' exists and is given by B“1=[3_/§ _1/2]. Similarly,
1 21 -7 0

D '=—|-7 19 -10{. ]
Ol o -10 20

The definition of the matrix inverse just given is perfectly general. It applies to
matrices whose elements are functions of time or of complex variables, such as s in
Example 4.2. Thus

H(s) = P(s)! (4.1)

As with scalar transfer functions, the poles of H(s) are those values of s for which
elements of H are unbounded. The definition of the matrix inverse shows that this
happens when |P(s)| = 0. The poles of H(s) are the zeros of P(s), as mentioned earlier.

Inversion of large matrices by direct application of the above definition is
tedious. Numerical techniques such as Gaussian elimination are often used. Matrix
partitioning can also be employed to obtain a matrix inverse in terms of several smaller
inverses. Another method, based on the Cayley-Hamilton theorem, is given in
Chapter 8.

In many applications the entries in a matrix to be inverted are complex numbers.
Although the general definition of the matrix inverse is valid for complex entries, the
actual calculations become much more cumbersome. Some computer algorithms for
matrix inversion are restricted to matrices with real numbers for elements. Problem
4.22 gives some partial results on inverting complex matrices using only real numbers.
In other cases, the complex inverse is not the desired end result but is only an
intermediate quantity that occurs while solving for X in simultaneous equations of the
form

AX=B or XA=B

It is shown in Problem 4.23 that if A and B have complex entries which occur in
complex conjugate pairs in a certain way, then the solution for X is purely real and can
easily be computed using only real matrix inversion calculations.

The Inverse of a Product

Let A,B,C, ..., W be any number of conformable nonsingular matrices. Then
(ABC---W) '=W1...C!B1A"!
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Some Matrices with Special Relationships to Their Inverses

If A7' = A, A is said to be involutory.
If A= AT, A is said to be orthogonal.
If A1 = A7, A is said to be unitary.

4.9 PARTITIONED MATRICES

Any matrix A can be subdivided or partitioned into a number of smaller submatrices.
If conformable matrices are partitioned in a compatible fashion, the submatrices can
be treated just as if they were scalar elements when performing the operations of
addition and multiplication. Of course, the order of the products is not arbitrary, as it
would be with scalars.

EXAMPLE 4.8 AB = C can be partitioned in various ways. A few of them are given next:

A, _[AB I AB]_[CiGC

(a) _A ][Bl | BZ] [AZB1 E_Asz:l [C;; rc4]

(b) (A1} Ao |[Bi] —|ALBitA:B, | _1C
_FA;_I_A_‘; B2 A3 B 1 + A4 B2 C2

(© |ALLAz |[B:iBz] [AB +A:B:| AB;+A;B.]_[C | C -
ATTA; || BB, T |ASB TAB.TAB, T A,B, | |G, 1 C

Partitioned matrices were used without comment in Sec. 3.5 where subsystems of
state variable systems were combined to obtain an overall composite state variable
model. That application illustrates one possible motivation for using partitioned
matrices. They allow the clustering together of groups of variables and treating the
group by an identifying symbol. It is an intermediate step between displaying all the
scalar entries and displaying the entire matrix by just a single symbol.

Partitioned matrices can be used to find an expression for the inverse of a non-
singular matrix A. If A is partitioned into four submatrices, then A~' = B will also have
four submatrices:

_ A] | Az B} I Bz _I_i_‘)_]
AB=T or ['A; T’A;‘} {Bg I BJ [0 E
The partitioned form implies four separate matrix equations, two of which are
A;B, + A;B;=1and A;B; + A;B; = 0. These can be solved simultaneously for B; and
B;. The remaining two equations give B, and B, and lead to the result

A—l_[_ (A= A Al A) i—A; Ax(As— A AT AQ)—}

Several matrix identities can be derlved by starting with the reversed order, BA =1,
repeating the above process, and then using the uniqueness of B = A" to equate the
various terms. One such identity, called the matrix inversion lemma, is particularly
useful. A general form is
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(A= A AT A;) T = AT +H AT A (A —AGAT A,) T AGATT

By letting A; = P!, A, = H’, A;=H, and A, = —Q™', an extremely useful special form
of the inversion lemma that will be encountered in recursive weighted least squares is
obtained: ’

[P'+H'QH] ! =P - PH[HPH + Q"']"'HP
Diagonal, Block Diagonal, and Triangular Matrices

If the only nonzero elements of a square matrix A are on the main diagonal, then A is
called a diagonal matrix. This is often written as A = diag[a;; a» ... @] For this
case, |A| =ay ap - -+ a,, and At =diag[l/ay; l/ay ... la,,]. The unit matrix is a
special case with all a; = 1.

A block diagonal, or quasidiagonal, matrix is a square matrix that can be par-
titioned so that the only nonzero elements are contained in square submatrices along
the main diagonal,

- 1 =

For this case |A| = |Ay||A,] - - - |A;| and A" = diag [A7" A;' .-+ A;'], provided that
A™! exists.

A square matrix which has all its elements below (above) the main diagonal equal
to zero is called an upper triangular (lower triangular) matrix. The determinant of any
triangular matrix is the product of its diagonal elements.

4.10 ELEMENTARY OPERATIONS AND ELEMENTARY MATRICES
Three basic operations on a matrix, called elementary operations, are as follows:

1. The interchange of two rows (or of two columns).
2. The multiplication of every element in a given row (or column) by a scalar a.

3. The multiplication of the elements of a given row (or column) by a scalar «, and
adding the result to another row (column). The original row (column) is un-
altered.

It is stressed that the nature of the scalar a depends upon which number field is in use.
For example, if « is a rational polynomial function, the entire discussion of elementary
operations still applies without change. When these row operations are applied to the
unit matrix, the resultant matrices are called elementary matrices, and are denoted as
follows:
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E, ,: pth and gth rows of I interchanged

E,(a): pth row of I multiplied by a

E, ;(a): pth row of I multiplied by a and added to gth row
The elementary matrices are all nonsingular. In fact,

Eo=-1,  [E@|=« [E,@)]=1

The inverse of each elementary matrix is also an elementary matrix.
Premultiplication (postmultiplication) of a matrix by one of the elementary
matrices performs the corresponding elementary row (column) operation on that
matrix.
By performing a sequence of elementary row and column operations, any matrix
of rank r can be reduced to one of the following normal forms:

o Gl 6]

These are special cases of, or analogous to, matrices in the row-reduced echelon form.
They are also sometimes called Hermite normal forms. These will be defined more
formally in Chapter 6, where their value will be more fully appreciated. Thus elemen-
tary operations provide a practical means of computing the rank of a matrix, but they
have many other uses as well.

4.11 DIFFERENTIATION AND INTEGRATION OF MATRICES

When a matrix A has elements which are functions of a scalar variable (such as time),
differentiation and integration of the matrix are defined on an element-by-element
basis. If A(?) = [a;(?)], then dA/dt = A =[a;(#)] and [ A(7)dT=[[a;(7)d7]. Because
of the integration rule, Laplace transforms and inverse Laplace transforms of matrices
are also found on element-by-element basis. This is also true for Z-transforms of
matrices.

Equation (4.1) could be applied to P(s) given in Example 4.2 to determine H(s)
directly. However, there is an alternative approach which can—and frequently will—
be used. In Example 3.4 a state variable model for the system in question was deter-
mined. The form of that model is

x = Ax + Bu (4.2a)
y=Cx+ Du (4.2D)

and the specific form of A, B, C, and D have been given. Assume that the initial
conditions for x(¢) at time ¢t = 0 are given by x,. Taking the Laplace transform of Eq.
(4.2a) and combining the two X(s) terms gives

(sI, — A)X(s) = xo + BU(s)
Premultiplying both sides by the inverse of (sI, — A) gives
X(s)=(sL, — A)'xo + (sL, — A) ' BU(s) (4.3)
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The transform of the state vector consists of the initial condition response plus the
forced response. These are often called the zero input response and the zero state
response, respectively. When Eq. (4.3) is substituted into the Laplace transform of Eq.
(4.2b), the result is

Y(s) ={C(sI, — A)"'B + D}U(s) + C(sL, — A) ' x, (4.49)
Ignoring the initial condition term, the input-output transfer function matrix is given
by the first term in Eq. (4.4),

H(s) = C(sI, —A)'B+D (4.5)
This is an alternative to the calculation in Eq. (4.1) for the transfer function matrix. In
more general problems with input derivatives, the input-output expression in Example
4.2 will take the form

P(s)Y(s) = N(s)U(s)
or

Y(s) = P(s) ' N(s)U(s) (4.6)

where N(s) will be an m X r matrix of polynomials in 5. As before, P will be an m X m
matrix, where the number of inputs components in U is r and the number of output
components in Y is m. The generalization of Eq. (4.1) for the m X r input-output
transfer function matrix is

H(s) = P(s) "' N(s) (4.7)

This is one particular form of the matrix fraction description (MFD) of a multiple-

input, multiple-output system transfer function. It is an alternative to the state variable
form of Eq. (4.5) [4].

Differentiation of a Determinant

Two useful rules for differentiating a determinant are

% =C; (follows immediately from the Laplace expansion)
aij

If the n X n matrix A is a function of ¢, then |A| is also a function of ¢. Then d|A|/dt is
just the sum of n separate determinants. The first determinant has row (or column)
one differentiated, the second has row (or column) two differentiated, and so on
through all #n rows (columns).

4.12 ADDITIONAL MATRIX CALCULUS

4.12.1 The Gradient Operator and Differentiation
with Respect to a Vector

Let f (x1,xs,...,x,) be ascalar-valued function of n variables x;. The variables may be,
but need not be, state variables in the present discussion. For notational convenience
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the dependence on n variables x; is written as f(x), with x being a vector with com-
ponents x;. The n partial derivatives of f(x), df/ax;, will be used frequently. It is
convenient to group these partials into an array and give the array a special symbol. A
single-rowed array, a row vector, could be—and frequently is—used for this purpose.
Here the array is arranged as a single column, that is, a column vector. This convention
is an arbitrary choice. Both forms are used in the literature, and both are referred to as
the gradient vector [1]. Three different symbols are frequently used to identify the
gradient of f(x), V,f = grad,f = df/dx. The meaning of these symbols is given by

SR A A |

ox; 0x, 0x, (4.8)

The only differences which arise between the row and column vector definitions are
the presence or absence of the transpose in various algebraic manipulations. Con-
formability requirements for matrix multiplication must always be satisfied and can be
_ used to determine whether a row or column definition is implied.

EXAMPLE 4.9 Let fi(x) = x” Ay, a bilinear function. Expanding this in terms of individual
components gives fi(X) =2, > a;x;y. A typical component of the gradient is dfi/dx, =

2 E a;i(3x:/9x1)y;. o

) l1ifi= .
Using the independence of the x; components gives dx;/0xx = du = { 0 léll #IZ. This
means that only one term in the summation over i is nonzero, so df1/0xx = > ax;y;. Thisis just the

j
kth component of the matrix product Ay, so the gradient vector for this example is
V.(x” Ay) = Ay. |

EXAMPLE 4.10 Iffy(x) =y’ Ax,then V,f> # y” A. The gradient operator is not simply a cancel-
ing of the x vector as might be inferred from Example 4.9. By convention, the gradient is a
column vector, so it cannot be equal to the row vector y” A. The correct expression for the
gradientis V, fo = ATy. |

EXAMPLE 4.11 Let f5(x) = x” Ax, a quadratic form. In summation notation,

d ox; ox
f3(x) = 2 za,»,-x,-xj and —a—% = 2 2 aij {—‘“x] X; "] 2 ak]x] + 2 Qi Xi
i

Returning to matrix notation V,(x” Ax) = Ax + A"x. If A =A’, as is usual when dealing with
quadratic forms, then V,(x” Ax) = 2Ax. [ |

The geometrical interpretation of the gradient is often useful. To aid in visualiza-
tion, the vector x is restricted to two components. Then for each point x in the plane,
the function f(x) has some prescribed value. Figure 4.1 shows such a function.

The equation f(x) = ¢, with ¢ constant, specifies a locus of points in the plane.
Figure 4.2 shows the locus of points in the plane for several different values of c.

At a given point such as x, in Figure 4.2, V,f is a vector normal to the curve
f(x) = ¢, and it points in the direction of increasing values of f(x). The gradient defines
the direction of maximum increase of the function f(x).

The derivative of a scalar function with respect to a vector yields a vector, the
gradient vector. If a vector-valued function of a vector, f(x) = [i(X)f2(x) - - - fu(X)]7, is
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f(x) Axe

f(x) = ¢

Figure 4.1 Figure 4.2

considered, the gradient of each component f;(x) is a column vector with the same
dimension as x. If the function f(x) is transposed to a row vector, then

xfT(X) [ «Ji xf2(x) ‘VXfm(x)] ) (4.9).

is an n X m matrix whose columns are gradients. The transpose of this matrix will be
denoted by the symbols V, f(x) or simply df/dx. That is, df/dx = [6fi/dx;] and thism X n
matrix is the Jacobian matrix. Note that the symbol df/dx is just a suggestive name
attached to the prescribed array of first partial derivatives. The symbol df/dx could just
as well have been called df/9x, and it could have been defined alternatively as [9f;/dx;].

EXAMPLE 4.12 Let f(x) = Ax, and let the jth column of A7 be a,. Then since f;(x) can be
written as a x = x” a;, it is immediate that V. f;(x) = a;, so that d[Ax]/dx = A. [ |

Let g(x) be a vector-valued function of x and let f(g) be a scalar-valued function.
Then the chain rule gives

dfldx; = 0f/0g, 0g1/0x; + 9f/0g, 08,/0x; + + - - + 0f/8g, 38./0x;
[ag,/ax,]df/dg

By virtue of the convention adopted previously, the total gradlent can be written as
V.f = [dg/dx]" df/dg = [dg/dx]" V,f.

EXAMPLE 4.13 Let f(g) = g” Wg and let g(x) = Ax —y. Then dg/dx = A and df/dg = 2Wg, so
that d{[Ax — y]" W[Ax — y]}//dx =2A"Wg. ° ' N

The preceding extends to scalar functions of several vector functions of x. If f=

f(g(x), h(x)), then
dfldx = [dg/dx]" df/dg + [dh/dx]"df/dh

EXAMPLE 4.14 Let f = g’(x)h(x) and let g(x) = Ax +b and h(x) = Bx + ¢. Then
dfidx = A"[Bx + ¢] + B"[Ax + b] ]
The second partial derivatives of a function of a vector also arise on occasion.

When f(x) is a scalar-valued function, the matrix of all second partial derlvatlves
called the Hessian matrix, will be denoted by :
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I A AR
ox?  9x.0x, 0x10X,
N I A A
2
fo axzsax1 ax3 angax,, | - (4.10)
of ¥ ..
| 0x,0x;  9x,0x, ox? _|

It becomes notationally awkward to continue these definitions to the second derivative
of a vector function f with respect to a vector. This would require a three- dimensional
array, with a typical element being 9°f;/dx; dx;.

4.12.2 Generalized Taylor Series

The Taylor series expansion is one of the most useful formulas in the analysis of
nonlinear equations. The expansion of a scalar-valued function of a scalar is recalled

[5]:

8x2+--- . (4.11)

flxo+dx) = f(x0)+—l ox +§d

df

The notation In indicates that all derivatives are evaluated at the point Xg.

The Taylor expansion of a function of two variables x and y is

f(xo + 8x, yo + 8y) = f(x0, yo) I o g
V1o 4
. ) . (4.12)
+ 2![ xt+ 2o 9xay|, Y ay ]

If the two variables x and y are used to define the vector x =[x y]’, the preceding
expansion is more compactly written as

2f
dx?
This generalized form of the Taylor expansion is valid for any number of components
of the vector x.

~ An m component vector-valued function f(x) can be viewed as m separate scalar
functions. The Taylor expansion through the first two terms can be written as

f(xo + dx) = f(xg) + V,fl,, dx+ - - | (4.14)

The slight discrepancy in the gradient terms of Eqgs. (4.13) and (4.14) is due to the
definition of the gradient as a column vector and is the reason why the row definition is
preferred by some authors. Higher terms in Eq. (4.14) cannot be written conveniently
in matrix notation. However, the first-order terms in dx are frequently all that are
used, and a good approximation results if all components of dx are sufficiently small.

f(xo + 3x) = f(x0)+(fo}0)T6x+ Bx dx+ .- (4.13)

0
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The generalized Taylor series is the standard tool used in linearizing nonlinear system
equations. This is utilized in Chapter 15.

4.12.3 Vectorizing a Matrix

When matrices were introduced in the previous chapter they were presented as a
convenient way of arranging a number of scalar variables. No certain order was
required initially, although later manipulations (e.g., matrix products) did expect
certain conventions be followed. In the next chapter it will be seen that no special
arrangement of elements in an abstract vector is required. We could arrange the
elements around a circle if we wished. The sum of two such “circles” would be a circle,
as would the product of a circle with a scalar. That is, the set of such circles is closed
under the operations of addition and multiplication by a scalar. There is no compelling
reason to use such a strange definition, but it could be done. However, there are times
when it is more convenient to arrange elements that are traditionally in a rectangular
array, and hence thought of as a matrix, into a linear column array, hence having the
characteristics of a vector. The rearrangement from a rectangular array to a column is
called vectorizing the matrix. It could be done in row order, column order, or perhaps
some other scanning order. Here, the column order will be arbitrarily selected but
consistently used. The capital letters used to indicate matrices will be retained, but

the vectorized column form will be indicated by enclosing the letter in parenthesis.
That is, if

a1 |
an
ap ap Gz v 31
a
A=|Gn an a3 | then (A)=|"
a
a3 4y a4y 2
. . . as
as
To save space, the transpose can be written (A) ' =[ay; ay a3, - ap an ayn -+ as

ay; ---]. The operations of vectorizing and transposition do not commute, that is,
(A7) # (A)". Why introduce such nonstandard notation? It has not been done just to
make the valid point that arrangement order is arbitrary as long as it is used in a
logically consistent fashion. The major reason for introducing the concept of vector-
izing a matrix is that it is convenient in many situations. One such situation is the
derivation of matrix gradient expressions, because it allows use of the already familiar
vector gradient results. Another convenient application of vectorized matrices appears
in Chapter 6 in the solution of a special class of linear matrix equations called
Lyapunov equations.



Sec. 4.12 Additional Matrix Calculus 139
Matrix Gradients

Let A be an m X n matrix and let f(A) be a scalar-valued function of A. Then the
matrix gradient of f with respect to A is written as 9f(A)/0A. This is just a symbol for
the m X n rectangular array of scalar derivatives [0f(A)/da;]. By vectorizing A and ap-
plying familiar formulas for vector gradients with respect to (A), a column arrange-
ment of the same scalar derivatives is easily derived for many functions f. Then the
definition of (A) can be “‘undone” to write the matrix gradient in the more traditional
rectangular matrix form. This process is now used to derive a catalog of useful matrix
gradient results. If A and the unit matrix are both vectorized, then it is easy to see that
Tr[A] = (A)’(1). In this example the trace operation is an example of the function f
discussed previously, and its matrix argument must now be square in this case. Then
dTr[A])/0A = 3(A)"(1)/8(A) = (I) =1. A number of gradients of the trace of matrix
products are easily derived by noting that Tr[AB] = (A)”(B7) = (B)"(AT) = (B")"(A) =
(AT)'(B). Therefore, oTr[AB])/0A =B”, JTr[AB}/dB=A”, 9Tr[AB])/dAT=B, and
dTr[AB]/oB” = A. Consider the trace of a three-term product TrfABC] = Tr[BCA] =
Tr[CAB] and define BC =D. Then, in vectorized form, Tr{ABC] = (A)’(D7), so that
dTr[ABC)/dA = (D) = D" = C"B”. Similarly, dTr[ABC}/dB =ATC” and oTr[ABC)/
dC =BT A”. The general rule that 9Tr[ ]/0AT={3dTr[ ]/dA}" for any matrix A allows
the transpose of the preceding results to be used to get the gradient with respect to A7,
B7, or C”. Now consider two-term or three-term products where a factor is repeated,
such as in ATA, ABA, or ABA’. Since Tr[AAT]=(A)"(A7), it is found that
dTr[AAT]/0A = 2(A) = 2A. This suggests a chain-rule-like behavior in which the total
gradient is the sum of the factors obtained by treating one factor at a time as var-
iable and treating the other factors as fixed. That is, 0Tr[ABAT]/A = dTr[AC)/
0A + 9Tr[DAT]/dA, where C = BAT and D = AB are treated as constants until after the
differentiation. Previous formulas can be used on each of the terms in the sum to give

dTr[ABA”]/0A = (BAT)" + AB = AB” + AB

Likewise, 0Tr[ABA]/dA = ATB” + BT A”. Extensions to other variations are almost
limitless. For example, dTr[ABAC)/0A = CT AT B” + BT A C”. The previous example is
a special case of this result with C = 1. Also, dTrf[ABA” C]/0A = CTAB” + CAB. Some
formulas involving A~ can be derived by using A™' = A" AA™! and using the previ-
ous chain rule to find 9Tr[A™']/0A = dTr[A'C)/0A + dTr[DA')/0A + dTr[AE]/0A,
where C=AA"'=1, D=A"'A=1, and E=[A"']?= A% Therefore, dTr[A']/0A =
20Tr[A7')/0A + ET, or dTr[A')/0A = —E"= —[A7?]". Similar manipulation can be
used to show that

dTr[BA™'C]/0A = —[A"'CBA|”

One final matrix gradient expression where the scalar-valued function f is the deter-
minant of its argument can be derived without use of the intermediate vectorization
process. Since |A| = 2a;C;, where the Laplace expansion can be along any row or
column and where Cj; is the jjth cofactor, it is easy to see that
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Applications of matrix gradients arise in several optimal control and estimation prob-

lem
mat

s. A scalar cost function, such as the trace, is minimized with respect to a selectable
rix by setting the matrix gradient to zero.
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ILLUSTRATIVE PROBLEMS

Introductory Manipulations

Let

Compute A + B, A — B, AB, BA, CA, CB, AC, and AC.

AC

| 42 16]
A=[1 4], B=[3‘ 1], and C=|5 3
25 13 =33

S S
=[50 100 5 w[ 3]

CA=| 5()+ 3(2) 54+ 3(5)|= 35 18 14
| 8+ 1) 8+ 19| [10 37 25 11

[42(1) + 16(2)  42(4) + 1’6(5):] [74 248} [142 90}
, CB= '

is not defined because of the conformability rule: (2 X 2)(3 X 2).

ACT=[1- 4]'[42 5 8] [1(42)+4(16) 1(5) + 4(3) 1(8)+4(1)}
, 2 5J016.3 1] [2(42) +5(16) 2(5)+5(3) 2(8) +5(1)

=[106 17 12]’
164 25 21
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Multiple Variable Systems and Transfer Matrices

Consider the multiple-input, multiple-output feedback system shown in Figure 4.3, where G,
G., H,, and H, are transfer function matrices and R, E,, E,, V, W, C, D, F,, and F, are column
matrices. If R has r components, V has m components, C has n components, and D has p
components, determine the dimensions of all other matrices in the diagram.

Figure 4.3

In order for R — F, = E, to make sense, F, and E; must be 7 X 1 matrices like R. If G, E; is
to be conformable, G; must have r columns. Since this product adds to V, it must be an m X 1
matrix. So G; must be m X r. Since G1E{ + V = E,, E; must be an m X 1 matrix. Conformability
requires that G, have m columns, and since G; E, + W = Cis an n X 1 matrix, the transfer matrix
G, must be n X m. Similar reasoning requires that H, be a p X n matrix, F, be a p X 1 matrix,
and H, be an r X p matrix.
Referring to the system of Problem 4.2, derive the overall transfer matrix relatlng the input R to
the output C.

Ignoring all inputs except R, this system is described by five matrix equations:

E1:R“F2, E2=G1E1, C=G2E2, F1=H1C, and F2=H2F1

Depending upon the sequence of algebraic manipulations used to eliminate all terms except R

and C, different forms of the final result are obtained. Four different sequences are presented.

1. Eliminating E, gives C = G, G E; and eliminating F, gives F, = H, H; C. Combining gives
C= G2G1R - G2G1 H2H1 Cor [In + G2G1 HzHl]C = GzGlR so that

C= [I,, + Gz G1 Hz H1]—1 Gz GxR

The similarity with the scalar closed-loop transfer function is apparent.
2. In this sequence E, is first isolated and then, in turn, related to C as follows: E; = G;(R — F»),
but

Fz Hz H1 Gz E2 so that [Im + G1 H2 Hl GZ]EZ = Gl R
or ’ i
E2 = [ + Gl Hz H, Gz]_1 SO. that C = GzEz = Gz[I + G1 H2 H1 Gz]_l

Note the dlfferent arrangement of terms and the size of the matrlx to be inverted.
3. If E, is first isolated in a similar way, we obtain

E =L + ©,H,G,G,] 'R’
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from which
C=G,GI, + H,H,;G,G;] 'R
4. If F, is first isolated, we obtain
F,=[I, +H,G.G,H;] 'H,G,G:R
Premultiplying this by H, gives F,. Subtracting F, from R gives
E,={I, - H,{I, + H,G, G, H;] 'H: G, G,}R
Premultiplying this by G, G; gives
C={G,G; - G,G,H,[I, + H;G,G,H;] 'H,G,G,JR

4.4 Use the result of Problem 4.3 to establish some useful matrix identities.
In the previous problem four results of the form C = T; R were found, with the differences
contained in the four T; matrices. Equating two forms for the output C gives

T,-R:‘TjR

In general, this equation is not sufficient for concluding that T; = T;. However, in this case it
must be true for all R that (T; — T;)R = 0 so that T; — T, must be the null matrix, or T; =T,
Therefore, the results of Problem 4.3 give the following matrix identities. They are true fcr any
matrices which satisfy the conformability conditions, whenever the indicated inverses exist:

I, + G.G H:H;] ' G,G, = Gy[L, + G H:H, G;] ' G = G, Gy[L, + H H, G, G,] ™"
= Gz G] - Gz G1 Hz[Ip + H1 Gz G1 Hz]—l H1 Gz G1

4.5 Consider the system of Problem 4.2. a. Find the closed-loop transfer function matrices which
relate the following input-output matrix pairs: R to E;, V to E,, W to C, and D to F,. Also
determine the characteristic equations. b. Discuss the matrix generalization of the return
difference concept.

(a) Starting with the basic relations in Problem 4.3 and using similar manipulations leads to

E1= [Ir+H2H1G2G1]_1R C=[In+G2G1H2H1]—1W
E2= [Im+G1H2H1G2]_1V F1= [IP+H1G2G1H2]_1D
Since, for example,

Adj [I, + H H; G, G/]
I, + H; H, G, G|

the characteristic equation is obtained by setting the determinant in the denominator to
zero. The characteristic equation is a property of the system and not the particular inputs or
outputs considered. It is reasonable to expect that the following determinant identities are
true (this is proven in Chapter 7, Problem 7.22, by other means):

tI, + Hz H1 G2 G1| = |Im + G1 H2 H1 Gzi = |In + Gz G1 Hz H1l
= up + H1 G2 G1 Hzl

The roots of any one of these determinants constitute the poles of the multivariable system,
provided no cancellation with numerator terms has occurred.

(b) The matrices contained in the preceding determinants and whose inverses appear in the
preceding transfer functions are termed return difference matrices. These are the multi-
variable generalization of the return difference function in Chapter 2. In single-loop scalar
problems, the return difference R,(s) is the same regardless of where the loop is broken. In

[I, + H2 H1 Gz G]]hl =
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the multivariable case here, the return difference matrix is different at each point in the loop
because of the order in which the factors G, and H; appear. In this matrix case,

F.(s) = {I + [the product of G; and H; matrices in the order encountered while
traversing the loop backward from the point in question]}

The determinants of the return difference matrices are all the same, but the matrices them-
selves differ from point to point. Asin the scalar case, a small return difference indicates low
stability margins and poor sensitivity to disturbances and model variations. Although the
scalar case is unambiguous, the “size’ of the return difference matrix can be measured in
various ways. What is really needed is a measure of how near these matrices are to being
singular. In general, the determinant is a poor measure of near singularity. The singular
values of a matrix, developed in Chapter 7, are a much more meaningful measure, and the
preceding four matrices will all have different singular values.

Disturbance rejection: The contribution of each of the four inputs to the output of
Figure 4.3 are

Cz = G.Gy[I, + H,H;G,G ] 'R
Cy = Go[L, + G H, H,G,] 'V

Cw =[I. + GG, H, H,] ' W

Cp =G,G, H,[I, + H,G,G, H,] ' D

Presumably R is a desired input. If the return differences are made ‘‘large,” say by in-
creasing G, the outputs due to V and W disturbance inputs can be made “‘small.” Without
getting into exactly what large and small mean here, this is the essential idea behind
disturbance rejection in feedback systems. Sensitivity to model errors is also reduced as the
return difference matrix is made larger [6]. The return difference matrix, like its scalar
counterpart, is frequency-dependent. For any real system the transfer function magnitudes
will eventually go to zero as w— «. Therefore, the return differences will eventually go to I
(or 1). Robust control system design is concerned with maintaining a sufficiently high return
difference over the frequency range of interest and then having it approach its asymptotic
value in a graceful fashion.

A single-input, two-output feedback system has the form shown in Figure 4.3, with

s +1
1

s+2

G2 G = Hz H, = [S 1]

Find the characteristic equation and the transfer function matrix relating R to C, using two
different formulations.
Using |I, + G, G, H; H,| = 0 gives

s 1
1 0 s+1 +1 s 1 s
" (e =) (1 L) - -
0 1 N 1 s+1 s+2/ (s+1)(s+2)
s+2 s+2

Using I, + b H, G, G| =1+ 5/(s + 1) + 1/(s +2) =0 leads to the same characteristic equation
with less effort.
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Likewise, C = [I, + G, G, H, H;] ' G, G R gives

s+2 s+1 {|s+1

[

1+

1+

s+1 s+2
Using C = G,G4[1 + H, H, G, G;] 'R gives

1
s+1
1

R

s+2

s 1
+——t+——
1 s+1 s+2

C=

These are identical, but the second form is obtained without the requirement of matrix inversion.

Consider the four forms of the closed-loop transfer matrix derived in Problem 4.3. What are the
dimensions of the matrices that need to be inverted in each form if G, is 10 X 1000, G, is 50 X 10,
H,is 1 X 50, and H, is 1000 x 1?

The first form requires inverting I, + G2 G, H;H,, which is a 50 X 50 matrix. Form 2
requires inverting a 10 X 10 matrix since m =10. The third form requires inversion of a
1000 x 1000 matrix, since r = 1000. The fourth form requires only a scalar division since p = 1.
The same possibilities exist for the size of the determinant to be used in finding the characteristic
equation. ' '

Determinants, Cramer’s Rule, Rank

A 5x5 matrix decomposes into the unit matrix plus a product, as shown. Evaluate its
determinant.

0 -2 -3 -4 -5 -1

-1 -1 -3 -4 -5 - ,
A=| 4 8 13 16 20|=I+| 4[[1 2 3 4 5]

2 4 6 9 10 2
8 16 24 32 41 , 8
-1
-1
Al=Is+GH|=1+HG=1+[1 2 3 4 5] 4|{=58
2
8
16 0 4 7
Does A = _i’ 8 g % have an inverse?
-7 6 5 4

A" exists if and only if |A| # 0. To check the determinant, the method of Laplace expan-
sion is used with respect to the second column, |A| = 8Cz, + 6Cas,. The two cofactors are
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16 4 7 16 4 7
sz = ("1)4 1 5 2 = 368 C42 = (_1)6 _3 8 2 = ‘33
-7 5 4 15 2
Therefore, |A| = 8(368) — 6(33) = 2746 # 0 and A™" does exist.
4.10 Check the determinant in the previous problem using as; as the pivot element.

16 0 16 4 16 7
10 15 1 2

_1|]-3 8| [-3 8 |-3 2f|_| 9 & %

A= 10 |15 | 12|78 2 8

6 40 18
10 15 1 2
=7 6] |-7 5| |-7 4

Using the new as; as the pivot gives

0 76} ’0 25.

_1|l 6 40 6 18|| _1|-456 -150|_| -76 -—25|_
lal=% o ;| |_g _gl| 61182 —96| T |-182 96| =27
6 40] 1 6 18l
4.11 A, B, I,, and 0 are submatrices. Show that
[:‘*.LO_— N
B!l
Using Laplace expansion p times with respect to the last p columns gives
Al O Al O ’A L 0
STl =1l 118t == A
BiL| "B L, B i1, , Al
4.12 Show that
Al O
B =1al-lc
and that
AB _ A1
—C—*:r—ﬁ =|A|-|D—-CA™'B| if A" exists
=|D|-|A—BD'C| if D! exists
We have
AL O Aiol[rio]|_laio] 1o A
araleli i A R

using results of the previous problem. I 0
If A~ exists, the desired determinant can be multiplied by l —CA-! II =1:
A B I 0/ /A B|_|A B -
IC Dl - ’—CA‘l - I; ‘C Dt - '9 p—ca-p| = Al" D~ CA'B|
A B

If D™ exists, use

A B|_|1 -BD
c D70 I

C D and repeat the above procedure.

145
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Use Cramer’s rule to find the solutions for x; and x5, if 3x; + 2x, =6, and x; — 5x, = 1.
In matrix form,

¢ - e

If the coefficient matrix A is nonsingular, Cramer’s rule gives the solution for the component
X; as

LB
Y
where B, is formed from A by replacing column i by Y. In this example
6 2 3 6
] 7 R L B
BETA T MYORTTA T

Use Cramer’s rule and partitioned matrices to prove the following theorem.

Theorem. Let A be an n X n matrix and let a; be any nonzero element. Define B;;as the n — 1
by n — 1 matrix formed by deleting row i and column j of A. Let R and C be 1 Xn —1 and

n —1 X 1 row and column matrices formed by deleting a;; from the ith row and jth column of A.
Then

|A| = (_1)i+jaij

B, —alCR‘
ij

Proof. Consider the set of linear equations AX =Y, where X and Y are column matrices and Y
is all zero except y; = 1. Cramer’s rule is used to solve for x;:

| |
B, 10 B,
[
D O e e — [Bl Bz]
X; = Al gﬂ_:_‘—‘:";}"i";;:ﬁﬂ where B; = B, B,
e
B i 0 i B,
Using the Laplace expansion method with respect to column j and then rearranging gives
_E=n
Al = % By (1)
In order to determine 1/x;, the original equation AX =Y can be written as
B,‘j Xa + Cx,~ =0
RXa + a;XxX; = 1

X, is formed from X by deleting x;. Thus
Xa = "‘B,—;l Cx,
so that (—=RB;' C + a;)x; = 1. Using this in Eq. (1) gives

1

|A] = (—1)""/|By| - (a; —RB;' C) =(—1)"""a;[B;|- ’1 Py
ij

RB,;‘C‘

The determinant identities of Problem 4.5 give the final result:
A= (1) "/ay | B, ~ - CR
i
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(A limiting process can be used to show the validity of this proof and the final result even if

‘A| =0or IB,'/'} = 0)
Use the previous theorem to evaluate |A|, using a;; as the divisor.

4

B 5 -1 3 2
Al=|_7 & 7 o =46 7 9|—2-1(8 1 3]
11 -3 3 1 -3 3 1
1 =32 32
=4 8 29/4 39/4| =246
-1 -134 94

Find the rank and trace of

1 23 3
|2 -2 1 1
A_0 15 8
1 -6 4 —4

The sum of the diagonal terms gives Tr(A) =1 -2+ 5 — 4 =0. Using any one of several
methods gives |A| = 338. Since the determinant is nonzero, the rank of A is 4.

Matrix Inversion and Related Topics

Given

2 05 2|Ix 3
33 OX2_1

1 05 2||xs| =|5] or AX=Y

find x4, x,, and x; using the definition of matrix inversion.
The solution is X = A™'Y, where |A| = 6 and

6 —6,—-15]|"
AdjA=| 0 2 -0.5
-6 6 4.5
so that
1| 6 0 -6 ||3 -2
X=¢|-6 2 6 |[1|=] 3
-1.5 -0.5 4.5]|5 35

12,
Explain the method of Gaussian elimination in terms of elementary matrices and partitioned
matrices.
Gaussian elimination is used to solve AX =Y, where A is known, » X n, and Y is known,
n X p. The n X p matrix X is unknown. Often X and Y are column vectors, with p = 1. Assuming
that A" exists, A"' AX = A7 Y or IX = A™' Y. The elementary row operations are equivalent to
premultiplication by the elementary matrices. A sequence of these operations which reduces the
coefficient of X from A to I will simultaneously change Y to A™' Y, that is, X. The operations are:
1. Form the n X n + p matrix W, =[A E Y].
2. Find the element in column one with maximum absolute value. Interchange that row with
row one. This gives W; =E; , Wo=[E; , A ; E. Y]
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3. Divide the entire first row of W; by wy, assuming wq; # 0. This gives Ws = E;(1/w,,)W,. If
w1 = 0, then the entire first column is zero, indicating that A is singular. If this happens, skip
to step 6.

. Multiply the first row of W, by —w,; and add to the second row. W3 = E; ,(—w;;)W,.

. Repeat step 4 using E,; 3(—ws,), . .., Ei .(— wn) in sequence. This reduces column one to a
one followed by n — 1 zeros.

6. Find the maximum absolute value element w,; from column 2, rows 2 through n. Inter-
change that row with row 2, Wy .1 =E; o W,.

7. Divide row 2 by the current value of wx. This is analogous to step 3. Repeat steps 4 and S
until wy, is 1 (possibly zero if A is singular) and all w;, =0 below wa,.

8. Repeat steps 6 and 7 until the first n columns form an n X n upper triangular matrix with
; =1 or 0 for the ith diagonal. From this, |A] = (=1)" w1 m2 s - * * n, Where v is the number
of row interchanges used and p; is the divisor used for the ith row, steps 3 and 7. If a zero is
encountered on the diagonal, then |A| =0. When this happens, the rank of A is still of
interest. The triangular form is a convenient starting point for reducing to one of the normal
forms to determine rank. If |A| # 0, continue to step 9.

9. Multiply the current W by E, ;(—w1,), then by E, »(—ws,),.... This reduces the nth
column of W to n — 1 zeros but leaves the n, n element unity.

10. Repeat step 9 for other columns, until W has the unit matrix for its first # columns. The last

n columns of this final W matrix contain A™'Y.
Note that A" can be found by using Y = I when setting up W,

. 0 3|
4.19 Find [4 21| .

The sequence of matrices, interchanges. and divisors is

_fo 3]1 o] e fg 210 1] pi=s [1 110 %]
WO‘"[4 2i01] v:la[o 311 0 0 311 0

w5

This problem demonstrates why row interchanges are required to avoid dividing by zero. The
results are

. o 1[-2 3
|A|=(_1) p‘lp"2=-12’ rA=27 Al:ﬁ!: 4 0]
12 3
4.20 LetA=|2 4 6|. Determine |A|, r4, and A7 if it exists.
015
|
1230100 2 4 610 1 0
W=246§010_f_1_)123:100
°"l01 5100 1 01 5{0 0 1
i |
123103 0 123,00 30
w=21 2 311 0 0}—{0 0 0{1 —3 0
015001 0150 01
i H
1230 %o
interchange 0 1 5 :' 0 0 1
> 00011 1o

At this point we see that A is singular, that is, |A| = 0 and A~ does not exist. We can therefore
drop the right half of W and use row or column operations to give '
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|
1 2 3 1 2 =7 1 2 0 1 00 Lo
01 5{—|0 1 0]—10 1 0|— _()___]__i_()_ = [D:—""—O—:l
0 00 0 0 0 0 00 0 010 !

Therefore, ra = 2.

Use Gaussian elimination to solve for x, and x,, if B _2} [xl] = [ 10].

35 20
Therefore, x, =17 and x, = —17.

G is an n X n complex matrix. Find G™' using only real matrix inversion routines.
Let G = A +jB, with A and B real. Assuming that G’ exists, it can also be expressed in

terms of two real matrices C and D, G™' = C + jD. The basic requirement of a matrix inverse is
that

GG™' =1= (A +jB)(C + D) = (AC — BD) +j(AD + BC)

Therefore, equating real parts to real parts, AC — BD = I. Equating imaginary parts AD + BC =
0. If A" exists, the solution can be written as C=(A+BA'B)™' and D= —-CBA™'. The
rearrangement identities of Problem 4.4 are useful in proving this. If B™" exists but A™' doesn’t,
then [jG] ™' can be sought instead. This effectively reverses the roles of A and B so the above
procedure can again be used. If both A and B are singular, but G is not, further modifications
will be necessary.

Given a set of simultaneous linear equations
XA=B 1)

where A and B are known complex-valued matrices of size n X n and m X n, respectively, and
where X is the unknown m X n matrix. Assume that columns i and i +1 of A are complex
con]ugates Assume the same for columns of B. Show that X is purely real and can be computed
using only real numbers from

where A« and B« are formed from A and B by replacing their two complex columns by the real
part and imaginary part of their respective column i.
Postmultiplying Eq. (/) by any nonsingular n X n'matrix T and solvmg gives

X = (BT)(AT) ' =BA™

A particular T is selected that differs from the unit matrix only in the four elements defined by

the intersections of rows i and j with columns i and j. The four exceptional elements form the
2 X 2 block

—
Ti=

N= NI

2
L
2

Clearly T satisfies the nonsingular‘condition. Its determinant is just j/2. Furthermore, BT = B«
and AT = A, as demonstrated by a 2 X 2 case:



4.24

4.25

4.26

150 Fundamentals of Matrix Algebra Chap. 4

=[5 8]

Result (2) applies to matrices with any number of conjugate-pair columns, and they need not be
adjacent. However, the conjugate pairs must appear in the same column numbers in both A and
B. Form A and B. by replacing one member of each pair by the real part and the second
member by the imaginary part. Two equal real columns in B qualify as conjugate pairs, meaning
B will have an all-zero column. This causes no problem, but the same cannot be done in A
because two equal columns (or an all-zero column) means that A and Ax are singular. No
matrix-inversion method will solve that problem.

If the original problem is to solve AX = B, then everything said above about columns must
be changed to rows. This is equivalent to solving the transposed problem X" A” = B” for X”.

[a +]B a—jB]
Y+jo y-—jd

NI— N
I~ NIJ‘

Cholesky Decomposition

If A is symmetric and positive definite (see Chapter 7), it can be uniquely (except for signs)
factored into A = S”'S, where S is an upper triangular matrix. S is called the square root matrix of
A. The procedure for factoring A is most commonly called Cholesky decomposition [7]
(although it is sometimes called the method of Banachiewicz and Dwyer [8]. Deduce the
algorithm for finding S.

The algorithm for finding the s;; entries in S is as follows:

S11 = [6111]1/2;31;‘ =aylsn forj=2,...,n
S22 =[an—(s 12)2]1/2
S2j = [a2j —51251]']/522 forj=3,...,n

. i-1 172
[au 2 (sk, ] fOl'i=2,...,n

i—1
N [a,-,- - 2 Skiskj]/sii forj =i+ 1, oo,
k=1

Show how Cholesky decomposition can be used in solving simultaneous equations of the form
Ax =y. Assume y is known and that A is known, symmetric, and positive definite.
Assume S has been found such that A=8"S. Then S”Sx =y. Define Sx =v. Then

S”v =y. Because S” is lower triangular, the elements of v can easily be found one-by-one by
back substitution,

V1 =}’1/le, Vo = ()’2“512 Vl)/Szz, V3 = (}’3 —S13V1— 823 Vz)/s33, ..
Once v is determined, a similar procedure can be used to find the components of x:
Xn = Vn/snm Xpn-1= (vn——l ~ Sn-1,n vn)/sn—-l,n—l’

—2 = (yn—Z —Sn-2,nVn — Sn-2,n-1 vn—l)/sn—z,n—Zy e
Linearizing Nonlinear Equations

The two-port nonlinear electrical device shown in Figure 4.4 is characterized by the four

quantities iy, i», v1, and v,. Use Taylor series to develop a linear model for small signal variations
about a nominal operating point.
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’ i Nonlinear iy *
vy device v,
| |
RO [ °  Figured.4

There are a variety of linear models that can be developed, depending on the form
assumed for the functional relations among the four variables. There is one relationship at the
input port and another at the output port. One possibility is the pair v, = fo(v2, i1, 1) and
i> = go(i1, v2, v1). These can be combined to yield v, = fo(v2, i1, 8o(i1, V2, v1)) and i» = go(i1, v2, fo
(v2, i1, 12)). This shows that only two independent variables i; and v, suffice to determine v, and
i,. These relationships are rewritten more simply as vi=f(i;,v;) and i, =g(i1,v;). Let
V2 = Vo, + 8v; and iy =iy, + 8y, where v,, and i;,, define the nominal operating point and 8v, and
di; are small variations from the nominal. Then Taylor series expansion gives

: of| . . of
V1= fiin, Van) + E diy + 3;; dv,
6
I> = g (i1ny V2n) + 5V2

Obviously, vy, = f(En, vz,,) and i,, = g(iln, V2. sO that
W1 = vy — Vi = Ay 8iy + hia 8,
Biz 2 iz — ian = ha1 i1 + ha By
where the h; terms are the partial derivatives evaluated at the nominal point. These are the

hybrid or & parameters commonly used in small signal, linearized analysis of transistors and
other nonlinear devices.

A tracking station measures the azimuth angle «, the elevation angle B, and the range r to an
earth satellite as shown in Figure 4.5.

A% ,
@ Satellite
r
Tracking
station >
\ Xy
\
\ B
- j
np @ Figure 4.5

(a) Derive the nonlinear equations which relate the satellite’s relative position [x; x, x3]" to
the measured quantities.

(b) Obtain linear equations which relate small perturbations in satellite location to small
perturbations in the measurements.

(a) The station-to-satellite range magnitude is r = Vx{ + x5 +x; and the tracking antenna

angles are a = tan”'(x2/x,) and B = tah ™' (xs/V x; + x3).

(b) Letting x(f) = x,(¢) + Bx(t) r(t) = r,(t) + 3r (1), a(t) = a,(f) + da(f), and B(¢) = B.(¢) + 3B (?),
the Taylor series expansion gives
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_Nors _1 7
or —121 ox. 3 = X, T 8x

da = 2 ¢ O = U(xZ + x2)[~X2n *1n  0]8x

SB Z —E 8x, _"‘1_"-'—' ["'xlnx3n — X2nX3n xlzn + x22n] ox

=10 r2Vxi +x2,

Letting 8y = [3r 8a B]” allows the preceding results to be expressed as dy(t) = C(£)dx(z),
where C is a 3 X 3 matrix.

A certain process is characterized by a set of parameters x. Measurements y can be made on this
process, and they are related to x by a nonlinear algebraic equation, y = f(x). The nominal values
of x are x,. Describe a method of estimating the actual values of x based on the measurements y.

Letx=x, +8x. Theny = f(x,, + dx) =f(x,) + ﬁ ox.

Call f(x,)=y, and y—y, = = 3y. Since y is measured and since y, can be computed from a

knowledge of x,, 3y is a known vector. The Jacobian matrix % = A can also be computed. The

relation 3y = Adx is of the form treated in Chapter 6. Because of measurement inaccuracies,
redundant measurements and the least-squares technique are most commonly used to solve for
dx. Then the estimated parameter values are given by x = x,, + 8x.

Equation (4.7) expressed a matrix transfer function H(s) in one form of the MFD, with the
inverse of a polynomial matrix as the left factor. This form naturally arises from systems such as
the one of Example 4.2 but with input derivative terms. Show how a second MFD form can be
obtained with an inverse of a polynomial matrix as the factor on the right.

Assume that H(s) is m X r. If each element in H(s) is placed over a common denominator,
the scalar polynomial a(s), then

H(s) = N(s)/a(s) = N(s)[La(s)] " = [Lna(s)]""N(s) |

This shows that both the left and right forms of the MFD are possible, but the special forms here
are misleading. The numerator N(s) is not generally the same in both forms, and the inverted
matrix is not generally diagonal, as demonstrated by the P(s)™' in Eq. (4.7). To indicate the
more general forms which are possible, write .

H(s) = P:(s) " Ni(s) = Na(s)Ps(s) ™"
These factors are clearly nonunique. Rewrite the two expressions as
P:(s)H(s) = Ni(s) and H(s)P(s) = Na(s)
Let T:(s) and T,(s) be any arbitrary nonsingular m X m and r X r polynomial matrices. Then
Ti(s)P1(s)H(s) = T:1(s)Ni(s) or H(s) =[T:P:] [T:iNi]
and
H(s)P2(s)Ta(s) = No(s)T2(s) or H(s) =[N, To][P.T,] ™"

Thus new factors P; = T; P; and N; = T: N, or P, =P, T, and N; = N, T, can always be created,
and they will also be polynomial matrices. The matrices T; and T, can sometimes be generalized
to include certain rational polynomial factors as long as the primed P, N factors are still poly-
nomial matrices (i.e., no fractions). Note that form 2 is the matrix analog of the controllable
canonical form procedure, illustrated in Figure 3.9, which is generalized in Figure 4.6. The
matrix equations P, g = u and N, g = y define an intermediate vector g, which is often called the
partial state vector. MFD form 1 is the matrix analog of the Chapter 3 observable canonical form
procedure. In the scalar case, these canonical form names were attached because of the
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g(s)

U(S) mmep] Pz'l > N, ($) > y(5)

Figure 4.6

controllable or observable properties which were guaranteed to the resulting state models.
Those properties are not guaranteed to the matrix generalizations mentioned here. Extra work
is required to select “good” choices for the generalized denominator and numerator matrix
factors P and N.

The transfer function

i 1 2 ]
s+1 (s +1)(s +2)
H(s) = 1 1
(s +2)(s +3)  2(s +3) |
L (s+2) (s +1)(s +2)]

(s + (s +2)(s +3)

can be written in either MFD form, with P = (s + 1)(s + 2)(s + 3)L. The degree of the deter-
minant of this denominator matrix is 6 in either case. Start with form 1 and use elementary row
operations to find an alternative MFD which has |P,(s)| with degree 4.

Elementary row operations are equivalent to premultiplying by one of the elementary
matrices, which are all nonsingular. The T, matrix of the previous problem is a product of
elementary matrices. Premultiplying P, and N; is accomplished by doing row operations on
[P, Ni]. One obvious elementary operation is to divide each row by any common factors that
might be present, e.g., (s +3) in row 1 and (s + 2) in row 2 of :

[(s +1)(s +2)(s +3) 0 L (5+2)(+3) 2(s+3) ]
0 (+DE+DE+3)] (+2) G+ +2)

The resulting new P(s) has the desired degree of 4 and

+1)(s +2 0 (s +2 2
H(S)=[(S )o(s ) (s+1)(s+3)] [(sl) (S+1)]

The fact that P is still diagonal is a peculiarity of this problem and is not a general result. Can a
lower-degree |P| be found? This relates to the problem of finding minimal state variable realiza-
tions and is considered in Chapter 12.

Repeat Problem 4.30, starting with the second MFD form H=N,P;' and use elementary
column operations. Postmultiplication of N, and P, by T, is equivalent to carrying out a sequence
of elementary column operations on

(s +2)(s +3) 2(s +3)
[.Nz_ . S Gt ) I
P, (s + (s +2)(s +3) 0
0 (s + (s +2)(s +3)

The first obvious operation is to cancel a factor of s + 2 from column 1. Then column 1 times
(s +1)(s + 2) is subtracted from column 2 (which is the same as postmultiplying by the elemen-
tary matrix E; »(a) of Sec. 4.10, with @ = —(s + 1)(s + 2)). The result of these steps is
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Now a factor of s + 3 can be canceled from column 2, giving

+3) - 3 Dis+3) —(s+1)s+2)|"
H(S)z[(sl) >y )][(H A ((ss+1))(s(s++2))]

It is not generally true that the degree of all possible left- and right-form MFD determinants will
be the same. The degree can be increased simply by selecting arbitrarily high-order polynomial
factors in T;. There is a limit to how far the degree can be decreased. The desired degree 4 is
achieved with this P,(s). In fact, the minimal-order state variable system which has this transfer
function is 4, as is discussed in Chapter 12. The determinants of both the left and right MFD
forms of P hint that the poles or characteristic modes of the fourth-order realization will be at
s =—1, =1, =2, and —3. The main objective of this and the preceding problem is to demon-
strate certain elementary operations on polynomial matrices to achieve alternative MFD forms.
The underlying questions of systematic procedures to follow, when to stop, what constitutes
good forms, minimal degree, and so on are left to Chapter 12. This same transfer function is
considered again in Examples 12.2 and 12.7 using other methods. Section 6.3 gives more on
polynomial matrix methods.

Two subsystems are described in state variable form as
X, = A x; +Bu;; y,=C;x, +Dyu;; rinputs, m outputs
X = Ax; + Bouz; y.=Cyx; + D,up; minputs, r outputs

They are interconnected in the feedback loop shown in Figure 4.7. Use substitution and matrix
algebra to derive the state variable model for the composite system with inputs u, and outputs y;
and y,.

u, j— uy

(e >

Subsystem 1 >V

Subsystem 2

= Y2  Figure4.7
Write the output of the summing junction as
u=u,—-y.=u, —C:x, — Dy,
=u, — Cyx; — D,[C; x; + D; uy]

Combining the two u, terms and premultiplying by the matrix inverse gives
w, = [I, + D,D;] "{u, — Cox> — D, C, x,}. For convenience, let L = [I, + D,D,]™". Then

x; = A;x; + B;Lu, — B, LC,x; — B,LD,C; x,
y1i=Cix; +D;Lu, —D;LC;x, — D, LD, C; x;
and
X, = Ay x; + Bo{C; x, + D; Lu, — D, LC,x, — D,LD,C, x,}
y.=C.x; + D{C;x; + D; Lu, — D, LC.x, — D,LD, C; x;}

or

|:X1:| - li A1 - BlLD2C1 —BlLCZ ]{X]] + |: BlL ]u
*2 B2C1 - BzD]LDzCl A2 - BleLC2 Xo B2D1L “
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and
[yl} — [ C, - D.LD:C, ~D,LC; ][X1] i [ D.L ]u
y: DzCl - D1LD2C1 Cz - DzD]LCz Xo D2D1L “
PROBLEMS

Show that every real, square matrix A can be written as the sum of a symmetric matrix and a
skew-symmetric matrix.

LetE=[e; e, --- e,]" be acolumn of errors in a multivariable control system. Show that
the sum of the squares of the errors can be written in several forms, ef +e;+:-- +e. =
E"E = Tr(EE").

Consider the A-parameter model of a transistor, which is typical of many two-port devices
(Figure 4.8).

Vil _ hi he || i
i> hyy hx || v2

Ideal
source 1

i iy

Two-port R,

. [22]
device

Figure 4.8

Add the third equation v.= —R, i, and find i, i, and v, if the source is an ideal voltage
source V.

If the ideal source in the previous problem is a current source iy, find v,, i, and v..

Compute |A| using Laplace expansion, pivotal condensation, elementary operations, and the
method of Problem 4.14. Draw conclusions about the effort required by each method.

1 3 -1 4]
2 0 1 5
-1 6 10 -8
0o -2 7 14
Find the inverses of

A=

0 -2 -3 -4 -5
41 1 -1 -1 -3 -4 -5
A=|2 0 3|, B=| 4 8 13 16 20|,
1 15 2 4 6 9 10
| 8 16 24 32 41
1210000
=2.110.00 0
07075 770 0
C=l 0010100
000 03 8
L 0 0 0 0!8 3]

(Hint: B is the matrix of Problem 4.8. Use an identity from Problem 4.4).
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Find the Laplace transforms of

1 t .
Zar . h B¢ sinh Bt
A()=]e bsin Bt |, B(?) = [COS —at ]
t> e ~"cos Bt te cos Bt
Find the inverse Laplace transform of
1 s
_|# - _
A(S) = [F (5—2_‘*‘—(3—2_)—2]’ B(S) = (S + 1)(5 + 2) (S + 1)(5‘ + 2)}
0 s
Find the upper triangular square root matrix of
4 -1 2 46 1
_|-1 8 4 _{6 1 2
@A=|") 4 g ®A=l1 2 2

6 4 1 -1 3
4 10 4 2 -2
@A=| 1 4 25 4 1
-1 2 4 11 7
3 -2 1 7 17

2
Find both a left and right MFD form for H(s) = [1/(S T U+ 1)] Both should have P(s)

with degree 3. 0 Vs +1)
Find an MFD form with the inverse on the right and with degree of |P(s)| =3 for H(s) =

[1/[(s +1)(s +2)] s+ 1)]
(s +2) (s +3) ]

Find the A, B, C, and D state matrices for a composite system of Figure 3.27 of Sec. 3.5.
Subsystem 1 has the transfer function H;(s)=(s +5)/(s*+3s +6) and subsystem 2 has
Ho(s) = (s +2)/(s* + 4s + 3).

Use the same two subsystems as in Problem 4.44 and add two more, Hs(s) = 10/(s + 6) and
Hy(s) = (s —2)/(s>+s + 1), interconnected as in Figure 3.28. Find the state matrices for the
composite system, using controllable canonical forms to describe each subsystem.

Find the composite state variable matrices for a system with the feedback topology of Problem
4.32. Use systems 1 and 2 of Problem 4.44.

Pressure drop-flow rate relations through many devices are nonlinear. For an orifice the flow
rate Q and the pressure drop P, — P, are related by Q = ¢V P, — P,. Derive a linear relation for
the flow out of an orifice at the bottom of a tank. The tank is nominally kept filled to a height A,,.
The fluid density is p Ib-sec’/ft*. Thus P, = pgh and P, = 0.

A navigation scheme uses a sextant to measure the angle included between the directions to two
known landmarks from the position of the sextant. Let the sextant position vector be x. The
landmark position vectors are r; and r».

(a) Find the nonlinear expression for the measured angle 9.

(b) Find the linear relation between small perturbations in 6 and in x.
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Vectors and Linear Vector Spaces

5.1 INTRODUCTION

Every student of introductory physics is familiar with the concept of a vector as a
quantity which possesses both a magnitude and a direction. In Chapter 3 the terms
state vector and state space were used in parameterizing models of dynamical systems.
The state components could very well be a mixed set of physical quantities such as
voltages, temperatures, and displacements. The formal procedures for picking states
could even yield state components which are linear combinations of these disparate
items. Arranging such a mixture of elements in a column matrix and referring to it as a
vector seems inconsistent with the physical magnitude and direction concept of a
vector. A primary objective of this chapter is to rectify these different notions of
vectors and the vector spaces to which they belong. The discussion begins with a review
of vector in the more familiar physical sense. The generalizations to the more abstract
notions of vectors are then presented.

A second objective is to discuss various kinds of transformations on vectors.
These topics have wide applicability in almost every branch of science and engineering.
The central focus of this book is modeling and controlling physical systems. Therefore,
there is interest in knowing how an initial state vector transforms into a state vector at
a later time or how inputs transform to states or to outputs. Certain transformations of
coordinates allow greater insight into system behavior and simplify the analysis and
calculations. Some intrinsic system properties remain invariant to transformations,
just as the length of a physical vector must not change when different coordinate
systems are selected. Although all these topics cannot be dealt with completely in this
chapter, the conceptual and computational foundations are presented.

157
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5.2 PLANAR AND THREE-DIMENSIONAL REAL VECTOR SPACES

Many physical quantities, such as force and velocity, possess both a magnitude and a
direction. Such entities are referred to as vector quantities. They are often represented
by directed line segments or arrows. The length represents the magnitude, and the
orientation indicates the direction.

If one point in the plane is defined as the origin, a unique vector can be associated
with every point in the (two-dimensional) plane. The origin is defined as the zero
vector, 0, and every other point can be associated with the directed line segment from
the origin to the point. The same correspondence between points and directed line
segments can obviously be made with points along the real line %% (one dimension) and
in three dimensions. Thus the terms point and vector can be used interchangeably.

If a coordinate system is defined in the plane, then each point can be identified by
a unique pair of ordered numbers. These coordinate numbers can be written as a
column matrix. However, since many different coordinate systems could be selected, a
given vector could be represented by many different column matrices. A vector is not
a column matrix but is a more basic entity which may be represented by a column
matrix once a coordinate system is defined.

Vector Addition, Subtraction, and Multiplication by a Scalar

The coordinate-free description of vector addition is given by the parallelogram law.
The sum of two vectors v; and v, is the diagonal of the parallelogram formed with v,
and v, as sides. Since —v, is a vector with the same magnitude and orientation, but the
opposite direction of v,, the vector difference v, — v, is just the sum of v; and —v,.
Multiplication of a vector by a scalar alters the magnitude but not the orientation. In
particular, any nonzero vector v can be used to form a unit vector ¥ with the same
direction as v by multiplying v by the reciprocal of its magnitude.

Whenever vectors are represented as column matrices with respect to a common
coordinate system, the usual rules apply for addition of matrices and multiplication of
a matrix by a scalar.

Vector Products

Products such as vw are not defined because of matrix conformability requirements.
Three types of vector products are defined.

The inner product (or scalar product or dot product) of v and w is defined as
(v, w)=vw cos 6, where v and w are the vector magnitudes and 6 is the angle included
between the two vectors. When real vectors are represented in orthogonal cartesian
coordinates, the inner product may be computed in terms of the components as
(vyw) =v'w=wTv. If v and w are perpendicular, then 8 = 7/2 so that (v, w) = 0. Any
two vectors which have a zero inner product are said to be perpendicular, or ortho-
gonal. The zero vector is considered to be orthogonal to every other vector. The
magnitude of a vector v can be expressed as v = (v, v)'”.
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The outer product of two real vectors v=1[v; v, v]"andw=[w;, w, ws]Tis
defined as
Viwy ViW; ViW;
vww=vwli=[v,w, v,w, vow;
ViWy ViW, ViW;

Since matrix multiplication is not commutative, neither is the outer product;
vw! # wv’,

The cross product v X w is defined only in three dimensions. This product yields
another vector, perpendicular to the plane of v and w. It points in the direction a
right-hand screw would advance if v were rotated toward w through the smaller of the
two angles 6 between them. The magnitude is equal to the area of the parallelogram
formed by v and w, i.e., vw sin 6.

5.3 AXIOMATIC DEFINITION OF A LINEAR VECTOR SPACE

Concepts such as directed line segments, lengths, angles, and dimensions of the space
are considered to be intuitively obvious in one, two, or three dimensions. In dimen-
sions higher than three, visualization is no longer possible. In cases such as a state
vector with components made up of voltages, temperatures, and displacements, it is
not yet clear what the vector characteristics are, even if there are only two or three
components. For these reasons a more axiomatic definition of vectors and vector
spaces is required. It will still be helpful to consider some of the general results for the
particular cases of two or three dimensions. Geometrical descriptions of this nature
will frequently be of use in gaining understanding of the concepts.

Linear Vector Spaces

A linear vector space ¥ is a set of elements, called vectors, defined over a scalar
number field &, which satisfies the following conditions for addition and multiplication
by scalars.

1. For any two vectors x € ¥ and y € ¥, the sum x + y = v is also a vector belonging
to X.

Addition is commutative: X+ y =y + x.

Vector addition is also associative: (x +y) +z=x+ (y + z).

There is a zero vector, 0, contained in ¥ which satisfiesx+0=0+x =x.

. For every x € ¥ there is a unique vector y € ¥ such that x + y = 0. This vector y is
—X.

6. For every x€¥ and for any scalar a € %, the product ax gives another vector
y € Z. In particular, if a is the unit scalar,

A W

Ix=x1=x .
7. For any scalars a €% and b € %, and for any x €%, a(bx) = (ab)x.
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8. Multiplication by scalars is distributive,
(a + b)x =ax + bx

a(x+y)=ax+ay

The sets of all real one-, two-, or three-dimensional vectors discussed in the
previous section satisfy all of these conditions and, therefore, are linear vector spaces.
Elements in these familiar spaces can be represented as ordered sets of real numbers
[ai], [@r @)%, and [a; «, )7, respectively. A fairly obvious generalization is to
consider spaces whose elements are ordered n-tuples of real numbers [o; o -+ a7,
where n is a finite integer. This space is referred to as R". If the scalars a; are allowed to
be complex, then the space is referred to as €". Both of these possibilities will be
simultaneously covered by referring to an ordered set of n-tuples o; € ¥ as belonging
to the space X". Many other vector spaces can be defined. Some examples which can
be verified to satisfy the required axioms are:

1. The set of all m X n matrices with elements in &. Since valid number fields &
include such possibilities as the real numbers, the complex numbers, or the set of
rational polynomial functions with real or complex coefficients, the possibilities
here are many. In particular, it is possible to define a vector space of all m X n
transfer functions.

2. The set of all continuous or piecewise continuous time functions f(f) on some
interval a =t < b or an ordered set f(1), f2(¢), . . . , f,(¢) of such functions.

3. The set of all polynomials of degree less than or equal to n, with coefficients
belonging to the real or complex number fields ¥. The zero element required by
axiom 4 would be the m X n null matrix, the function which is identically zero, or
the polynomial which has all its coefficients zero, respectively. A rational poly-
nomial function could also be defined as a vector. The zero element would have
all the numerator coefficients identically zero.

This short list provides just some of the possibilities and makes it clear that the
notions of magnitude and direction are not required—or at least are not obvious—in
the definitions of abstract vectors. The notion of a vector as an ordered n-tuple also
seems not to apply in some of these examples, although that will be seen to depend
upon how the notion of coordinate systems is generalized. That is, the countable
Fourier expansion coefficients can be thought of as ordered components of a periodic
function, defined as a vector. When the full generality required by some of these
examples is implied, the vector space will be referred to as . For the most part, the
discussions here will deal with vectors in the sense of the previous section and their
generalizations to X". o

One fact emerges from the preceding examples that seems puzzling at first. The
set of rational polynomial functions was used as a field and a vector space of m X n
matrices was defined over that field in (1). Then the same rational polynomial function
was itself declared a vector in (3). A comparison of the axioms used to define a field in
Chapter 4 and those used here to define an abstract vector space show a great deal of
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similarity. The requirements on a vector space are weaker because no inverse vector
element is required. Actually any set of elements which qualifies as a field in the sense
defined in Chapter 4 can also be used to define a vector space over itself as the field.
The real line is an example. It can be considered as a one-dimensional vector space
(i.e., ordered one-tuples) defined over the real number field. More complicated vector
spaces can be built up as ordered sets of the simpler vectors. The simplest example is
that n-tuples of reals are ordered one-tuples. The same is true of the rational poly-
nomial functions. One of them can be treated as a vector defined over itself as the
field. Or, an ordered array of them, e.g., a transfer function, can be defined as a
vector. It is important to note, however, that not all vector spaces are equivalent to
fields because of the requirement of the inverse element. The set of polynomials can
define a vector space, but they do not constitute a field because the ratio of two such
polynomials is in general not a member of the set of polynomials.

In addition to the fact that vector inverse elements are not required, it is explic-
itly pointed out that no notion of the product of two vector elements is found in the
required axioms. Very frequently an additional definition of an inner product is im-
posed upon a vector space. This is extremely useful. It allows the generalization of
familiar geometrical concepts, such as length or distance, and angles between vectors.
Whenever this extra definition is imposed, a restricted special class of vector spaces,
called inner product spaces, is being dealt with.

5.4 LINEAR DEPENDENCE AND INDEPENDENCE

Consider three vectors x;, X,, and x; in three-dimensional space. If there exists a
relation among them, such as x; = ax; + Bx,, then it is clear that x; lies in the plane
through x; and x,, no matter what scalar values are attached to a and B. x; is said to be
dependent on x; and x,. The notions of dependence and independence must be gen-
eralized to arbitrary sets of vectors.

Definition 5.1. 'Let a finite number of vectors belonging to a linear vector space
Z be denoted by {x;} = {x;, x,, . . ., X, }. If there exists a set of n scalars, a;, at least one of
which is not zero, which satisfies a, x;, + a,x, + - - - + a,x, = 0, then the vectors {x;} are
said to be linearly dependent.

Definition 5.2.  Any set of vectors {x;} which is not linearly dependent is said to
be linearly independent. That is, if a; x; + a,x, + - - - + a,x, = 0 implies that each a;, = 0,
then {x;} is a set of linearly independent vectors.

EXAMPLE 5.1 Consider the set of n vectors e; each of which has n components. All com-
ponents of e; are zero, except the ith component, which is unity. Then

1 0 0 ay
O 1 O as
ae t+aet-tase,=a|0|+a0f +---+a,|:|=
. . : 0

() O 1 a,
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The only way that this sum can give the 0 vector is if each and every a; = 0. Thus the set {e;} is
linearly independent. This set of e; vectors represents the natural extension of the cartesian
coordinate directions often used in two- and three-dimensional spaces. They will be referred to
as the natural cartesian coordinates. u

EXAMPLE 5.2 Let the components of three vectors with respect to the natural cartesian coor-

dinates be
xi=[5 2 3], x2=[-1 7 4], x;=[14 50 36]
These vectors are linearly dependent because 2x,; + 3x, — 3x; = 0. |

Lemma 5.1. Let ¥V ={x,i =1, n} be a set of linearly dependent vectors. Then
the set formed by adding any vector x,,, to V' is also linearly dependent.

Lemma 5.2. Ifaset of vectors {x;} is linearly dependent, then one of the vectors
can be written as a linear combination of the others.

Tests for Linear Dependence

Consider a set of n vectors {x;}, each having n components with respect to a given
coordinate system. Let A be the n X n matrix which has the x; vectors as columns. The
set of vectors is linearly dependent if and only if |A| = 0. The zero in this determinant
test for independence must be the zero element of the number field over which the
vectors are defined. In particular, if the rational polynomial functions are the field, the
determinant must be identically zero for all values of the variable s or z or ¢ used in
defining the polynomials. It is not sufficient for the polynomial to equal zero for
specific isolated values.

EXAMPLE 5.3 Use the preceding test to show that the three vectors of Example 5.2 are
linearly dependent.

5 -1 14
We find |A| =2 7 50| = 0. Therefore, the set is linearly dependent. |
3 4 36

The previous test for linear independenceis not applicable when considering a
set of n vectors {x;}, each of which has m components, with m # n. The matrix A is

m X n and |A| is not defined. Assume the set is linearly dependent so that >, a;x; = 0
: i=1
with at least one nonzero a;. Premultiplying by X! gives the scalar equation
Gﬁi{xl + azi{X2+ s +ani1TXn= 0

Repeated premultiplication by X7, then X!, and so on gives a set of n simultaneous
equations, which can be written in matrix form as

(X7 x;][a] = 0

If the n X n matrix G = [x] x;] has a nonzero determinant, then G™' exists, and solving
gives

a=G1'0=0
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This contradicts the assumption of at least one nonzero a;. The matrix G is called the
Grammian matrix. A necessary and sufficient condition for the set {x;} to be linearly
dependent is that |G| = 0. An alternate means of determining linear independence is to
reduce the matrix A to row-reduced echelon form, as mentioned in Section 4.10. This
approach is convenient for computer applications and will be used in Chapter 6.

EXAMPLE 5.4 Consider two vectors defined over the complex number field, x, = [1 + j 6]
andx, =[5+ 18—12/]". Show that they are linearly dependent.

}1+j 5+j ‘1+j 5+

6 6(3 - 2j) = 1 3_2j1:6[(5+f)_(5+f)]50

Thus the vectors are dependent. In fact, x, = (3 — 2j)x,;. Similarly, x, = [

V[(z + D)(z —0.5)]
1/(z*+2z +1)
minant formed with these columns is identically zero, (2) by forming the Grammian, (3) by
performing elementary row and/or column operations to show that the rank is 1, or (4) by noting
that x, = [z/(z + 1)’]x,. Noticing the linear dependencies by inspection is not nearly so easy
when the vectors—and hence the scalar proportionality factors—are defined over the complex
numbers or rational polynomial functions. |

(z +1)/[z(z - 0.5)]]
1/z

and x, = [ :I are dependent as can be verified by (1) showing that the deter-

Geometrical Significances of Linear Dependence

Two vectors can normally be used to form sides of a parallelogram. If the vectors are
linearly dependent, they have the same direction, so the parallelogram degenerates to
a line. It is shown in Problem 5.14 that the 2 X 2 Grammian determinant is equal to the
square of the area of the parallelogram formed by the vectors. Thus |G| = 0 indicates
that the parallelogram has degenerated to a single line. Three vectors can normally be
used to define the sides of a parallelepiped. If there is one linear dependency relation
(i.e., any two of the three vectors are linearly independent but the set of three is
linearly dependent), then the parallelepiped has degenerated to a plane figure and
hence has zero volurne. |G| = 0 indicates this. If there are two dependency relations,
the parallelepiped degenerates to a single line. Similar significance can be attached in
higher dimensional cases. The number of dependency relationships among a set of
vectors (or the columns of a matrix) is called the degeneracy, q. For an n X n matrix
A, g, n, and the rank r, are related by

n=rsqtq

Often it is easier to determine the rank first and then use that to determine ¢ = n — 7,4.
The degeneracy q is the key to finding eigenvectors and generalized eigenvectors for a
matrix with repeated eigenvalues. This is discussed in Chapter 7.

Sylvester’s Law of Degeneracy

If A and B are square conformable matrices whose product is AB = C, Sylvester’s law
of degeneracy can be used to place bounds on the degeneracy of C, g. in terms of the
degeneracy of A, g4, and of B, g5:

max{q4, qp} <qc=qs+qs
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If the relations between n, rank, and degeneracy are used, the following limits on the
rank of C can be obtained:

Fa +rg—n=rc=min{ry, rz}

A similar result was presented in Chapter 4 for A and B not necessarily square, but the
lower limit there was 0 < r.

5.5 VECTORS WHICH SPAN A VECTOR SPACE; BASIS VECTORS
AND DIMENS/IONALITY |

The dimension of a vector space has been referred to several times. In two or three
dimensions, the concept is obvious, but in higher dimensions a precise definition must
be relied upon rather than intuition. It is first necessary to define what is meant by a set
of vectors which span a vector space.

Let ¥ be a linear vector space and let {u;, i = 1, m} be a subset of vectorsin ¥. The
set {u;} is said to span the space ¥ if for every vector x € ¥ there is at least one set of
scalars a; € ¥ which permits x to be expressed as a linear combination of the u,,

X:alu1+azu2+"'+amum:Eai“i

Note that if the vectors x and u; can be expressed as columns of 7 scalars with respect to
a common coordinate system, then in matrix notation x = Ua, where U is the n X m
matrix whose ith column is w; and a=[a; a,...a,]". The scalars a; are the com-
ponents of x in the u; coordinate direction. Vectors such as u;, which merely span the
space, do not make a good coordinate system because there may be more vectors than
necessary, and as a result the g; coefficients are not unique.

EXAMPLE 5.5 Con51der all vectors in the plane. Then any pair of noncollinear vectors such as
{x,y}, {x',y'}, and {x", y"} spans thé two-dimensional space, since every vector in the plane can be
represented as a combination of any one of these pairs. Another set of vectors which spans this
space is {X, y, y"}. Two ways of expressing a vector w in terms of these three vectors are shown in
Figure 5.1. The coefficients in the linear expansion of a vector in terms of a set of spanning

vectors need not be unique. There is an infinite number of possibilities in this example. |
" ‘ y y
y yll bz \
Cyi
N
N a,
w €1 N
§§ y
!
1B
L —p >
- a, x X
(a) w=anx+:bf1)'+('|y”, . ' (b) w':‘azx'*'bzy*Czy"

Figure 5.1
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Basis Vectors

A set of basis vectors, B = {v;}, for a space ¥ is a subset of vectors in ¥ which (1) spans
the space ¥ and (2) is a linearly independent set. Alternatively, a set of basis vectors is
a set consisting of the minimum number of vectors required to span the space ¥. There
are infinitely many choices for basis vectors in a given vector space. For example, in
Fig. 5.1 any two of the three vectors {x, y, y"} or any two other noncollinear vectors in
the plane could be selected. Every valid basis set for a given space will contain the
same number of vectors, e.g., two for the plane. Once a basis is selected for the space
&, every vector x € X has a unique representation or expansion with respect to that
basis. That is, there is a unique set of scalar coefficients such that x=a,v, +a,v, +
---+a,v, Asbefore, if x and each v, can be expressed as a column of scalars, then in
matrix notation x = Va. Because of the uniqueness of the relation between a given x
and a set of coefficients {a;} for a given basis set, basis vectors are the natural generali-
zation of coordinate vectors discussed in two and three dimensions. The column of
scalars a can be viewed as the same vector x but expressed in a different coordinate
system. It should now be clear why a column of scalars is not a vector but is only one
representation of the vector in a particular set of coordinates. The vector itself is a
more abstract entity, such as the directed line segment used in elementary physics,
which exists independent of any coordinate system. The vector appears as a column of
scalars only after a coordinate system—i.e., a basis set—is introduced.

Some basis sets are more convenient to work with than others. Most would agree
that the mutually orthogonal x, y of Fig. 5.1 would be more convenient than the other
choices shown there. That set would be even more convenient if both x and y had unit
length. This generalizes naturally in ¥" to the set {e;} discussed in Example 5.1.
Whenever a specific basis is not mentioned for X", this natural cartesian basis set will
be implied.

Dimension of a Vector Space

Definition 5.3. The dimension of a vector space ¥, written dim (%), is equal to
the number of vectors in the basis set %. Thus an n-dimensional linear vector space has
n basis vectors.

EXAMPLE 5.6

1. Let X be the linear vector space consisting of all n-component vectors
X'=[x1 X2 X3 - Xi]

which satisfy x, = x, = x3 = - - - = x,,. Since the basis set for this space consists of the single
~vectorvi'=[1 1 1 --- 1], this space is one-dimensional. ‘
2. Let ¥ be the linear space consisting of all polynomials of degree n — 1 or less, {f(¢)|f(¢) =
ot ont+ast?t - +a,t" o €F) An obvious basis set is {1, t,...,t" " '}. Since
the basis contains n elements, dim (¥) = n, but ¥ is not X" as defined earlier. |
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It should be pointed out that a linear vector space can consist of a single element,
the zero vector 0. Such a space is said to be a zero-dimensional space. A field, by way
of contrast, must always have at least two elements, 0 and 1.

5.6 SPECIAL OPERATIONS AND DEFINITIONS IN VECTOR SPACES

In order to generalize many of the useful concepts of familiar two- and three-dimen-
sional spaces to n-dimensional spaces, some additional definitions are required.

Inner Product

Let ¥ be an n-dimensional linear vector space defined over the scalar number field &.
If, to each pair of vectors x and y in &, a unique scalar belonging to ¥, called the inner
product, is assigned, then & is said to be an inner product space. Various definitions for
the inner product are possible. Any scalar valued function of x and y can be defined as
the inner product, written (x, y), provided the following axioms are satisfied:

1. (x,y)={y,x) (complex conjugate property)
2. (x,ay; + By = alx,y1) + B(X,y,) (linear, homogeneous property)
3. (x,x)=0 for all x and (x,x) =0 if and only if x=0 (nonnegative length)

A commonly used definition of the complex inner product in ", which is suf-
ficiently general for our purposes, is

<X9 y) = 3—‘-Ty

If & is the set of reals, then the real inner product can be defined in the same way,
but the complex conjugate on x is then superfluous. The inner product space defined
on the real scalar field is called Euclidean space. Unless otherwise stated, the inner
product will be assumed to be the complex inner product given above.

Combining axioms 1 and 2, it is easy to show that the inner product also satisfies

(ax; + Bxs, y) = &(x;, y) + B(Xa, ¥)

The Grammian matrix introduced in Sec. 5.4 is generally defined in terms of the inner
product as G = [(x;, x;)]. Some further definitions of inner products are given in the
problems. In particular, see Problem 5.25 for vector spaces of matrices.

Vector Norm

Axioms 1 and 3 for inner products ensure that (x, x) is a nonnegative real number and is
zero if and only if x = 0. Because of these properties, the inner product can be used to
define the length, or norm, of a vector as |x|| = (x, x)”*. This norm will be used through-
out this book unless an explicit statement to the contrary is made. It is called the
quadratic norm, or in the case of real vector spaces, the Euclidean norm. In two or
three dimensions, it is easy to see that this definition for the length of x satisfies the
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conditions of Euclidean geometry. It is a generalization to n dimensions of the theorem
of Pythagoras.

Many other norms can be defined; the only requirements are that |x|| be a
nonnegative real scalar satisfying

1. |x|=0 ifandonlyifx=0
2. |lox|| = |af-|x|| for any scalar «
3. |Ix + il =[xl + [lyll

The last condition is called the triangle inequality, for reasons which are obvious in two
or three dimensions.

Animportant inequality, called the Cauchy-Schwarz inequality, can be expressed
in terms of the norm and the absolute value of the inner product:

[x, ) = [Ix]l- Iy
The equality holds if and only if x and y are linearly dependent.

Unit Vectors

A unit vector, X, is by definition a vector whose norm is unity, [[%/| = 1. Any nonzero
vector x can be normalized to form a unit vector.

. X
X=—

[
Metric or Distance Measure

The concept of distance between two points (vectors are used synonymously with
points) in a linear vector space can be introduced by using the norm. The distance
between two points x and y is defined as the scalar function

p(x,y) =[x —yll
When the quadratic norm is used, this gives

p(X,y) = (x =y, x — y)?

Generalized Angles in n-Dimensional Spaces

The concept of angles between vectors can be generalized to real n-dimensional spaces
by extending the notion of the dot product of two- or three-dimensional spaces,

x'y = (x,y) = [Ix|I-[ly|| cos 6
Thus, the cosine of the angle between x € ¥ and y € ¥ is

1 .
cos=——(x,y)=(X,¥)
Iy Y Y
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It was mentioned earlier that various inner products can be defined. The particular
choice of inner product dictates a specific meaning for the geometric concept of angle.
Since (x,y) need not be real in spaces defined over the complex scalars, it is not
particularly useful to try to place an interpretation upon angles in complex spaces.

Outer Product

The outer product (sometimes called the dyad product) of two vectors x and y be-
longing to X" is

XXy =xy"
The brackets are motivated by a comparison with the usual definition for the inner
product.

Multiplication of a Vector by an Arbitrary, Conformable Matrix

Since a vector in X" can be represented as a column matrix with respect to a specific set
of basis vectors, all the operations of matrix algebra can then be applied. In particular,
premultiplication by a conformable matrix yields another column matrix, which is the
representation of a vector. If the matrix multiplier is n X n and skew-symmetric, then
two vectors x and y in R” related by y = Ax can be seen to have (x,y) = 0. In two- or
three-dimensional spaces, a zero inner product indicates that the two vectors are
orthogonal (this is generalized to any vector space in the next section). Thus
multiplication by a skew-symmetric matrix is somewhat akin to generalizing the cross
product in that the resultant is orthogonal to x.

Just as vectors are abstract elements that often can be represented by column
matrices, matrices as used in the preceding paragraph are specific coordinate-system
dependent representations of a more abstract transformation operator, to be discussed
later.

5.7 ORTHOGONAL VECTORS AND THEIR CONSTRUCTION

Any two vectors x and y which belong to a linear vector space ¥ are said to be
orthogonal if and only if

x,y)=0

This is the natural generalization of the geometric concept of perpendicularity. Note
that this definition of orthogonality indicates that the zero vector is orthogonal to every
other vector. If each pair of vectors in a given set is mutually orthogonal, then the set is
said to be an orthogonal set. If, in addition, each vector in this orthogonal set is a unit
vector, then the set is said to be orthonormal. Each pair of orthonormal vectors ¥; and
¥; satisfies (¥, ¥;) = 8;, where 3; is the Kronecker delta and equals 1 if i = and 0
otherwise. Orthonormal vectors are convenient choices for basis vectors. The natural
set of cartesian basis vectors e; of Example 5.1 is the simplest example of an ortho-
normal set.
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The Gram-Schmidt Process

Orthonormal vectors form a convenient basis set, so it is of interest to know how to
construct an orthonormal set. Given any set of n linearly independent vectors
{y» i =1,n}, an orthonormal set {¥, i = 1,n} can be constructed by using the Gram-
Schmidt process. The process consists of two steps. First an orthogonal set {v;} is
constructed, and second, each vector in this set is normalized. Let v, =y, and select v,
as the vector formed from y, by subtracting out the component in the direction of v;.
This is equivalent to requiring that (v;,v,) =0. Let v, =y, —av,. Then in order to
satisfy orthogonality,

q= (vy,y2)
(vy, V1)
so that
V=, — (v1, )’2>v1
(v, Vi)

the next vector is chosen as
V3Z=Ys—a1vi—av;

and the two scalars g; are chosen to satisfy
(vi,v3)=0 and (vy,v3)=0

This leads to

(V1, ¥3) _ (v, ¥3)

(Vl,V1> ! <V2,V2> ?

Continuing in this manner leads to the general equation

i-1

V3=Y¥3—

<Vk, Y: >

Y k=1<vk: Vi)

After all n of the vectors v; are computed, the normalization

A V; .
v, =—— i=1,...,n

vill°

gives the desired orthonormal set.

EXAMPLE 5.7 Construct a set of orthonormal vectors from

Since the Grammian gives |G| = 4, these vectors are linearly independent.
Step 1. Let

Vi=yi = [1 0 1]T

VvV, = —_ =
2=Y2 (Vl,V1>V1 y2
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In this case y, and y; are already orthogonal.

(V¥ (va,¥3) _[__1_ 1 1]T

(vl,vl)vl (vz,vz)VZ- 3 _3 5

V3=Y3s—

Step 2. Normalize v; to get ¥;:

oo _ 1] NSNS e IR PR O
Tl TVl BT Ve T I T vEl =

The Modified Gram-Schmidt Process

By modifying the sequence of operations slightly, a modified Gram-Schmidt process is
obtained. It has superior numerical properties when the operations are carried out on
a computer with finite word size. The benefits are most apparent when some vectors in
the set are nearly collinear. As before, select y; = v; and ¥; = vy/||v,||. Next subtract
from every y;, j =2, the components in the direction of ¥;. That is, y/ =y, — (¥1, y)¥;
for j =2,3,...,n. The unit normalized version of y, is selected as ¥,. Then the
components along the direction of ¥, are subtracted from all y/,

y]." = y]' —_ <€72, y]>€’2 fOI‘] = 3,4, N

This continues until all » orthonormal vectors are found. Theoretically, identical
results will be obtained from both versions, but practically, because of finite machine
precision, some (¥, ¥;) factors will not be precisely zero and the results will differ.
Matrix versions of the two construction processes are given in Problems 5.17 and 5.18.

EXAMPLE 5.8 Repeat the previous example using the modified Gram-Schmidt process.

As before v, =y, and ¥, is unchanged. Then y; =y, — (¥1,y2)¥; as before, and y;=
ys— (¥, ya¥=[-1 1 1]". Finally, %;=y/|ly}l| and y;=y5— (%, y¥%>=[~3 —3 3]". The
final orthonormal set is the same as before, but the intermediate operations are different. [ |

Use of the Gram-Schmidt Process to Obtain QR Matrix Decomposition

It is frequently useful to express an n X m matrix A as a product of an orthogonal
matrix Q (i.e., Q' = Q) and an upper-triangular matrix R. The Gram-Schmidt proc-
ess is one way of determining Q and R such that A = QR. Assume first that the m
columns a; of A are linearly independent. This requires that m =n. If the Gram-
Schmidt process is applied to the set {a;} to obtain the orthornormal set {t;}, the
construction equations for the t; vectors are

t, = oy ay, L=opa +tapa,..., tt=aja toyat-+o;a

Calculation of the o scalar coefficients involve inner product and norm operations, as

demonstrated earlier. Collectively, these construction equations can be written as the
matrix equation



Sec. 5.7 Orthogonal Vectors and Their Construction 17
P0L11 Q2 O3 Aim i
0 Q2 O3 Qom
[tl t2 tm] = [31 a, am] 0 0 Q33 A3y (51)
0 0 0 Qo

or simply as T = AS. Although T need not be square, it has certain orthogonality
properties. By construction, (t, t;) = §,. This means that T’ T = I,. However, T is not
orthogonal in the sense defined as the end of Sec. 4.8 because TT” # I, unless n = m.
The S matrix is upper-triangular and nonsingular (because by Sylvester’s law of de-
generacy S must have rank m). Its inverse is also upper triangular. Therefore, several
alternate forms are immediate.

I, =T’AS, T’A=S"' and A=TS (5.2)

The last equation is almost in the widely used QR decomposition form—but not quite
because T is not generally square and not truly orthogonal. The original columns in A
can always be augmented with additional vectors v, in such a way that the matrix
[A | V] has n linearly independent columns. The Gram-Schmidt process can then be
applied to construct a full set of n orthonormal vectors {t;}, which can be used to define
the columns of the n X n matrix Q. This is true regardless of the size or rank of A—that
is, the earlier assumptions that m = n and Rank(A) = m are no longer required.

Although the expressions in Eq. (5.2) were derived from a Gram-Schmidt con-
struction point of view, the last version has a Gram-Schmidt expansion interpretation
as well. This point of view is used here. If a given column a; is expanded in terms of the
orthonormal set {t;}, the kth expansion coefficient is (t;, a,), or t{ a; All the expansion
coefficients for all a; columns are contained in the matrix given by Q" A =R. The
matrix R thus obtained will be upper-triangular (or the nonsquare generalization of
upper-triangular), with exactly r4, = rank(A) nonzero rows. Since Q is orthogonal, it
follows that A = QR. R is a generalization of S~ and Q is a generalization of T in Eq.
(5.2). The following five matrices illustrate the range of possibilities. Both the original
(A=TS™") and the augmented (A = QR) forms of the decomposition are shown for
each matrix. Results are rounded approximations.

~ 1 1]_[0.707

m = n, not full rank: A—L1 1}—[0.707][1.414 1.414]
10707 —0.707][1.414 1.414}
=lo707  o707ll0 o
111 [02673  0.3132]

m<n, fulltank:  B=|2 —1]%0.5345 ~0.8351 [3'7417 %’3223]
3 2] losois  0.4523] :
(02673 03132 0.9113][3.7417 1.3363
—l0.5345 —0.8351 0.1302|[0 2.053
10,8018 0.4523 —0.3906100 0
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1 2} lo.zms}
) |2 4|=10.5345{[3.7417 7.4833]
m <n, not full rank: C= 3 6 0.8018

[0.2673 —0.9569 —0.11391[3.7416 7.4833
=10.5345 0.2455 -0.8087]|0 0
10.8018  0.1553  0.5771](0 0
216
m > n, full rank: D—_1 4 8]
_ [0.8944 ——0.4472][2.2361 2.6833 8.9443]
~10.4472  0.8944]110 3.1305 4.4721
1 4 7 3
m>n, notfullrank: E={2 0 2 1
3 4 9 4

=1{0.5345 —0.6172
10.8018  0.1543

[0.2673  0.7715 0.5774}[3.7417 4.2762 1.0156 4.543 }

0.2673 0-7715}[3.7417 42762 1.0156 4.543 ]

0 3.7033 5.5549 2.3156

=10.5345 —0.6172 0.5774]|0 3.7033 5.5549 2.3156
10.8018  0.1543 —0.5774110 0 0 0

The determination of a QR decomposition is not generally a hand calculation. It
is very worthwhile to have a computer algorithm for this purpose. The QR decom-
position procedure provides a good way of determining the rank of a matrix. It
can be adapted to solving the eigenvalue problem of Chapter 7. Finally, in
Chapter 12 it provides an easy way of determining a minimal-dimension state
model from an arbitrary state model.

5.8 VECTOR EXPANSIONS AND THE RECIPROCAL BASIS VECTORS

Every vector x € ¥ has a unique expansion
n
X= 2 av;
i=1

with respect to the basis set B = {v,, i =1, n}. Taking the inner product of v; and x gives

n

(v, Xy = <V,-, é a; v,-> = > a/{v;, v;)

i=1
If the basis set is orthonormal so that (v;, v;) = §;, then the jth expansion coefficient is
a; ={v;, X).
EXAMPLE 5.9 Use the set of orthonormal vectors generated in Example 5.7 as basis vectors
and find the three coefficients a; which allow z=[4 —8 1] to be written as

z=a1V1+a, v, +as¥;
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Because {¥;} is an orthonormal set,

a =(V1,2), a,=(¥2,z) and a;=(¥3,2)
so that k
5 19 5
2=V ——=ht+t—=V [
V2 Ve V3

Basis vector expansions can be used to gain insight into the state equations of a
time-invariant dynamic system

x = Ax + Bu
y= Cx + Du
At any given time instant, x € 3, the n-dimensional state space. Let {v,i =1,...,n}

be a set of constant basis vectors for Z. Then at any time instant there exists a set of
unique scalars o; such that x=a;v; + -+ + o, v,, or x= Va. Since all v; are constant,
the time variations of x must be contained in the expansion coefficients «;, and thus
x = V. Substitution into the state equations gives

Va=AVa+Bu or @a=V'AVa+V!Bu and y=CVa+Du

By defining A’ = V'AV, B’ = V!B, C' = CV, and x’ = a, it is seen that the change of
basis vectors from the original set, which might have been the natural cartesian set, to
{v:} has created a different state variable model for the same system. In Chapter 3
various forms of the state variable models were derived. Is it possible that all the
varieties which were presented can be related by a simple change of basis? That this is
not always so is now demonstrated. Consider a system whose input output transfer
function is H(s) = (s + 1)/(s* + 3s + 2). The controllable canonical form of the state
equations are obtained from Figure 5.2 as

SR DY

’

The observable canonical form is obtained from Figure <5.3 as

o2 el oo o

Figure 5.2
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p
t Figure 5.3

It is to be shown that no basis set (or equivalently, no nonsingular matrix V) exists for
which all three transformations from A, B,C to A',B’, C’ will be true. Consider first
V'AV=A’, or [_(2) _ ;]V = V[:g (1)] Expanding V into components v; and writ-
ing out the matrix products shows that v;; must equal v, but that V is otherwise
unrestricted so far. From the expanded form of CV =C' it is found that equality
requires in addition that v, = v,. Using both of these restrictions in V™' B =B’ con-
verted to B = VB’ gives

e selli]= L

Viz Vi 1 1

which is an impossible contradiction. These two particular state models are not related
by a simple change of basis vectors.

Can some other type of transformation be found which relates the primed and
unprimed state models? To answer this, differentiate both forms of the y equation,
giving '

y=Cx=CAx+CBu and y=C'x'=C'A'x'+C'B'u

Grouping the differentiated and undifferentiated y equations together and combining
all u terms gives

eal=leab [P
cal® ~lca 0

Call the 2 X 2 matrix coefficients of x and x’, Q and Q’, respectively, and let the column
coefficient of u be W. Q' is invertible in this case, so x’' = [Q'] ' {Qx + Wu}. Comparing
this with the transformation x’ = Vx, which represents a change of basis, the presence
of the Wu term is an obvious difference. However, the important difference is that
[Q']7'Q can never be represented by a nonsingular V, since Q is singular for this
system. Many variants of the state equations can be related by a change of basis
vectors. The particular system models examined here cannot because of a failure in a
basic property, to be examined in detail in Chapter 11.

Reciprocal Basis Vectors

When the basis set B = {v;} is not orthonormal, the preceding simple results no longer
hold, but every vector z € ¥ still has a unique expansion
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n
= 2 a;v;
i=1

Another set of n vectors, called the reciprocal basis vectors {r,,r,, . . . ,r,}, is introduced
to facilitate finding the expansion coefficients. These reciprocal or dual basis vectors
are defined by n? equations, each of the form

(r;, Vj) = Sij
In matrix form this set of equations becomes
RB =1

where B is the n X n matrix whose columns are v; and R is the n X n matrix whose rows
are T}. Thus R = B, so the reciprocal basis vector r; is the conjugate transpose of the
ith row of B™!. With the reciprocal basis vectors available, it is apparent that the
expansion coefficients are given by a; = (r;, z) so that

n
z= 2 (r;, Z)v;
i=1

EXAMPLE5.10 Letv,=[1 0]"andv,=[-1 1]". Expressthe vectorz=[3 3]”interms of
this basis set.

First, the reciprocal basis set is found from

1= 1
k= [0 1] - [0 1]
sothatr;=[1 1]"andr,=[0 1]". The coefficients are

a,=(r;,z)=6 and a,=(r;,z)=3

so that z = 6v; + 3v,. A sketch of the r; and v; vectors may be informative. |

The matrix B of basis vectors need not always be square. For example, the basis set for
a two-dimensional subspace of a four-dimensional space would consist of two b; vec-
tors, each with four components. B is of dimension 4 X 2 and has no inverse in the
usual sense. There will be two reciprocal basis vectors r; also, and using their conjugate
transposes as rows, R is of dimension 2 X 4. There are two ways for determining R.
One could augment the columns in B with two more columns B, so that [B | B,] is
square and invertible. If both columns in B, are selected to be orthogonal to all
columns in B (by forcing BB, =[0]), then [B B,]'= [ﬁ
transposes of the desired reciprocal basis vectors are found in the first two rows of the
augmented inverse. The second method of finding R is to notice that R = (B"B) ™! B”
will have the desired orthogonality property RB = 1. In fact, these two methods give
the same result. The direct expression for R is called the left pseudo-inverse of B and
appears in many applications involving projections, approximations, and least-squares
solutions, as is seen in the next chapter.

]. That is, the conjugate

EXAMPLE 5.11 Find the reciprocal basis vectors for the basis set b,=[1 1 0 1]” and
b,=[2 1 1 0]". Then use them to find the components of the vectory=[3 0 1 2]"along
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Figure 5.4

these two basis directions. That is, find the projection of y onto the two-dimensional space
spanned by b, and b..
Using the augmentation approach first, we must find two independent solutions of

X1
[1 10 1]xz=[o}
2 1 1 ol{*s| (o

Two solutionsare b; =[0.5 0 —1 0.5]7andb,=[0.5 -1 0 0.5]". Using these to form B,
and inverting gives

1 1 2

0 1

[R] 3 0 3 —3

o=l

I PRI
1

5 =5 0 3

Direct calculation of the second method shows that (B”B) ™' B” gives the first two rows, namely,
R,sor;=[0 3 -3 Handr,=[3 0 ; —3]". The expansion coefficients of the vector y
along the basis vectors b; and b; are (r;, y) =1 and (r;, y) = Z. Note that both these calculations
are given by the matrix product Ry. The resulting vector, the projection of y onto the space of
{by, b}, isy, =[5 5 % 1]" when it is expressed in terms of the same basis vectors as the
original y. This vector could just as well be referred to in component form as [1 3]”, pro-
vided it is understood that the basis vectors being used are b, and b,. The component of y
which is normal to the space of {by, by} is given by y, = (rs, y)bs +(rs, y)bs=—3bs +3bs=
[2 -3 3 1]". The expansion coefficients can also be computed from R,y =[-3 3]”. The
original vector has been decomposed into componentsy =y, + y,, and itis easily verified thaty,
and y, are orthogonal. With a little imagination, Figure 5.4 represents the decomposition of a
four-dimensional space ¥* into two separate orthogonal two-dimensional spaces, ¥* and ¥?. The
projection of y onto each subspace is also shown. These notions are formalized in the next
section. ]
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5.9 LINEAR MANIFOLDS, SUBSPACES, AND PROJECTIONS

Let & be a linear vector space defined over the number field %. A nonempty subset, L,
of ¥ is called a linear manifold if for each vector x and y in Jt, the combination ax + By
is also in M for arbitrary a, B € F. The zero vector, of necessity, is included in every
linear manifold.

A closed linear manifold is called a subspace. In finite dimensional spaces, there
1is no distinction between linear manifolds and subspaces, because every finite dimen-
sional manifold is closed.

A subspace of an n-dimensional linear vector space X" is itself a linear vector
space contained within X", but with dimension m <n. A proper subspace has m <n.

EXAMPLE 5.12 The spaces ¥> and % of Example 5.11 are both two-dimensional subspaces of
the four-dimensional space ¥*.

The space defined in Problem 5.11 is a three-dimensional subspace of ¥°, and the first
space defined in Example 5.6 is a one-dimensional subspace of ¥”. In general, since X" has n
basis vectors, deleting any one of the basis vectors leaves a basis set for an n — 1 dimensional
subspace, deleting two allows the definition of an n — 2 dimensional subspace, etc. Note that 0
must be an element of every subspace. If it is the only element, then that subspace is zero
dimensional. -

Starting with one vector space it is possible to define other spaces, called sub-
spaces, by selecting subsets of the basis vectors. The process can also go the other way.
Starting with two linear vector spaces U and V' defined over the same number field &
a new vector space ¥ can be constructed from their sum:

%=+

This means that every vector x in ¥ can be written as

X=u-+yv, uceu, veV
If there is one and only one pair u, v for each x, then ¥ is called the direct sum of U and
V', written

X=UDV

This implies that the only vector common to both A and ¥’ is 0. In this case,
dim (%) = dim (U) + dim (V')

In Example 5.11 ¥* = ¥*@ %2, This is a direct sum because the basis vectors b; and b,
were constructed to be orthogonal to both b, and b,, and therefore every u € ¥? is
orthogonal to every v € ¥2. As a simple example of a sum (as opposed to a direct sum)
of two spaces, define U as the linear space with basis {b;, b,, b;} of Example 5.11. Then
%* =9l + Y2, The fact that both spaces have one basis vector in common prevents a
unique decomposition of vectors and causes dim (¥*) # dim (W) + dim (Y?).

Regardless of whether a space ¥ was constructed as a sum of two spaces U and V'
or if W and V' were selected as subspaces of &, each vector x can be writtenasx =u + v.
Then u is called the projection of x on U and v is the projection of x on V.
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The Projection Theorem

Let ¥" be an n-dimensional vector space, and let U be a subspace of dimension m <n.
Then for every x € ¥" there exists a vector u € U, called the projection of x on AU, which
satisfies

(x—u,y)=0

for every vector y € AU. This says that w = x — u is orthogonal to y. In other words, u is
the orthogonal projection of x on U, and w is orthogonal to the subspace U.

For proofs of the projection theorem, see References 1 and 2.

For a given x there is a unique projection u, but there are infinitely many x
vectors which have the same projection. The set of all vectors in ¥” which are orthogo-
nal to U forms an n — m dimensional subspace of X", called the orthogonal comple-
ment of A, written AU*. Every w EU" is orthogonal to every y € U. The set of all
vectors which are orthogonal to AU+ is the subspace U, that is, (U*)* = U. The spaces
%* and %’ of Example 5.11 are orthogonal complements of one another. By using any
subspace AU and its orthogonal complement, an n-dimensional space can be expressed
as the direct sum ¥"=U®U*. Each vector x EX" can be written uniquely as x =
u + v. It is easy to show that |[x|? = |ju® + ||v|]* because of the orthogonal nature of this
decomposition.

The projection theorem and related concepts can be used to develop the theory
of least squares estimation and the theory of generalized or pseudo-inverses of non-
square or singular matrices. Some of these applications appear in the next chapter.

5.10 PRODUCT SPACES

Let & and %Y be arbitrary linear vector spaces defined over the field &. Let x € ¥ and
y €Y. Then the product space ¥ X % is defined as all ordered pairs of vectors (x, y). It
can be verified that the product space satisfies the conditions of Sec. 5.3 and is there-
fore a linear vector space. Let z; = (x;,y;) and z, = (X,,Y,) belong to & X %Y. Then
addition and scalar multiplication are defined by z; + z, = (x; + X5, y; + y2) = 2, + 2, and
az; = (ax;, ay;). The zero vector in € X Y is the ordered pair of zero elements 0 €EX
and 0 € Y.

Product spaces can be formed as the product of any number of spaces.
The familiar Euclidean three-dimensional space is a product space formed from
products of the real line R!, R*=R! X R! X R!. Another common product space is
formed from n products of the space of square integrable functions, ¥,[a, b] X
$ola, b] X - - - X &y[a, b]. Each element in this space is of the form ( fl(t), fa(0), ...,
f(1)), where f;(t) € &,[a, b]. Elements in this product space are usually written more
simply as n component vectors f(¢).

The spaces used in forming a product space need not be the same type of spaces.
If R is considered as a vector space with elements ¢ and if x € ¥™, y € Y, then elements
of R X X" X Y are z = (¢, x,y). Product spaces were used in Chapter 3 in the defini-
tions of a dynamic system. It should now be clear that a number of diverse objects can
be grouped together and treated as components of a single vector in a product space.
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For example, two time points #, and #;, each in some segment 7 of the real line, an initial
state vector x(%) € 2 and a segment of input vector functions uy,, 11 € U can be used to
define a point or vector p = (%, &1, X(), uyo,1)) Which belongs to the product space
TX 71X 2% XU, One requirement of a dynamical system is that there exist a unique

mapping x(t;) = g(p).

5.11 TRANSFORMATIONS OR MAPPINGS

The concepts of functions, which were introduced 1n Sec. 3.1, are now generalized to
abstract vector spaces. Let & and % be linear vector spaces (not necessarily distinct),
which are defined over the same scalar number field &. If for each vector x € & there is
associated, according to some rule, a vector y € ¥, then that “rule” defines a mapping
of x into y. This mapping rule is referred to as a transformation (or an operator or a
function). This relationship is expressed by

A:X->Y

The transformation is & and the mapping rule is s(x) =y. The spaces € and ¥ are
called the domain and codomain of #{, respectively. The domain is often written as
%(s), and the range of o is A(X) or R(A). Obviously R(4) is contained within or
equal to %Y. This is written as R(«) CY. In general, s maps ¥ into Y, but if the
equality holds, it maps & onfo . Again, if d(x) =y, y is called the image of x or x is
the pre-image of y. The transformation « is said to be one-to-one if

X; F X, > A(x)) #F A(x;)
or equivalently, if
A(x)) = A(x) 2 X=X

If & is both one-to-one and onto, then for each y €% there is a unique pre-image
xE ¥, and an inverse transformation ™' maps y into x. In this case, s(x) =y and
A7Y(y) = x, so A7 (4(x)) = x. Thus

Ard=9

is the identity transformation which maps each vector in its domain into itself.
The null space N(A) of the transformation « is the set of all vectors x € ¥, which
are mapped into the zero vector in Y:

N(sd) = {x € |4 (x) = 0}
Linear Transformations

A transformation & : X — %Y is said to be linear if the following two conditions are
satisfied:

1. For any x; and x, E¥, A(x; + x;) = A(x;) + A(xy).
2. For any x € ¥ and any scalar a € ¥, d(ax) = ad(x).
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Although nonlinear functions or transformations arise in connection with non-
linear control systems, major emphasis in this book is on linear systems or linear
approximations to nonlinear ones. For this reason the rest of this chapter is devoted to
linear transformations.

By far the most useful linear transformation for the purposes of this book is one
whose domain and codomain are finite dimensional vector spaces. Every linear trans-
formation of this type can be represented as a matrix, once suitable bases are selected.
This is seen as follows.

Consider the linear transformation & : ¥"— %™ such that for x E¥" and y € ¥",
y=od(x). Let {v,i=1,...,n} and {u, i =1,...,m} be basis sets for X" and X", re-

spectively. Then x = >, a;v; and the linearity properties of & give
i=1

i=

y = él a; A(v;) = [d(vy) ; A(v,) i E A(v,)] 022 5.3

The vectors «(v;) are images of the basis vectors v; under the transformation . Since
y and each s{(v;) belong to ¥™, they have unique expansions with respect to the basis
set {u;},

y=2 B;u; and SA(v;)= > a; u; (5.9
j=1 j=1
Combining equations (5.3) and (5.4) gives
Y= Z Biu; = Z Q; {2 ajiuj}
j=1 i=1 j=1

Interchanging the order of summation and using the fact that the expansion coeffi-
cients ; are unique lead to

szzajiai) j=1727'°'7m (5.5)
i=1
Let [x],=[o; o -+ a,])7and [y}u=[B: B. ‘- Bnm]" be the coordinate

representations of the vectors x and y with respect to the basis sets {v;} and {u;},
respectively. (When the natural cartesian basis of Example 5.1 is used, this cum-
bersome notation is not necessary since then x=[x; x, -+ x,]" and y=[y
y2 -+ ym]".) Regardless of which basis sets are selected, the transformation y =
A(x), or equivalently the set of Egs. (5.5), can be represented by the matrix equation
[¥]. = A[x]y. The matrix A is m X n, and a typical element a; is seen to be the jth
component (with respect to the basis {u;}) of the image of v, The particular matrix
representation A for # obviously depends on the choice of basis in both X" and
Z™. Changing either basis set changes the resultant representation A. However, many
properties of o are independent of the particular representation A. For example,
the rank of o equals the rank of A regardless of which representation A is used. This is
also the dimension of the range space of «:
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rank () = r, = dim (R(A))

The range of o is frequently referred to as the column space of A.

Change of Basis
Consider the n-dimensional linear vector space ¥". Let {v,i =1,...,n} and {v/,i =
1,...,n}be two basis sets. Each vector x € X" can be expressed with respect to either

basis; for example,

where x; and x/ are scalar components. Since the basis vectors themsevles belong to #”,
one set ca be expressed in terms of the other. For example,

n
v, = > b,
i=1
Using this result to eliminate v; in the expression for x gives
n n n n n
DX 2 byvi=2x/v/ or 2 (2 b;x; —x,-’>v,-’ =0
j=1 i=1 i=1

i=1\j=1

Linear independence of the set {v,'} requires that
2 b;x;=
i=1

The component vectors [x], and [x], are thus related by a matrix multiplication:

[x]v’ = [B][X]v

A change of basis is seen to be equivalent to a matrix multiplication The effect of
a change of basis on the representation of a linear transformation is now considered.
Let & map vectors in X" into other vectors also in 2" : & : " — %", where «(x) = y. Let
A be the representation of sl when the basis {v;} is used, and let A’ be the representa-
tion when {v/'} is used. The relation between A and A’ is to be found. When using the
unprimed basis set, the transformation is represented as

Alx], = [yl
When using the primed basis set,

A'[x], = [y]v

But it was shown earlier that coordinate representations of any vector with respect to
two sets of basis vectors are related by

[X]v’ = [B][X]v [y]v = [B][Y]v
Thus
A'[B][x], = [B][y],
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The matrix B which represents the change of basis always has an inverse (see Problem
5.27), so

[B~']A'[B][x], = [y},

This is the representation of the transformation in the unprimed system. The two
representations for o are related by

B'A'B=A

This relationship between A’ and A is called a similarity transformation. Any two
matrices which are related by a similarity transformation are said to be similar matri-
ces. In the present context similar matrices are representations of a linear transfor-
mation with respect to different basis vectors.

If both basis sets {v;} and {v;'} are orthonormal, then it can be shown (see Problem
5.28) that the matrix B is an orthogonal matrix. That is,

B'=B"
In this case the two representations of & are related by an orthogonal transformation,

B’A'B=A
Operations with Linear Transformations

Every linear transformation on finite dimensional spaces can be represented as a
matrix. It is natural to expect that algebraic operations with linear transformations are
governed by rules much like those of matrix algebra. Let X", ™, and ¥” be linear
vector spaces defined over the same scalar number field . Then if

A X=X Ay X" — %" and Ai(x) =y, Ayx) =y,
then
(&4-1 + -ﬂz)(X) = &dl(X) + &Qz(X) =Y + y:

If 4:X"—>&" and A,: X" — &P, then A, A, : X"— %P and, in general, A, A, is not
defined. Thus linear transformations are distributive but not commutative.
A norm can be defined for linear transformations, as follows. If

A(x) =y

then |ly|| = |4(x)|. If there exists a finite number K such that ||4(x)|| = K|x|| for all x, the
linear transformation is said to be bounded. (Every linear transformation on finite
dimensional spaces is bounded). Assuming that  is bounded, the norm of &, written
llA|l, is the smallest value of K which provides such a bound. Alternatively, ||| is the
least upper bound (supremum or sup) of ||4(x)|/|x|| for nonzero x. Two equivalent
formulas are

1o = sup O

x+0 ]

st = sup L) (5.6)
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There are various possible choices for the norm of the vector #d(x). The most familiar is
the Euclidean norm of Sec. 5.6, but see also Problems 5.33 and 5.34. Each particular
choice induces a different form for ||d||. If A is the matrix representation for a finite
dimensional transformation, &, and if the quadratic vector norm is used, then
4|2 = max {x” AT Ax}
Ixj =1
Some properties satisfied by the norm of a linear transformation are

A ()l = [lsd]-[lxl} for all x
llsds + Aol = llyl] + [|sLo]
llsdy sdal| = [l [|sL|
lovsd]} = fex]- 4]

As defined earlier, the norm of every linear transformation is a nonnegative number,
and 1s zero only for a null transformation, i.e., a transformation which maps every
vector into the zero vector.

A particular class of linear transformations is that which maps vectors into the
one-dimensional vector space formed by the scalar number field. These transfor-
mations are called linear functionals [3].

5.12 ADJOINT TRANSFORMATIONS

Let A : %,— &, be a linear transformation, where ¥, and ¥, are inner product spaces,
with inner products (,); and (,),, respectively. For each x €¥,, A(x) =y ¥,. If zis an
arbitrary vector in ¥,, then the inner product (z, y), = (z, H4(x)), is well defined and can
be used to define the adjoint transformation A* : %,— ¥, according to (z, 4(x)), =
(A4*(z),x),. It can be shown for finite dimensional spaces that s{* is also a linear
transformation, i.e., if $*(z;) = w; and H*(z,) = w,, then d*(a;z, + 0, 2;) = a; w; +
a, w, for arbitrary scalars «; and o, € . This follows from the linearity properties of
the inner product.

EXAMPLE 5.13 Let & be a transformation from an n-dimensional vector space to an m-
dimensional space, with the usual definition of the complex inner products,

(%1, X2) éixsz, ¥y, ¥2) éifyz
The operator & can be represented by an m X n matrix A, so that
(z, A(x)) =Z"(Ax) = (ATz)"x = (Az,%)

For this example s4* is represented by the matrix A”. n

The adjoint transformation defined by the inner product should not be confused
with the adjoint matrix defined and used in Chapter 4. Adjoint transformations appear
in several roles in modern control theory, and some of these will be developed later.
Only a few properties of adjoint transformations are presented here.
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If A: %, —%X,, then A*: X, —>X,. Also, A*A: X, —%; and AA*: X, —> X,. If
X, =%, and A = A*, then A is said to be self-adjoint. In all cases, it can be shown that
|\l = []4*||, and that (4*)* = . It is clear that {*{ is generally not equal to s{s4*.
Those particular transformations for which #*sd = {4 * are said to be normal trans-
formations. }

Let o :%,— %, be an arbitrary linear transformation. Then the linear vector
spaces ¥; and ¥, can be written as direct sums

%, = N(sd) B R(s4*)
%, = N(4*) DR(A) (3.7)

where N(-) and R(-) are the null space and range of the indicated tranformations. R(+)
denotes the closure of the range R(-), that is, R(-) plus the limit of all convergent
sequences of elements in %R(-). In finite dimensional spaces every subspace is closed, so
that R(-) = R(-). Equation (5.7) constitutes an orthogonal decomposition of ¥, into
two linear subspaces. That is, for any vector x € N({) and any vector y € R(4*),
(x,y) = 0. Equation (5.7) also provides an orthogonal decomposition for ¥,. Addi-
tional results for abstract transformations and their adjoints are found in the problems
for this chapter. More concrete applications, where the operators are just matrices, are
found in Sec. 5.13 and throughout the next chapter.

5.13 SOME FINITE-DIMENSIONAL TRANSFORMATIONS

Every linear transformation from one finite-dimensional space to another finite-

dimensional space can be represented as a matrix. Within this general category, a few
special transformations are now discussed.

Rotatiohs

A particular transformation that frequently arises in control applications is a pure
rotation. This can often be viewed in two ways. The result can be considered as a new
vector obtained by rotating the original vector, or it can be considered as the same
vector expressed in terms of a new coordinate system which is rotated with respect to
the original coordinate system. The latter point of view is adopted for the time being,
and the treatment is restricted to real, three-dimensional space, ®°. Let {x;, x,, X3} be
an orthonormal basis set, and more specifically, let it define a right-handed cartesian
coordinate system. Let {y;, y,, y3} be another right-handed cartesian coordinate system.

The set {x;} might represent an orthogonal triad fixed to an aerospace vehicle or a
tracking antenna. The set {y;} might represent an inertially fixed coordinate system.
These two sets can be brought into coincidence by a sequence of rotations. The most
familiar set of angles of rotation are the Euler angles [4], although the present
discussion applies to any sequence of finite rotations such as those of Figure 5.5. A
rotation 6 about the x, axis rotates x; and x; into x; and x3, and leaves x; = x,. A
rotation ¥ about x{ gives x| = x; and x5, x3. The final rotation ¢ about x3 gives y;, y,, and
Y3 = X3. ‘ '

Let z be an arbitrary vector and let [z], [z]', [z]", and [z]” be its coordinate
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6

%

’
X,

Xy

Figure 5.5

representations in the {x;}, {x/}, {x/'}, and {y;} coordinate systems, respectively. It is
_easily verified that

[cos® 0 —sinb 1 0 0
[z'=| 0 1 0 |[z], [2]"=]0 cos¥ siny |[z]’
[ sin® 0 cos®6 0 —siny cosy ;
i (5.8)
cosd sind O
[z]"=|—sind cosd Offz]"
L 0 0 1

The overall transformation from [z] to [z]” is given by the product of the three
transformation matrices.

A symbolic method of representing coordinate rotations has been developed
[5, 6]. These resolver-like diagrams, called Piograms, make it possible to write vector
components in the new coordinate system without resorting to successive matrix
multiplications (see Problem 5.37).

Reflections

The relation between a vector x and its reflection x, at a plane surface defined by a unit
normal n is X, = x — 2(n, x)n. That is, x and x, are equal except for a sign change in the
component along n. This can be rewritten as

X, = X — 2n)nx = [I — 2n)(n]x

The matrix A, = [I — 2n)(n] is the general representation of a reflection transforma-

tion. It is characterized by the fact that |A,| = —1, as verified by using the results of
Problem 4.5.
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Projections

A simple example of a transformation $4(x) which maps x into its orthogonal projec-
tion on a hyperplane with a unit normal vector n is

A, =[I—n)n]

This is fairly obvious since A, x=x—(n,x)n has the effect of subtracting out the
component of x along n. It is easily verified that A, A, = A] = A,. In general, any
linear transformation which satisfies

A=A

is a projection, although it need not be an orthogonal projection as in the above case.
It is always possible to express a linear vector space as a direct sum ¥ = U DV, where
A and V" are nonvoid subspaces of €. This means that for each x € ¥ there is one and
only one way of writing

x=u+v, whereueU,vevV

A transformation % satisfying P(x) = u is said to be the projection on °U along V.

A Practical Application. Many control problems involve coordinate rotations.
Some involve projections of vector quantities onto a sensor and others involve reflec-
tions. A typical kind of pointing and tracking example from geometrical optics is now
given to demonstrate all three.

EXAMPLE 5.14 Suppose that an earth resource satellite consists of a steerable plane mirror
and an imaging focal plane. The image of a right angle formed by the square corner of a
Nebraska cornfield is to be captured on the focal plane. This image will be skewed or distorted—
that is, the edges of the field will no longer appear orthogonal in general. Let v; and v, be unit
vectors at the corner of the field, and let vi and v; be their images on the focal plane. Find
expressions for these images and then evaluate their inner product to show nonorthogonality.

There are four coordinate systems involved in this problem, the ground-fixed system
{x, y, z}, the satellite coordinate system, the mirror coordinates {x.., ¥, Z.}, and the focal plane
coordinates {x;, y, zs}. Figure 5.6 shows these and defines the satellite position with respect to
the corner in terms of the azimuth angle ¥ and zenith angle 8 and the slant range R. If z,, is the
normal coordinate to the mirror, then the vector z,, can be written in terms of components in the
{x, y, z} system as

0 0
z, = TGM 0= TGS TSM 0
1 1

where Toun, Tos, and Tsa are 3 X 3 rotation matrices that transform vectors from mirror-to-
gound, satellite-to-ground, and mirror-to-satellite, respectively. Note that v, and v, are assumed
aligned with the ground x and y axes, respectively. The apparent reflections of v; and v, are
given by

vi=[1-2z,zLlvi=A, v,

va=A, v,
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Satellite

Mirror Focal plane

Ym

sin § cos ¢

R=-R <sinfsin y
cos 8
Object on ground
Figure 5.6

where A, is the reflection matrix for the mirror. The reflected images are still expressed in
ground coordinates. Let the normal to the focal plane be the vector z- and assume that the x;and
yr directions in the focal plane are suitably defined. When expressed in the focal plane coordi-
nates, the reflected images of the two vectors are

Vi=Tr A,vi and v,=Trc A, Vv,
where Ty is the transformation from satellite to focal plane coordinates and where Trs =
Tes Tse = Trs Ths. Note that because all the coordinate frames are orthogonal, the transfor-
mation matrices are orthogonal, so Tse = Tgs = Ts. The triply primed vectors are still three-
dimensional. The focal plane images are the projection of these onto the focal plane:

1 00
vi=[I-nn"v/=A,v/=|0 1 O]v}
0 00

and v5=A, vy, where n=[0 0 1]". The projection matrix has been named A,. In general
there would be a lens system between the mirror and the focal plane. It merely scales the vectors
without changing their directions, so this complexity is neglected here. The true physical angle 6
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on the ground is assumed to be 90° here, but in general it is given by cos(6) = (v, v»). The
apparent angle on the focal plane is found from cos(6;) = (vi, va)/|[vi||[[v2. |

EXAMPLE 5.15 In order to use the relations of the previous example the various trans-
formation matrices must be known. For simplicity the satellite coordinates are assumed aligned
with the ground-fix coordinates so that Tgs = I. The optical focal plane is assumed fixed to the
vehicle with an orientation which gives

-1 0 0
=0 0 -1
0 -1 0

That leaves only the mirror orientation to be specified. However, it cannot be arbitrarily
specified. The mirror must be steered so that the correct scene is reflected and projected upon
the focal plane. Treat this as an open-loop control problem and determine Tsa so that the
satellite-to-ground vector R is projected onto the focal plane origin.

Note that Tg,, is needed to find the vector z,,, which in turn is used to calculate A,. The
desired A, matrix will now be found directly. The R vector, after reflection, must be entirely
along the normal to the focal plane, so

[O O R]T=TFGArR (59)

is required. In order to determine the unknown mirror orientation matrix A,, two more inde-
pendent equations are needed. One can be obtained by specifying how the x;, yraxes are rotated
about the focal plane normal. One way of doing this is to force the unit vector u, which is normal
to both R and the ground x axis, to project along the —yyaxis. u = R X x/|R X x|| and then

[0 -1 O]TzTFG A,u (510)
A third independent equation is available from the cross product of Eq. (5.9) and (5.10):
[0 0 RI"X[0 -1 0]"=Trs A, (RXu) (5.11)

Since Tgs =1, Trs = Tre. Thus Eqgs. (5.9), (5.10) and (5.11) can be combined into one matrix
equation and solved to give

00 R o
A,=|-R 0 O|[R|u!Rxu]!
o1 0] "'

Using the definition of A,, the orientation of the mirror normal vector can be found. The
required gimbal angles for the mirror can then be calculated and used as the open-loop com-
mands to the two axes of the mirror-drive servos. Closed-loop error-nulling controllers would
normally be used in an actual system. The purpose here was to demonstrate that rotations,
reflections, and projections are useful in real control problems. ]

EXAMPLE 5.16 For the system of the previous two examples, suppose the satellite is located
with respect to the desired corner at B = 30°, ¢ = 45°, and a slant range of 100 nautical miles.
Compute the skew in the 90° corner.

With these values,

—-0.9524 0.13606 0.33328
0.30855  0.35998 0.88177
0.11783 —0.94265 0.33673

The focal plane images are found to be v|=[0.95242 —0.11783]" and v5=[—0.13606
0.94265]7, so that the inner product gives 8; = 105.266°. The skew (distortion from the true

A, = (rounded)
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angle) is 15.266°. As the angle B approaches zero (direct overhead viewing) the skew approaches
zero for all §. The skew also decreases to zero if the corner is viewed from above either the x axis
or the y axis, i.e., for ¢ either 0° or 90°. Table 5.1 gives results for a few representative

combinations.
TABLE 5.1
U B 05
45 30 105.266
45 20 96.903
45 10 91.741
45 0 90
0 30 90 ]

5.14 SOME TRANSFORMATIONS ON INFINITE DIMENSIONAL SPACES

Most of the analysis of lumped-parameter systems in modern control theory can be
considered in terms of a finite dimensional linear space, the state space. Consequently,
the major emphasis is on finite dimensional transformations. However, transforma-
tions on infinite dimensional spaces do arise, and two of the more important ones are
mentioned here.

It is recalled that the dimension of a space is equal to the number of elements in
its basis set. The set of all periodic functions with period 7 is an example of an infinite
dimensional space and its basis could be selected as the functions {sinnt, n =0,1,...}.
The expansion with respect to this basis is the Fourier series. The set of all continuous
functions, or of integrable functions, or of all square integrable functions are other
examples of infinite dimensional spaces. A space is not necessarily infinite dimensional
just because its elements are functions of time. For example, the space of all poly-
nomials of degree 3 or less—i.e., {f(0)| f(t) = ap + o1 t + o > + a3 *, oy € F}—is a four-
dimensional space.

Integral Relations

The integral form of a system’s input-output equation was mentioned in Sec. 1.5 and a
particular example is used in Problem 5.36. For a linear system the input and output
can be related by

y(1) = [ W, ) dr

where y(T') is the m X 1 output vector at time 7, u(f) is an r X 1 input vector for each
value of ¢, and W(¢, 7) is the m X r weighting matrix. At each time 7, y(7) is a vector in
an m-dimensional space. A particular input function, u(#),t € (—, T] can be consid-
ered as an element of the (infinite dimensional) input function space U. The input-
output integral represents a transformation & : U — Y™, where d(u) = y(T).

The equation for the Laplace transform

yo) = [ ey ar
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provides another example of a linear transformation on infinite dimensional spaces.
The domain of these transformations must be suitably restricted so that the indicated
operations ‘“‘make sense.” In other words, nonintegrable functions cannot be inte-
grated, and functions which cannot be bounded by some exponential function do not
have Laplace transforms.

Differential Relations

A linear differential equation can be considered to be a transformation, but again
infinite dimensional spaces (function spaces) are involved. The simplest case

& _
dt

maps a function x(¢) into another function u(f). Of course, the domain of this trans-
formation must be restricted to the class of functions which are differentiable. Other
restrictions may be necessary as well. Perhaps only those functions for which x(0) =0
are considered. This constitutes an initial condition. The relation

u

[Idit - AJx() = Bu(y)

is another example of a differential transformation which maps x(f) into Bu(¢).
Although this equation appears repeatedly in the modern formulation of control
problems, it will not be necessary to consider it as an abstract mapping on function
spaces. Rather, this brief section dealing with transformations on function spaces is
intended only to hint at a direction for an abstract treatment of all linear transforma-
tions. If the function spaces are Hilbert spaces (i.e., complete inner product spaces),
then the results parallel the finite dimensional results to a large degree [2]. In general,
however, there will be some major differences. Every finite dimensional linear vector
space is complete, and every transformation on finite dimensional spaces is bounded.
These are not generally true in the infinite dimensional case. For example, the space of
square integrable functions ¥,[a, b] of Problem 5.22 is complete. But the space of all
continuous functions C|[a, b) is not complete because a sequence of continuous func-
tions may converge to a discontinuous function. Differential operators are examples of
unbounded linear transformations. Some of the other differences arise because of the
greater variety of definitions that can be given for norms and distance measures in
function spaces. A complete treatment of these topics can be found in texts on func-
tional analysis [1, 3, 7].
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ILLUSTRATIVE PROBLEMS

Vectors in Two and Three Dimensions

If two vectors v =[3 -5 6]andw”=[a 2 2]are known to be orthogonal, what is a?
Assuming that the given components are expressed with respect to a common coordinate
system, orthogonality requires

(v,w)=vIw=0 or 3a—10+12=0

so that o = —2.

Ifv’=[3 -5 6]andw’ =[5 8], find (v, w) and the two outer products.
Since v and w have different numbers of components and hence belong to different
dimensional spaces, their inner product is not defined. The outer products are, however,

3 15 24
vwi=|-=5|5 8=|-25 —40|=(wv")”
6 30 48

Consider the nonzero vector v with complex components v = []1] Compute v'vand v’ v.
Vector multiplication gives

viv=(j)(j)+1=0
Viv=(-))(j)+1=2
Therefore, if the real form of the inner product (v,v) = v’ v is used to define length, nonzero

vectors can have zero “length.” When the complex form of the inner product (v,v) =v"v is
used, this cannot happen.

Find the component of vV =[2 —3 —4]in the direction of the vector w’ =[1 2 1].
First find the unit vector W in the desired direction:

Wil = (w, W) = V6

W= -\}_—gw
Then form the inner product:
(v, W) =—=(2-6-4)="1Lg
V6 V6

This result indicates that v has a component along the negative w direction and its
magnitude is 8/V6. ]
Find the cross products vxw and'wX v if v=[v; v, vs] and w'=[w; w, w;] are real
vectors.
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If we let ey, €>, and e; be unit vectors along the three mutually orthogonal coordinate axes,
the cross product can be computed using the following determinant:

€ € €
VXW= Vi V2 V3
Wi W W3

Using Laplace expansion with respect to row one gives

VXwW= e1(V2 W3 — V3 Wz) b eZ(Vl W3 — V3 W1) + e3(v1 Wy — V3 W1)

1 0 0
Sincee; =|0|,e;=|1], es=| 0|, the column matrix representations are
0 0 1

V2W3 — Vi W,
VXW=|V3W; — Vi W3
| Vi W2 — Vo Wy |
ViWz — Va2 Ws
WXV=|ViW;— V3w,
_V2W1_V1W2_

Show that v X w of the previous problem can be written as the product of a skew-symmetric
matrix and w, or another skew-symmetric matrix and v.
Direct matrix multiplication verifies that

0 —V3 Va || W1 0 Wi —Wa |l W1
VW= V3 0 —Vi || W] = | W3 0 Wil Va2
—V2 121 0 Ws W, —W; 0 1v3

From the results of the preceding problem, what can be said about the product x” Ax if x is a real
three-component vector and A is skew-symmetric?

Any 3 X 3 skew-symmetric matrix could be used to define a 3 X 1 vector, and then Ax
would represent a cross product. Therefore, Ax is a vector perpendicular to x. Therefore,
(x, Ax) =x” Ax = 0 for every real x. In fact, if A is skew- symmetrlc of arbitrary dimension, the
result x” Ax = 0 is true for any real, conformable vector Xx.

Defining a Vector Space

Does the set of all vectors in the first and fourth quadrants of the plane form a vector space?
No. The first four conditions of Sec. 5.3, page 159, hold. However, if x is in the first or
fourth quadrant, —x is in the second or third quadrant, so condition 5 is not satisfied and neither
is 6 when negative scalars are considered.
Does the set of all three-dimensional vectors inside a sphere of finite radius constitute a linear
vector space?
No. If x and y are inside the sphere, x + y need not be. If a is sufficiently large, ax will also
extend outside the sphere. Conditions 1 and 6 are not satisfied.
Consider all vectors defined by points in a plane passing through a three-dimensional space. Is
this set a linear vector space?

This is a linear vector space if and only if the plane passes through the origin. If it does not,
condition 4 is not satisfied.
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What is the dimension of the space ¥ defined as the set of all linear combinations of
x1=[1 2 3 4 3]
x2=[1 0 0 0 1]
x3=[0 1 1 0 0]

The manner in which ¥ is defined guarantees that x,, X,, and x; span this space. Since the
Grammian gives |G| = 98, the set is linearly independent and thus constitutes a basis set. Since
there are three vectors in the basis set, the dimension of ¥, written dim (%), is three even though
every vector in & has five components.

Linear Dependence, Independence, and Degeneracy

Prove that the addition of the zero vector 0 to any set of linearly independent vectors yields a set
of linearly dependent vectors.

Let V' ={x, i =1,n} be a set of linearly independent vectors. This means that a,x,; +
aX;+ -+ +a,X, =0requiresa; =0,i =1, n. Select a, .1 ¥ 0. Then

a1x1+a2x2+---+anxn+a,,+10=0

so the set of vectors {0, x;, i = 1, n} is a linearly dependent set.
Use the Grammian to test the following vectors for linear dependence:

x;=[1 1 0 0], x=[1 111, xI=[0 0 1 1]
The Grammian determinant is

2 20
Gl=1||2 4 2]|=0
02 2

Hence the three vectors are linearly dependent. Note that the Grammian is symmetric for
vectors with real components. In general, it is a Hermitian matrix.
Consider two real vectors x; and x, expressed as 2 X 1 column vectors in terms of the natural
coordinate vectors. Show that |G| is the square of the area of the parallelogram which has x; and
X, as sides. ‘

We have

x'x; x7x,
XX, X2 X

xlz X1X2 COS 0

Gl = X1X2 COS O x:

where x; and x, are the magnitudes of x; and x, and 0 is the included angle. The definition of the
inner product of Sec. 5.2 has been used in arriving at this result. Expanding gives

|G| = x{x3(1 — cos®8) = x{ x; sin® @
Considering x; as the base of the parallelogram, the height is x, sin 6, so the result is proven.
What are the rank and degeneracy of the following matrices?

) 4 3 7 1
6 2 4 2 6 2 10
(@ A=|2 0 2 b)B=|{g ¢ 14 2
|1 -1 2 13 1 5
T 6 -4 -4 -9
| 24 3 0 -9
©@C=l_34 3 4 12
| 48 25 16 9
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(a) |A| = 0so that r, <3. Picking the submatrix A; = {g %)] gives |A;| = =4+ 0, s0 rs =2. The

degeneracy is g4 =n —r4 or g4 = 1. The one linear dependency relation between columns
can be written as X, = X; — Xs.

(b) |B| =0 (row 2 is twice row 4). Therefore rs <4. Any 3 X 3 matrix B, formed by crossing out
a row and column also has |B,| = 0 since row 3 is twice row 1. Therefore rz <3. It is easy to
find a nonzero 2 X 2 determinant, sorg =2andgg =4 —2=2.

(¢) |C| =0 as does the determinant of every 3 X 3 submatrix. In fact, there are just two linearly
independent column vectors

x;x=[1 3 -2 5]7 and x,=[-1 0 1 4]
which can be used to generate C. Then column 1 of C is ¢, = 8x; + 2x,. Likewise, ¢, =
1x; + 5x,, €3 = 4x,, and ¢4 = —3x; + 6x;. In this case rc =2 and gc = 2.

Gram-Schmidt Process

Use the Gram-Schmidt process to construct a set of orthonormal vectors from

147 2j 1
X, = 1Tf s X, = 1_2]: ) X3 = ]‘.
j 1+2) 5j

The Grammian is first used to verify linear independence of the set {x;}. The complex form
of the inner product must be used:

5 7 5
G: <xi, X )| = i,TX = 7 ].4 8+4]
(o X = x)=|7 148

The determinant is |G| = 377 # 0; therefore, the x; are linearly independent.
Step 1. Construct an orthogonal set of v;:

\ 2. ¢

2j 1+ —7+3j
vn=|1-2|-21-j|=L -2-3;
1+2j| S| j 5| 5+3)

Anticipating their need in advance, the products (v, vo) =21/5 and (v,,x;) = 1 + 4j are com-
puted.

1] [1+) =743 19+ 4
vl jl-3 1_§ _(1+4) —2—3§ 1 -—31+53§
\ -

51 S| j 215) | s5+3j] 21| 7+61;

Step 2. Normalize to obtain

1+ |7y
1-j| ¢=—t_|-2-3
W 105 5+3

Using (vs, v3) = %11 gives

<>
i

Sl

— 19+ 4
7917 V7917 7+ 61j
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It is a good exercise in the use of the complex inner product to verify that these results satisfy
Vi, ¥;) =8y

Given a set of independent, real vectors {y:}, show that the Gram-Schmidt process for generating
the orthonormal set {¥;} can be expressed as a recursive matrix calculation:

T, =1 (the initial condition)
vi=T:y; (removal of components along previously computed v, )
v: = vi/|vi| (normalization step)

T,.1=T:— %% (the recursion step)

The Gram-Schmidt formulas from Sec. 5.7 can be written as

i
Vie1=Yi+1— 2 (f’k, yz'+1>ﬁk
k=1
i

=Yie1— 2 W)k Yier)

k=1

s [I - 21 ﬁk)(?k])’i +1

_ [1 =S e - m&-]ym

k=1
=[T. = V)XV ]yisa
= Ti+1y,-+1

This proves the validity of the recursion from step i to step i + 1. Since it is true for i =1, this
constitutes a proof by induction. Notice that each of the sequence of T; operators is a projection
operator, since T; T; = T;. This is also easily proven by induction. It is obviously true for T, = 1.
At a general step,

Tiv1Tivi= [Ti -V ><€’i][Ti - fﬁ)(%] =TT - €’i><€’i T.—V ><€'i T, — ¥ )(Vi, €’i><€’i
=TT — e’i}("i =T, - ‘A’i><‘7i =Ti1

In this calculation the facts that (¥;, ¥;) =1 and T;,, ¥; = 0 were used.

Give a matrix version of the modified Gram-Schmidt process and contrast it with the results of
the previous problem.

Assume that y; is selected as vy, as before. Then the modified Gram-Schmidt process
immediately subtracts the components along v, from all other y; vectors, for i =2,...,n. This
can be accomplished using the projection operator P, = I — ¢;)(¥;. That is, all the y; vectors are
replaced by y/ =P.y, for i =2,...,n. These are the projections on a subspace normal to ¥;.
Then y; is selected as v, and normalized to ¥,, and the whole process is repeated. If at any step a
vector is found with |ly/|| =0 (in practice, less than epsilon), then the original y; is a linear
combination of the previously calculated {¥,,j =1,...,i —1}. In that case, the ith vector is
skipped and the process continues with the next y; .., vector. The pseudocode for this calculation
might look as follows:

Rank =0
Fori=1tom
If [ly;|| < e increment i and test next vector
If |ly:|| = € then )
Rank =rank +1
If rank = n, quit. The entire set of n has been found.
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¥ = yillly:l
P=1- €',)(“1,
Forj=i+1tom
y; <Py; (Replace y; by its projection)
Increment i and repeat

Upon completion, the number of orthonormal vectors will equal the rank of the matrix A, whose
columns are the vectors y;. Often it is desired to find a full set of n orthonormal vectors, even
though n > m or rank (A) < n for some other reason. This can be done by selecting a sufficient
number of extra column vectors with components chosen randomly and appending these to the
matrix A.

The difference between the modified and unmodified Gram-Schmidt processes is that
here each vector y; is modified to y/ repeatedly, but each vector ¥; is used only once in a
projection. In the unmodified version, each vector y; is adjusted only once, but the vectors ¥; are
used repeatedly in the ever-more complicated T; projection operators.

Geometry in n-Dimensional Spaces

The equation of a plane in # dimensions is {c, X) = a, where c is the normal to the plane and a is a
scalar constant. Find the point on the plane nearest the origin and find the distance to this point.
Any x can be decomposed into a component x, normal to the plane plus x, parallel to
the plane. Then (c¢,x) = (c,X,) + (¢, X,) =a for every x terminating on the plane. Since ¢
and x, are orthogonal, {(c,x,) = 0. Since ¢ and x, are parallel, x, = %|x,[c/|cl. Then (¢, x.) =
*+({c, ¢)|[x4|/ll¢|| = a. The + or — sign must be selected to agree with the sign of a. Solving gives the
minimum distance as ||x,,|| = |a|/||c|| and the closest point is x, = ac/{c, ¢).
Find the minimum distance from the origin to a point (xi, x;) on the line 6x, + 2x, = 4, and find
the coordinates of that point.
The normal to the lineisc¢=[6 2]7, andso|ic| = V/40. The results of Problem 5.19 apply,
and the minimum distance is |x, || = 4/\/40 = 2//10. The point nearest the origin is

A
n 5 1

Generalize the concepts of lines, planes, spheres, cones, and convex sets to n-dimensional
Euclidean spaces.

The generalization of a line is the set of all vectors satisfying

x=av+k (1)

‘where v and k are constant vectors and a is a scalar.

The generalization of a plane is called a hyperplane. An n —1 dimensional hyperplane
consists of the set of n-dimensional vectors x satisfying

(¢, x)=a )

where ¢ and a are a constant vector and scalar, respectively. Since a subspace always contains the

0 vector, equation (1) represents a subspace only if k is zero. Equation (2) represents a subspace
only if a is zero.

Points on or inside a hypersphere of radius R are defined by the set of all x satisfying
(x,X) <R?

A right circular cone of semi-vertex angle 6, with its axis in the direction of a unit vector n,
and with vertex at the origin, consists of the set of all x satisfying

(n, x)/||x|| = cos 6

If 6 = m/2, the cone degenerates to a hyperplane containing the origin.
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If the line segments connecting every two points in a set contain only points in the set, the
set is convex. A convex set of vectors in n-dimensional space is a set for which the vector

z=ax; + (1 -a)x;

belongs to the set for every xy, X, in the set and for every real scalar satisfying 0 <a < 1.

Some Generalizations

Let &[a, b] be the linear space consisting of all real square integrable functions of 7, that is, all
functions f(¢) satisfying f f(1)?d7 <. Define a suitable inner product, norm, and metric.
The three requirements for an inner product can be shown to be satistied by

(ﬁg>=£f('r)g(~r)d'r where f, g € %;|a, b]

As in other cases, a norm can always be defined as

Il =

and the metric or distance measure between two functions.can be defined in terms of the norm,

p(f, ) =If gl

The inner product space defined by this set of functions and the inner product definition is a
complete infinite dimensional linear vector space. A space & is complete if every convergent
(Cauchy) sequence of elements in 4 converges to a limit which is also in %. Any infinite
dimensional inner product space which is complete is called a Hilbert space.

Use the results of the previous problem to prove that the mean value of a real function is always
less than or equal to its root-mean-square (rms) value.
We are to prove that
1/2

l ! d < l—fT 2 d :
Tof(T) T= Tof(T) T
For any functions f and g € ¥,[0, T],

If—gl=0
or

(f-&f—-8)=0 or (,N=2Afg) - &

T
Choosing the particular function g = constant = % J; f(t)d~ gives

Lsz dt z—;: [Ldet]z

Dividing both sides by T and taking the square root gives the desired result.

Is it always necessary to define the norm in terms of the inner product?

No. Linear spaces can be defined with a norm, but without any mention of an inner
product. Such spaces are called normed linear spaces. If they are infinite dimensional spaces,
and are complete, then they are usually referred to as Banach spaces.

Two examples of other valid norms for finite dimensional spaces whose elements x are
ordered n-tuples of scalars belonging to.¥ are

”X” = m:_ax {‘X1|, |x2" e lx" ‘}
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and

elly = [Peal? + bl + -+« + e T
where p is real, 1 =p =o. The quadratic norm is a special case with p =2. All the required
axioms for a norm are satisfied for these examples.

Let ¥ be a linear space consisting of all n X n matrices defined over %. (Let n = 2 for simplicity.)
Show that

(a) (A,B)=Tr(A”B) s a valid inner product; and
(b) an orthonormal basis for this space is the set of matrices

(R TS T

(a) The inner product of two elements must yield a scalar. Obviously the trace gives a scalar. In
addition, the three axioms must be satisfied:
@) (A, B) = (B, A) but

(A,B)=Tr (A”B)
and

(B,A) =Tr (B’ A) = Tr (B"A) = Tr (B"A)” = Tr (A7 B)

(ii) (A, aB; + BB) = a(A, B;) + B(A, B,) but
(A,oB; + BB,) = Tr[AT(aB; + B;)] = a Tr (A”B;) + B Tr (A”B,)

= (A, B,)) + B(A,B>)

(iii) (A, A)=0 for all A and equals zero if and only if A = 0. Let A = [a;;]. Then

(A, A)=Tr(ATA) =G an + @21 an + G212 + Gnax
= lauf* + |aa|* + @] + |azf?

This is obviously nonnegative and can vanish only if a; = 0 for all i and j.
(b) First show that the set is orthonormal. G = [(V, V;)], where V; are the four indicated
matrices. Simple calculation shows that G is the 4 X 4 unit matrix, and thus the set is
orthonormal. They span the space, since every 2 X 2 matrix [a;] can be written as

A= a11V1 + a12V2 + a21V3 + a22V4

An orthonormal set which spans the space is an orthonormal basis set.

Let X be an n-dimensional linear vector space with x € ¥. Discuss the transformation {(x) = ||x].

This function maps % into the real line, s : ¥ —%R'. In this case the range of o is the
nonnegative half line, so R(s4) # R' and the mapping is not onto. It is not one-to-one either,
because many different vectors can have the same norm. Thus, given a value for |[x||, it is not
possible to determine which vector x is the pre-image, i.e., ™' does not exist. This trans-
formation is not a linear transformation since, in general,

Ax1 + X2) = [[xX1 + Xol| # [[xa]| + [Ixal| = A(x1) + A(x2)
The null space of this transformation consists of the single vector x = 0, by the properties of the
norm.

Change of Basis

A vector x is represented by the n X 1 column matrix [x], with respect to the basis {v;} and by the

n X 1 column matrix [x], with respect to another basis {v/}. Show that the matrix B satisfying
[x],» = B[x], always has an inverse.
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Expand a typical member of the first basis in terms of the second basis, v, = Z byv;'.

Likewise, a typical v/ can be expanded as v/ = 2, c;v.. Thus v/ = Z Cki Vi Ehmmatmg v/ from
i=1 k=1
the first equation gives

2 bl] z CrkiVik = 2 2 bt]ck:vk

i=1lk=1

Because the vectors v; are linearly independent, this requires
S _11 ifk=j
2 bycu = {o if k ]

Letting B =[b;] and C = [¢;], this can be written as CB =I. If the preceding procedure is
modified slightly, by eliminating v; from the second equation, we obtain BC = I. Taken together,
the last two results imply that C = B™".

Show that if {v;} and {v/} are both real, orthonormal basis sets, then B! = B”.

Results of the previous problem give B~ ' = C. But ¢; =(r;, v/), where {r;} are the recip-
rocal bases associated with {v;}. Since {v;} is an orthonormal set, r; = v; and ¢; = (v,, v/'). Simi-
larly, b; = (r/, v;) in the general case, where {r/} is the set of reciprocal bases for {v;'}. For the
orthonormal case, b; = (v/, v;). Interchanging subscrlpts gives b;; = (v/, v;). For the case of real
vectors this shows that b; =c;, orB"=C=B""

Adjoint Transformations

Consider the linear transformation & : ¥ — %, with the adjoint transformation s{*. Prove that
lldll = 4[]

The definition of the adjoint requires that (y, #(x)) = (d*(y),x) for all xEX,y € Y. The
Cauchy-Schwarz inequality and the definition of ||4*| gives

Ky, (x))] = (s*(y), ¥)| = [ls* (¥l = [l iyll-Ix]
This must be true for all y, x including the particular pair related by ${(x) = y. Using this gives

GOl _

(A(x), A(x)) = [|4*[|-[|A ()| {x] H I

=l

for all x # 0. Therefore,
s = [Is4]| (1)
Similarly, if particular x, y pairs are chosen such that x = s{*(y), then

[(s8*(y), S (Y = liyl-ls€ Gl = iyl x| lls4]

or

st =yt sl or EE<pay forany +o

Therefore, ||| = ||4*||. This, together with Eq. (1), gives ||| = [[s4*].

Let & be the set of all n-component real functions defined over [, ¢;] which have continuous first
derivatives and let Y be the set of all continuous functions defined over the same interval. Find
the adjoint of o : X — Y if d(x) = (d/df)x — Ax, where A is an n X n matrix.

The inner product for ¥ and % takes the form of equation (7). The adjoint is defined by
equation (2):
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y
(Xy, Xo) = J X1 (T)xx(7) d1 : ' 0))

(¥, A(x)) = (A" (y), %) ' @)
Integrating the left-hand side of Eq. (2) gives ‘

ft:yT('r) l:-“% - Ax('r)] dv = y'(7)x(1) : - II: [%yTT + y(T)TA]X(T) dr

The term involving the limits of integration, y”(¢;)x(#;) — y”(fo)x(fo), could be made to vanish by
specifying appropriate boundary conditions. Ignoring this term, the remaining term is in the
form of the right-hand side of Eq. (2). Therefore, d*(y) = —(dy/dt) ATy(1). We conclude that
the formal adjoint of x = Ax is y = —A”y. This adJomt differential equation arises frequently in
optimal control theory and in other applications.
Consider the equation x = Ax with x(to) Xo. Show that y7(£)x(¢) is a constant for all time, ‘where
y satisfies the adjoint equation y = —A”y.

A necessary and sufficient condition that y" x be constant is that (d/dt)(y x) 0. Using
the chain rule for differentiating gives (d la(y"x) =y x + y x. Substituting in for y and x gives

(d/dt)(y"x) = —y"Ax+y Ax=0

The input-output equation y(f) = f,o W(t, t)u(r)ds defines a linear transformation from the
space of r-component square integrable functions u(f) € U to the set of m-component continu-
ous functions y(7) € ¥. The functions are defined over (f, ). Consider ¢ : U —> % and find &*, if
the inner product for each space has the form

(%1,%;) = f (t)xz(t) dt

The transformation « is d(u) = J',O W(t, t)u(t)dr and (z, A(u)) = (&4*(1) u). Usmg the
inner product definition gives

(z, A(u)) = f z'(1) f W(t, T)u(t)drdt = f f ' ()W(, 1) dtu(t)dT
to to tg Jto
Therefore, #*(z) = f,: W(t, 7)z(f) dt. The weighting matrix for the adjoint equation is the trans-
pose of W and the integration variable is ¢ rather than 7 as in the original transformation. This
operator is self-adjoint if W(z, 1) = W'(r, 1).

Matrix Norms

Consider a linear transformation which maps vectors from one finite dimensional space to
another. Let A be its matrix representation. If ||x|| = max |x;|, find ||AJ}.
With this definition for the vector norm, !

; a;x; | < {mfix ;ai,- }{max |x,]} {maxz |a,,]}l|x|]

The norm of A must satisfy |Ax]| < IAJ|Ixl. We see that max >, |a;| qualifies as a bound for
i

x| = max

lAx]//|Ix]|, with ||x|| # 0. To show that it is the least upper bound, and hence is equal to the norm, we
must show that no smaller bound is possible. This can be done by demonstratmg that the bound
is actually attamed for some x.

Let i* be the row i, which maximizes the above sum. Let

. 0 if Ajxj = 0
x]. = ai*j .
2., Otherwise
i*j
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For this choice, ||x]| =1 and'

z a;Xx; 2_11_4
j Ia, J|

Therefore, A = max >, a;].
P | j

max

i

= 2 ;)]

Let the vector norm be defined by ||x|| = 2 lx:| and find a bound for |A].

Beginning with the given definition for the norm, a series of manipulations gives

x| = 2 =2 N2 | =22 eyl 2 ol = X X fay

Since ||Ax|| < ||x|| 2 E |a;|, the double summation term is an upper bound for ||Ax|/|x||, ||x|| # O.
i :

Since ||A| is the least such bound, [A] < 2 E |a].
N » ! ]

Miscellaneous Applications

Find the pI'O]eCthD ofy=[1 -3 4 2 8]"onthe subspace spanned by
=1 2 -3 1 0" and x,=[0 1 3 3 1]

The dimension of the subspace is two, since \GI 284#0 An orthonormal basm is
constructed:

X1 1

o =1 _ 1 _ T
TVt 2 3 L0
; 4
9, = X2 — (X2, V)% _ 1 gg
: x> — (%2, ¥)¥1| V4260 49
L15

The projection of y on this subspace is

Yo = (V1, Y)¥1 + (¥2, )2

~1 41 ~208
-2 23 ~131

Vs + -2 o | 3| +2 33 =L] 1470
Vae0 * | 7| 4260] 39 |7 284 T

0 15 285

The projection y, is the closest vector in the subspace to y, in the sense that

ly =y, P =<lly — 2

for every z in the subspace. These results are directly related to the problem of least squares
approximations, considered in the next chapter.

Consider the dc motor of Problem 2.5, with transfer function

Q) _ K’
V(s) s+a

If the motor is initially at rest, @w(0) =0, find the input v(z) which gives an angular velocity
o(T) =100 at a fixed time 7, while minimizing a measure of the input energy,

J = LTQZ(T) dr
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The input-output relationship is written in terms of the system weighting function. Since
W(t, 0) =% YK'/(s + a)} = K'e ™, the weighting function is W(t, 1) = K'e *“~ ™, Then

o(T) =L W(T, ©)v(7)dn

This is in the form of an inner product, 100 = (W (T, 7), v(7)), so the Cauchy-Schwarz inequality
can be used to give
100 = KW(T, 1), v ()| = [W (T, Dl-lv ()l

The minimum value of ||v (7)|| is obtained when the equality holds. Therefore,

) =100 __ 100 ___100V2a
W (T, ) {IT[K'e _a(T_T)]sz}l/z K'[1— e
o

The equality holds if and only if v(f) and W(T,¢) are linearly dependent. This means
v(f) = kW(T, t) for some scalar k. Comparing gives ||v|| = |k|||W|| = 100/||W|| and so

100 100 200ae “7 9
optima 1= W 7: 1) = —
jwip 2 Vopumal) (T) =%t —e

WP
A satellite position vector has components (X, Y, Z) with respect to an inertially fixed coordi-
nate system with origin at the earth’s center. Determine the components of this position vector
as measured by a tracking station at longitude L degrees east and latitude A degrees north, if the
angle between the X inertial axis and the 0° longitudinal meridian is ¢ degrees and the earth’s
radius is R.. See Figure 5.7.

k| =

Z, A Tracking

station

Satellite

Figure 5.7

The coordinate transformations can be represented by the Piogram of Figure 5.8. The
measured range vector has the following components in the Up-East-North coordinate system.
(These components can be read directly from the Piogram by using a few standard conventions
[5, 6].) The origin is shifted by subtracting R. from the Up component:

X[cos(dp+ L) cos\]+Y sin(d+ L) cosh+ Z sink—R.
r= -X sin(b+L)+Y cos(dp+ L)
—X cos(d+L)sin\—Y sin(p+ L) sin\+Z cosh

Demonstrate how the spatial attitude orientation of a vehicle (aircraft, satellite, etc.) can be
determined by sighting two known stars.

The attitude of the vehicle will be characterized by the 3 X 3 transformation matrix T g,
which relates a set of orthonormal body fixed axes {x, y, z} to a fixed orthonormal inertial
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X Up

East

V4 North

Tracking station
coordinates Figure 5.8

coordinate system {X, Y, Z}. This means a vector v expressed in the two coordinate systems
satisfies

Vyx Vx
Vy | = TBE Vy B
vV, Vz

Tpeis to be found. The unit vectors which point toward the two stars are assumed available from
star catalogs, in inertial components. That is,

ﬁ:‘[uX Uy uz]
€’=[VX Vy Vz]

The pointing direction of a telescope mounted in the vehicle is described by two gimbal
angles o and B as shown in Figure 5.9.

zZh ,ﬁ

<V

N
o« —> \L
x Figure 5.9

The unit vectors to the given stars are expressed in vehicle fixed coordinates as

COS ap COS 34 COS oz COS 32
s = | sina; cosBy |, V5 = | sina, cos B,
sin B4 sin 3,

where a;, B and a,, B are the pointing angles for the two stars. @ and ¥ are known, and @ and
Vv are available from measurements.

In order to determine Tgg, one more relation is necessary. A vector normal to the plane
defined by i and ¥ is constructed using the cross product. Thus

A A ~ A, A
w=aXxX?¢ and wp=1ip X ¥z
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Now tig = Tgell, V5 = TpeV, and wy = Tzw. These can be combined into

[ﬁB Q’B WB]ZTBE[ﬁ A W]

A

If the vectors to the two stars are linearly independent, then the 3 X 3 matrix [@ ¢ w]is
nonsingular and

TBE=[ﬁB 03 WB][ﬁ A\ W’]_l

PROBLEMS

Linear Independence, Orthonormal Basis Vectors, and Reciprocal Basis Vectors

Considerx; =[1 2 3], x.=[1 -2 3], x=[0 1 1"

(a) Show that this set is linearly independent.

(b) Generate an orthonormal set using the Gram-Schmidt procedure.

Considering x;, X, and x; of Problem 5.39 as a basis set, find the reciprocal basis set.

Express the vectorz=[6 4 —3]" in terms of the orthonormal basis set {¥;} of Problem 5.39.
Express the vectorz=[6 4 —3]"in terms of the original basis set {x;} of Problem 5.39 by using
the reciprocal basis vectors {r;} found in Problem 5.40. ,
Find the Treciprocal basis set if the basis vectors are x;=[4 2 1], x.=[2 6 3|7, x3=
[1 3 5]

Givenx;=[1 1 1}, x,=[1 -1 1], xs=[1 0 0]" Use these as basis vectors and find
reciprocal basis vectors. Also, expressz=[6 3 1]7in terms of the basis vectors.

Show that an orthonormal basis set and the corresponding set of reciprocal basis vectors are the
same.

Verify that the following four y; vectors are linearly independent by computing their Grammian.
Then use them to construct an orthonormal set using the Gram-Schmidt process. Then use the
orthonormal vectors to expand the vector x =[12.3 9.8 —4.03 33.33]%.

The given y vectors

4.4400002E + 017 7.7700000E + 00

| 1.2800000E + 01 _ | 2.1500000E + 01
Y1=| 1.5000000E + 00 |’ ¥2= 1 1.0000000E + 01 |’

| —2.1000000E + 01 | | 0.0000000E + 00
—3.3329999E + 00 9.1250000E + 00
| 4.1250000E + 00 | 2.1222000E + 00
Y3=| 6.6670001E — 01 |’ Y4= | —3.0500000E + 00
| 1.0000000E + 00 | | 4.4400001E + 00

Compute the Grammian for the following vectors and draw conclusions about their linear
independence.
The given y vectors

1.0000000E + 00 1.0001000E + 00 —2.0000000E + 00
_ | 1.0000000E + 00 _ |9.9989998E — 01 | —1.9999000E + 00
¥Y1=11.0000000E + 00 [  ¥27 | 1.0000000E + 00 |’ ¥3= [ —2.0000000E + 00

1.0000000E + 00 1.0000000E + 00 —2.0000000E + 00
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Find the orthogonal projection of the vectors

—4

2

and x,=|"8
3

9

X1 —

et e e

on the subspace spanned by the following three vectors.
The given y vectors

1.0000000E + 01 | 1.1000000E + 01

5.0000000E + 00 4.0000000E + 00
y1 = | —5.0000000E + 00 |, y2.=| —1.1000000E + 01 |,

1.0000000E + 00 —2.0000000E + 00

6.0000000E + 00 6.0000000E + 00

1.0000000E + 00
0.0000000E + 00
vs = | —1.0000000E + 00
—1.0000000E + 00
| —1.0000000E + 00 ]

Determme the dimension of the vector space spannedbyx; =[1 2 2 1], x,=[1 0 0 1]7,
=[3 4 4 3]~

F1nd the minimum distance from the orlgm to the plane 2x; + 3x2 = —5 and find coordinates
of the point on the plane nearest the origin.

Letc=[1 2 —1]"andy=[2 5 3]". Find the projection of y that is parallel to the family of
planes defined by (¢, x) = constant.

Show  that the various Fourier series expansion formulas are special cases of the general
expansion formula in an infinite dimensional linear inner product space:

X = Z {r;, X)v;
i=1

Under what conditions does {x, y) = x” Ay define a valid inner product for an n-dimension vector
space defined over the real number field?

If ¥™ and ¥" are m- and n-dimensional linear vector spaces, respectively, then the product space
Zm x " is itself a linear vector space consisting of all ordered pairs of x € X™, y € ¥". That is,
XXX ={(x,y);xEX", yEX"}

If ™ has an inner product (x,, X»), and X" has an inner product (y, y»)., show that the appropri-
ate inner product for ™ X X" is

<[;1]’ [;§]> = (X1, X2)m + (Y1, ¥2)n

Let &3 be the linear space consisting of all complex valued square integrable n component vector
functions of a scalar variable ¢ € [a, b], f(¢) = [f;(t)], where i = 1, n. Define an appropriate inner
product and norm for this space.

Prove the Cauchy-Schwarz inequality given on page 167.

Let R" be an n-dimensional Euclidean space with an orthonormal basis & = {v,, i = 1, n}. Prove
that for any x e R”,
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= 3 v, P

where the summation is over any subset of m basis vectors. This is called Bessel’s inequality. If
m = n, the equality holds.

Consider the linear transformation & : ®°— R>. The basis vectors are selected as

vw=[1 0 1], v.=[1 1 0], vs=[1 1 1}
The images of the basis vectors under the transformation o are
w=02 -1 3], wn=[-1 -1 2], w=[1 1 5]

with respect to the same basis. What is the matrix representation for «{?

The coordinate representations of a real vector x with respect to two different sets of ortho-
normal basis vectors are related by

cosa sina 0
[x] =] —sina cosa O|[x]
0 0 1

3 3
Verify that >, x2 = 2, (x/)?. Would this be true for nonorthonormal bases?
If @ and ¥ larle real lm;it vectors in three-dimensional space with an included angle «, and if
w =1 X ¥, find an expressionfor A™' =[a6 ¢ w] ..
Derive a matrix differential equation for the time rate of change T for the transformation of
Problem 5.38.
A mirror lies in the plane defined by —2x; + 3x; + x3=0. Find the reflected image of y =

[4 —2 3]7 and also find the orthogonal projection of y on the plane of the mirror.
Show that s{*(sAs4*) " of gives the orthogonal projection of ¥ onto R(s4*).
If A is the matrix representation of an operator which acts on x € ¥, and if ||x|* = X" x, show that

Al = [2 2 la; ]2

L
The vector norm is defined by ||| = X" x and Ax =y. o
(a) Show that |A|> = max{y;}, where {y;} is the set of eigenvalues for A7 A,
(b) Show that if A is normal, ||A|| = max I\:|, where {\;} is the set of eigenvalues for A.
Let ¥ and % be linear vector spaces whose elements are summable n-component vector se-
quences, {x(k),k =0,1,2,...} and {y(k),k =0,1,2,...}. A linear transformation o : ¥ — %Y is
defined by the first-order difference equation d(x) = x(k + 1) — Axx(k). Find «* if the inner

product is defined as (X1, x2) = >, x;1(k)7 xx(k).

k=0
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Simultaneous Linear Equations

6.1 INTRODUCTION

The task of solving a set of simultaneous linear algebraic equations is frequently en-
countered by engineers and scientists in all fields. Many problems of estimation, con-
trol, system identification, pole-placement, and optimization depend on the solution
of simultaneous equations. The properties of controllability and observability of linear
systems are conditions which directly relate to the ability to solve a set of simultaneous
equations. The stability and natural modes of a system are determined by the solution
of an eigenvalue problem, which involves solution of simultaneous equations. This
chapter uses the matrix theory and linear algebra of the last two chapters to study this
class of problems. Several important applications are also introduced. The material in
this chapter will be used in every chapter in the rest of this book.

6.2 STATEMENT OF THE PROBLEM AND CONDITIONS FOR SOLUT IONS

Consider the set of simultaneous linear algebraic equations
anX;tapx;t -t apx, =y

AuXxXitapx;+: - t+ayux, =y,

A1 X1t QX+ + 0+ + am,,x,,.=ym
In matrix notation this is simply v

Ax=y ‘ o (6.1)
where the elements of a; of the m X n matrix A are known, as are the scalar com-

ponents y; of the m X 1 vector y. The n X 1 vector x contains the unknowns which are

207
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to be determined if possible. Any vector, say Xx;, which satisfies all m of these equations
is called a solution. Not every set of simultaneous equations has a solution, The
augmented matrix, defined by W =[A | y], indicates whether or not solutions exist.
In fact,

1. If ry # r4, no solution exists. The equations are iriconsistent.
2. If ry = r4, at least one solution exists.
(@) If ry =r, =n, there is a unique solution for x.
(b) If rw = r4 <n, then there is an infinite set of solution vectors.

It is clearly impossible for 7, to exceed n, so the only possibilities are that there are no
solutions, or exactly one solution, or an infinity of solutions. In order to explain fully
the basis for these results, two linear vector spaces and the mappings between them
must be studied. Let " be the space of all n-dimensional x vectors and let £™ be the
space of all m-dimensional y vectors. The matrix A can be considered as a concrete
example of an operator which maps members of £" into members of X™. As discussed
in Chapter 5, there is another operator, the adjoint operator A*, which maps elements
of ¥™ back into ¥". In the present case the adjoint operator is just the conjugate
transpose of A, i.e., A* =AT. It is very useful to know that the two spaces under
discussion can each be written as an orthogonal sum of. two subspaces. First ™ is
considered. The primary subspace of interest is the range space of A, R(A). This is the
space of all y vectors which are images of some x vector. Since a column-partmoned
version of Eq (6 I)is

xlal+x2a2+ e+ x,8,=Yy

it is seen that R(A) is actually made up of all possible linear combinations of the
columns a; of A. For this reason R(A) is also called the column space of A, written as
L (a;). It should already be clear that for a partlcular A andyof Eq. (6.1),if y & L(a;),
there is no x solution. Saying that y € L(a;) is equivalent to saying that y is a linear
combination of the columns of A and hence rank(A) = rank(W). This is the condition
which is necessary for the existence of at least one solution x. The columns a; span the
column space directly from the definition. If, moreover, these.n columns form a basis
for it, then the dimension of L (a;) is 7, meaning the following:

1. There is a unique set of n x; coefficients for cach yin L(a;).
2. L(a;)=%", and hence m = n is required.
3. Rank(A) = rank(W) = n.

The critical difference between solutions for Eq. (6.1) and one unique solution hinges
upon whether the columns of A merely span the column space or form a basis set.

The orthogonal complement of a linear vector space such as L (a;) is another
linear vector space, denoted by L(a;)*. ¥ can be written as the direct sum ¥” =
L(a;)® L(a;)*. The space €™ has been decomposed into two orthogonal subspaces as
promised, but a more descrlptlve explanation of the orthogonal complement will be
given shortly. First attention is directed to ¥”. From among all x € ¥, those for which
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Ax = 0 form the null space of A, written N(A). Using the orthogonal complement of
N(A), we can write the direct sum X" =N(A)® N(A)*. The two orthogonal com-
plement spaces which have been introduced can be given more meaning by considering
the adjoint operator A" mapping from ™ to Z". Let c; be the columns of A7, that is, the
conjugates of the rows of A. Then the adjoint mapping ATy =x can be written in
column-partitioned form as :

yictty,6t cFycn =X

All x vectors in the range space of AT are linear combinations of the columns ¢;; hence
R(AT) is frequently called the row-space of A, sometimes written L (¢;). Problem 6.21
shows this to be precisely the same space as the orthogonal complement of the null
space of A, so X" is the direct sum of the null space of A and the row space of A.

Returning to the space ™, those vectors y for which A’y = 0 form the null space
of A”. This space is frequently called the left null space of A because the conjugate
transpose of the previous equation gives y* A = 0. Vectors y satisfying this relation are
called the left null vectors of A, and the left null space of A is the space of all left null
vectors. This space is precisely the same space introduced earlier as the orthogonal
complement of L (a;). Therefore, X™ is the direct sum of the column space of A and the
left null space of A. -

To summarize the results of this section, it has been found that every m X n
matrix A has four important vector spaces associated with it. These are

The column space L(a;) =%R(A)

| The null space N(A) :
The row space L (c;) = R(AT)
The left null space N(A7)

The primary vector spaces X" and ¥™ can be written as direct sums, as suggested
pictorially in Figure 6.1. For a particular matrix A, some of these subspaces may be
zero-dimensional—that is, contain only the zero vector.

6.3 THE ROW-REDUCED ECHELON FORM OF A MATRIX

The rank of certain matrices plays a vital role in the above discussion and in many
other contexts in modern control theory. An efficient method of determining the rank
of a matrix is to put the matrix into row-reduced echelon form [1]. This form is obtained

(A . IUAT) m
(S ; o _ x

‘Figure 6.1
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by using elementary row operations, just as described in Problem 4.18, page 147, for
Gaussian elimination. Elementary row operations are performed until the first non-
zero term in each row is unity and all terms below these ones are zero. This form of the
matrix is the echelon form, but the matrix is not yet in row-reduced echelon form. Even
in this intermediate form, the rank of the matrix is obvious by inspection. It is the
number of nonzero rows in the matrix. Recall from Chapter 4 that the elementary
matrices are nonsingular, and therefore multiplication of a matrix by them does not
change the rank of that matrix.

Additional row operations are carried out until the leading ones in each row are
the only nonzero terms in their respective columns. That is, any nonzero terms above
the leading ones of the echelon form are now removed. The result is the desired row-
reduced echelon form. Every matrix has a unique row-reduced echelon form. Some
texts refer to this as the Hermite normal form of the matrix. The rank of a matrix is cer-
tainly obvious from its row-reduced echelon form, but its usefulness goes far beyond
that. Any nonsingular A matrix just reduces to the unit matrix I. Therefore, aside from
confirming the rank, it seems that all the information in A is “lost” by this reduction.
The usefulness of the technique usually comes about by applying the reduction to some
matrix other than just the coefficient matrix A in a set of simultaneous equations. If it
is applied to the composite matrix W =[A i y] defined before, and if the resultant
row-reduced echelon form is called W' = [A’ i y'], then

rank W =rank W’ and rank A =rank A’

so that inspection of W' reveals instantly which of the previous categories applies.
Further, when solutions do exist they are obtained directly from W’ with little or no
additional effort.

EXAMPLE 6.1 In the following nine situations a set of simultaneous equations of the form
Ax =y is being considered. In each case the W matrix containing A and y is displayed, followed
by the row-reduced echelon form W’. These are then used to draw conclusions about the
original set of equations. Note that in cases 1, 2, and 3 the number of equations, m, is equal to
the number of unknowns in x, n. In cases 4 and 5 m is less than n and in cases 6 through 9 m is
greater than n.

1.
101} 3 1010
w=|0 1 1!-1 W=[011}0
101]5 000i1

From the reduced form, 4 = 2 and rw = 3, so no solutions exist.

2. 101! 3 101! 3
W=(0 1 1/-1 wW=011!-1
1011 3 ~loooio

From this, r4 =2 = rw <n = 3. Therefore, an infinite number of solutions exist, and W'
tellsusthatx; +x;=3 and x, + x; = —1.
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12 314 10

wW=12 1 2,7 W=10 1
32 111

Thus r4 = rw = n = 3, so a unique solution exists and it is just y’.

1 -1 218 ,_104!18]
w‘[—l 2 o’,z] w‘[o 1 2110

Here r4 =rw =2<n, so solutions exist but are not unique. They all must satisfy
X; + 4X3 =18 and X, + 2X3 = 10.

123 101 101 -110
W=|-4 51 9|2 w=l011 10
-2 8 6 1013 000 01

This case has r4 =2, rw = 3, so no solutions exist.

6. 1212 1 0i-1
W=|3 4!3 W=0 1] 15
5 614 00{ 0]

Since r4 = rw =2 = n, there is a unique solution given by the first two components of y'.
namely x=[-1 1.5]". ‘

121 2 1 000
W=|3 41 3 W=[0 1'0
5 61—4 0051

Note that this is the same as case 6 except for the sign of one component of y. The results
are quite different. Since r4 =2 and rw = 3, there is no solution.

8.
13 513 10 2015
1 4 6135 01 1105
wW=|-1 5 31 W={00 00
—14250.5 00050
1 3 53 0 0 0!0

!

Here, even though there are more equations than unknowns, there are still solutions—in
fact, an infinite number—all of which satisfy x; + 2x; = 1.5 and x, + x; = 0.5.

9. Changing only the y vector of the previouscaseto[3 3 1 1 3] leads to
10 210
W =10

0
0

SO O
SO O
OO = O

Since r4 =2 and rw =3, there'is no solution. In addition to demonstrating the various
categories of simultaneous equations and illustrating row-reduced echelon forms, this
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example is intended to show that characterizations strictly in terms of numbers of
equations and numbers of unknowns are clearly inadequate. |

6.3.1 Applications to Polynomial Matrices

The previous examples of obtaining row-reduced echelon matrices by use of elemen-
tary operations all involved matrices defined over the real numbers. This can be
applied to complex numbers as well. The notions of elementary matrices E,(a) and
E, ;(o) in Sec. 4.10 are valid for a belonging to any scalar number field, including the
rational polynomial functions. However, for many purposes, when dealing with poly-
nomial matrices it is desirable to redefine slightly the elementary matrices and hence
the allowed elementary operations. The purpose is to ensure that the results of our
restricted elementary operations remain polynomial matrices (and not matrices of
ratios of polynomials). We call the modified elementary matrices the polynomial-
restricted elementary matrices, defined as follows:

1. The elementary matrix E, , to interchange rows or columns is not a function of a
and requires no change. T

2. The row (or column) multiplier E,(a) w1ll be restrlcted to either real or com-
plex a. Disallowing polynomial a ensures that E p ()™ ! is still an elementary
matrix in the restricted sense. If a were a polynomlal the inverse would involve
ratios of polynomials.

3. The matrix E, ,(a), which adds o times the pth row (column) to the gth row
(column), does allow a to be a polynomial. Note that |E, ()| is not a function of
a, so that the inverse remains a polynomial- -restricted elementary matrix.

The polynom1al _restricted elementary operatlons (row or column) can be carr1ed
out by pre- or postmultiplication by the appropriate E matrix, as before. The notion of
the row-reduced echelon form also must be modified in the case of polynomial
matrices. The more general term Hermite»form will be used to denote & matrix in which

1. The first nonzero entry in a row is a monic polynomlal that i is, a polynomlal in
which the coefficient of the highest power is unity. -

2. All terms in the same column and below this leadmg monic polynomial are zero.

3. All terms in this same column and above the leading term are polynomlals of
degree less than the degree of the leading monic leynom1al

Note that this reduces to the previous definition of the row-reduced echelon form
when the leading monic polynomials are all of degree zero, i.e., just the scalar 1. It is
understood that lower-degree polynomials are scalar zeros in this case. A more stan-
dard interpretation of a polynomial of degree less than zero (such as degree of —1)
would lead us outside the realm of polynomials and into rational polynomial functions,
which 'is what we are trymg to” av01d Three examples of polynomlal matrices in
Hermite normal form-are” .



Sec. 6.3 The Row-reduced Echelon Form of a Matrix 213

1 0 3 s2+2s +1 3 s s Ss+1
o 1 15], 0 s+1 S2+25+1 0 s2+3s
0 0 O 0 0 s3+4s 0 0

EXAMPLE 6.2 Use polynomial-restricted elementary operations to reduce P(s)=
[s +1. s
s—=1 s*+3s+2

modifies P(s) successively to

[s+1 s 5 ]_}[ 1 —0.5(s>+2s +2) —-0.5(s—5)]
-2 §*+25+2 s—5] [s+1 s 5
_{1 —0.5(s>+ 25 +2) —-O.S(s—-S)]

0 s*+3s%°+6s+2 s*—4s+5

5 . .
p ] to Hermite normal form. A sequence of elementary row operations

Some obvious intermediate steps have not been given. The actual sequence of elementary
operations used was

0.5 ‘—0.5]

E2(2)E1’2(_S - 1)E1,2E2(—0.5)E1,2(_1) = [—S + 1 s + 1

The order of application of the elementary matrices was right to left; that is, E; »(—1) was used
first, then E,(—0.5), and so on. ]

The elementary operations used in the reduction can be systematically applied
[2]. The first nonzero term in each row is usually the diagonal term. On a column-by-
column basis, the terms below the diagonal must be reduced to zero. For the general
column j, assume that at some point in the reduction process polynomials p(s)
and p,(s) are in the jj and ij positions, with i >j. Row interchanges can be used to
ensure that degree ( p;) < degree( p,). Standard long division gives p,(s)/p:(s) = g (s) +
r(s)/pi(s), where q and r are quotient and remainder polynomials. Therefore, p,(s) —
p1(s)q (s) = r(s). Hence, premultiplication of the matrix by E; ;(—¢q (s)) will reduce the
ij term from p,(s) to the lower-degree r(s). This procedure can be applied to each
nonzero term below the diagonal. A row interchange can then be used to bring the
minimum degree nonzero remainder to the jj diagonal, and the whole column-
reduction process can be repeated. If a constant rémainder (polynomial of degree
zero) is ever found, that term is placed on the diagonal, normalized to unity, and then
used immediately to reduce all other terms in that column to zero. If all terms below
the diagonal are reduced to zero while the diagonal term remains a finite-degree
polynomial, then the terms above the diagonal need not be zero. However, they must
be reduced to polynomials of a lower degree than the diagonal. This can be done using
the same long-division procedure as before, leaving only the remainder terms above
the diagonal. Although simple in concept, this reduction to Hermite normal form can
be algebraically tedious. To demonstrate this, the reader should verify that

C[3+2 6 - 10
Pis)=| s s | canbereducedto [0 1
s?—1 s+5) . ° 00

by a series of 11 elementary row operations.
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6.3.2 Application to Matrix Fraction Description of Systems

The polynomial-restricted elementary matrices can be used systematically to reduce
MFDs of transfer function matrices H(s). (See Eq. (4.7) and Problems 4.29 through
4.31.) The left-divisor form H(s) = P7'(s)Ni(s) can be written as Py(s)H(s) = Ny(s).
Premultiplying by a sequence of elementary matrices leaves H(s) unchanged and
therefore is equivalent to performing elementary row operations on W = [Py(s) | Ny(s)]
to obtain [T(s)Pi(s) | T(s)Ni(s)] = [Pi(s) i N; (s)]. The matrix T(s) is the product of
elementary matrices and thus is invertible. Its inverse is still a polynomial matrix
because of the restrictions placed on the polynomial-restricted elementary matrices.
Therefore, [Py(s) | Ni(s)] = [T™"P; | T™"Ny]. This shows that the matrix T™' is a com-
mon factor of both P; and N;, on the left. More commonly, T is called a left common
divisor of P; and N;. It is clear that the common divisor cancels, leaving a reduced
MFD with the same original transfer function,

H(s) =[T7'P] [T N, ] =Pi'N,
Similarly, starting with the right-hand divisor form of the MFD
H(s) = Ny(s)P2(s)

it is clear that postmultiplication of H(s)P,(s) = N,(s) by elementary matrices leaves
H(s) unchanged and is equivalent to elementary column operations on

This leads to the notion of right common divisors for N, and P,. In either case, these
concepts are generalizations of the notion of pole-zero cancellations in scalar transfer
functions. When the elementary row (column) operations are carried out on W (or Y)
to the limit—i.e., until the Hermite normal form is reached—the product T of the
elementary matrices used will represent the greatest common left (or right) divisor.
The resulting transfer function representations H(s) = P7'(s)Ni(s) = Ny(s)P;'(s) are
maximally reduced in the sense that greatest common divisors have been removed and
no further common polynomial factors can be canceled. This is a very important
consideration in several instances when analyzing multiple-input-output systems within
the transfer function and polynomial matrix domain. This will be useful in Chapter 13.
The major emphasis in this book is on state variable representation of systems. Even
here, the polynomial matrix representations often play a role in obtaining appropriate
state models, as is shown in Chapter 12.

6.4 SOLUTION BY PARTITIONING

It is assumed in this section that r, =ry, so that one or more solutions exist. By
definition, the m X n coefficient matrix A contains a nonsingular r, X r, matrix. The
original equations Ax =y can always be rearranged and partitioned into

-
A; | Agdlx, Y2
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where A; is r4 X r, and nonsingular. Depending on the relation between m, n, and r,,
some of the terms in the partitioned equation will not be required For example, if
m =n =ru, then A; = A, x; =X, and y; =y. The general case is treated here, and then

A1 X1 + Az XK=y or xz= A1 [yl - A2 X2]

The degeneracy of A is g4 =n — r4. The values of the g4, components of x, are com-
pletely arbitrary and generate the g, parameter family of solutions for x mentioned on
page 208, case 2(b). If r4 = n, as in case 2(a), then A,, A4, and x, will not be present in
the partitioned equation. In that case the unique solution is x = A;'y;. If in addition
m =n, then A; and y, will not be present and x=A"'y. This is the simple case
mentioned in Chapter 4, and x could be computed by using Cramer’s rule or various
matrix inversion techmques However, Gaussian ellmmatlon or similar reduction tech-
niques are more efficient for large values of n.

EXAMPLE 6.3 Consider once more the situation of case 2 in Example 6.1, and find all solu-

tions x for
1 0 1||x 3
0 1 1f|x2|={-1
1 01 X3 3
Here r4 =2 (rows 1 and 3 are identical) and ry =2 also. An infinite set of solutions
exists. Let
[1 0 3 xl} 3 [ 3]
T
1
A2=[1] X, = X3 y.=3
Then
Sl R (B B A el
Lo 1 -1 17 [-1-x
The one-parameter family of solutionsis x=[3 —x3; —1—x3 x3]” with x; arbitrary. ]

6.5 A GRAM-SCHMIDT EXPANSION METHOD OF SOLUTION

The set of m simultaneous equations in n unknowns x is again considered.
Ax=y (6.1)

No special assumptions are made at the outset about r,4 and ry, relative to each other or
to m and n. By definition, there are r, independent a; columns in the matrix A. These
vectors can be used as a basis set for a linear vector space L (g;) called the column space
of A. The number of vectors in this basis set could be »n or any smaller positive integer
in a given case. In addition to these r4 vectors a;, the y vector is considered, giving a set
of r4 + 1 vectors. The Gram-Schmidt procedure is used on this set to form an ortho-
normal basis set {¥;}. The only possible exception is the last vector ¥,, . ;. Since y may
be linearly dependent on the columns a,, it might not be possible to form a nonzero
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vector from y which is orthogonal to all the a; vectors. If y is linearly dependent on the
a; vectors, then the unnormalized vector V,, , ; will automatically come out zero during
the Gram-Schmidt construction. Since the zero vector is orthogonal to every other
vector, an orthogonal set of {¥;} can thus be constructed in all cases. Each vector in the
set is a unit vector with the possible exception of a zero vector as the last entry. Form
the m X (r, + 1) matrix V from the set. Premultiplying Eq. (6.1) by V7 is equivalent to
premultiplying the previously defined W matrix. The result is

_<‘A’1, a;) (Vy,ay) - cr %1, ar>§<‘71, a1 " <€717an>i<€’la y) |
0 (¥,a) v (¥, ar){l(e’z, a,.1) - (Vo an>i<€’2’ y) g g
0 0 (V3,ay) -+ (V3,a)(V5,a,.9) - <€’3,’3n>'<€’3,)’> »o 1o

viw= | ST

O O 0 e <€’raar>|<€,raar+l> <vraan><vray> ~

_______________________________________________________________ J

L O 0 0 0 : 0 :<€7r+1a Y> J

rcolumns n- rc?c;umns
e —

n + 1 columns

In writing this semitriangular form it is assumed that the first r columns of A are
the r, independent ones used in the Gram-Schmidt process. The entire last row of the
above matrix will be zero with the possible exception of the very last term (¥, ,y). If y
is dependent on the columns of A, then this term will be zero, since then ¥, . ; is exactly
zero. This is the case for which there are solutions, since then r, = ry. When this last
inner product is not zero, ry >r,4, so no solutions exist. The last inner product is the
component of y normal to the column space of A. There is no x vector which will cause
Ax to equal this part of y. The vector y can be decomposed into a component y, parallel
to L (a;) and a component y, normal to L(a;), y =y, + y.. See Figure 6.2.

The best that can be done by choice of x is to force Ax =y,. The unavoidable
error committed in doing this is the residual y — Ax =y, +y. — Ax =y.. The length or
norm of this residual error is the lower corner element in W', namely |ly.|| = (V,+ 1, ¥).
Thus, a glance at W’ tells whether or not solutions exist, and if they do not, then the
magnitude of the smallest possible error is also given.

The solution which satisfies y,ory, if necessary, is found from W’ as in Sectlon

L) A

1u

Ye

Figure 6.2
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6.3, except the final row is ignored. This represents r4 equations in n unknowns. At
least one solution always exists, and it will be unique if and only if r, = n. When more
than one solution exists, some additional criterion may be used to select one particular
solution. These underdetermined problems are discussed further in Section 6.7. In
cases where y has a nonzero component normal to L (a;), the procedure given here
leads to the least-squares solution (or solutions). This topic is pursued further in
Section 6.8.

EXAMPLE 6.4 Analyze the following set of equations using the Gram-Schmidt expansion
method (GSE). ‘

132 1
25 3|* | o
3 7 4(|7 -1
4 9 5| 1

In this example it is easy to see that column 3 of A is the difference between columns 2 and 1, so
A has rank 2. Columns 1 and 2 of A are used, along with'y, to form the following orthonormal
set:

THE ORTHONORMAL BASIS SET

1.8257418E — 01  8.1649667E —01  3.6514840E — 01
3.6514837E — 01  4.0824848E — 01 —1.8257420E — 01

V= 5.4772252E — 01 5.8400383E — 07 —7.3029685E — 01
7.3029673E — 01 —4.0824789E —01  5.4772240E — 01
Then VW =W,

THE EXPANSION COEFFICIENT VECTOR(S)

5.4772258E+00  1.2780193E +01  7.3029675E + 00 3.6514840E — 01
W'=| 3.9339066E —06  8.1650591E —01  8.1650186E — 01 4.0824819E — 01
—9.5367432E — 07 —2.3841858E — 06 —1.1920929E —06 1.6431677E + 00

Since the first three entries in the last row and the first entry in row 2 are theoretically zero, a
“machine zero” can be defined. Here any number of magnitude less than 4 X 107% is set to zero.
From this it is seen that

1. There is no solution to the given set of equations, since r, = 2 and rw = 3. The equations
are inconsistent. '

2. The best that can be done is to satisfy the column space portion of the equations. Let this
be calied a projected solution. If this is done the residual error will have the norm

IAx — y|| = 1.6431677

3. There are an infinite number of projected solutions, all of which will give exactly this
same residual error norm. They all must satisfy (rounded)

0.8165(x; + i) = 0.40825
5.4772x, + 12.7802x + 7.3030x; = 0.36515
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If the row-reduced-echelon (RRE) method of Section 6.3 is applied to this problem
instead, the resulting matrix W' is

10 -1 0
o1 10
W=lo o o1

00 00

This also indicates that the equations are inconsistent but gives no clue about how closely a
solution can be approached. It also indicates, apparently, that if one row of inconsistent equa-
tions could be ignored, an infinite set of solutions would exist, and they would all satisfy
x1—x3=0 and x, + x; =0. Although the RRE method has yielded somewhat less informa-
tion than the GSE method, it has yielded the one-dimensional null space spanned by e =
[T —1 1]% It can be shown that any constant o times e can be added to any projected solution
x, found from the GSE method (or any other method) and the result will still be a projected
solution. That is, x, + ae = x is also a projected solution. ]

6.6 HOMOGENEOUS LINEAR EQUATIONS

The set of homogeneous equations Ax = ( always has at least one solution, x = 0. This
is true because A and W always have the same rank. However, x = 0 is called the trivial
solution. In order for nontrivial solutions to exist, it must be true that r, < n. Of course,
if one such nontrivial solution exists, there will be an infinite set of solutions with
n — r4 free parameters. The methods of the previous sections apply to the homoge-
neous case without modification.

It is pointed out that any set of nonhomogeneous equations Ax =y can always be
written as an equivalent set of homogeneous equations:

0o 2 1
EXAMPLE 6.5 Find all nontrivial solutions to the equations Ax=0,if A=|0 2  1|. The
0 -4 -2

matrix W and its RRE form W' are

THE MATRIX W

0.0000000E + 00  2.0000000E +00  1.0000000E + 00 0.0000000E + 00
0.0000000E + 00  2.0000000E + 00  1.0000000E + 00 0.0000000E + 00
0.0000000E + 00 —4.0000000E + 00 —2.0000000E + 00 0.0000000E + 00

RANK OF WIS 1: THE HERMITE FORM W’ FOLLOWS

0.0000000E + 00 1.0000000E — 00 5.0000000E — 01 0.0000000E + 00
0.0000000E + 00  0.0000000E — 00 0.0000000E — 00 0.0000000E + 00
0.0000000E + 00 0.0000000E — 00 0.0000000E — 00 0.0000000E + 00

Therefore, all nontrivial solutions are linear combinations of the following two vectors, which
constitute a basis set for the null space of A.
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DEGENERACY OF A IS 2; NULL SPACE BASIS IS

—1.0000000E + 00 [| 0.0000000E + 00
0.0000000E + 00 || 5.0000000E — 01
0.0000000E + 00 |[ —1.0000000E + 00

6.7 THE UNDERDETERMINED CASE

When the matrix A has m <n, there is no possibility of a unique solution x. The
underdetermined case, which has an infinite number of solutions (r4 = ry), is discussed
here. The methods of Sections 6.3, 6.4, or 6.5 can be used to find the family of
solutions. This section presents a method for singling out one particular solution, the
solution with the minimum norm, ||x||. Problem 6.47 suggests that the procedure can be
generalized to various other weighted norms.

The Minimum Norm Solution

Consider the equation Ax =y, where A is m X n with m <n and with ry=ry. If
r4a <m, some rows of W are linearly dependent. This means that some of the original
equations are redundant and can be deleted without losing information. Assume that
these deletions have been made and as a result 4 = ryy = m. The conjugate transpose of
the m rows of any A can be used to define the n-component vectors {c, i = 1,...,m}.
These vectors belong to ¥". The space spanned by the set of c¢; vectors is called the row
space L (c;) of A. In general, L (¢;) will be a subspace of X", and here r, = m means that
it is an m-dimensional subspace with the ¢; vectors forming a basis. The space X",
which contains all possible x vectors, can be written as the direct sum

X" = L(Ci)@L(C,')l
Every vector in X" can be written
x=x;+x, wherex; € L(¢;),x;€ L(¢c;)*

Figure 6.3 illustrates this decomposition for n =3 and m =2.
The norm of x satisfies

Il = fhxall” + I |

L(¢;)

Figure 6.3
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Since x, € L(¢;)*, (¢, X,) =0 for each ¢; so Ax, = 0. Thus
Ax=A(x; + X;) = Ax; =

For every x; € L (¢;), x; = E a; ¢; = ATa. Using Ax, =y gives

AATa=y

But AAT is an m X m matrix with rank m and is therefore nonsingular. Solving for
a gives a = (AA7) 'y and therefore x, = ATa = AT(AA”)'y. This x, is the unique
x € L(c;), which satisfies Ax =y. From the norm relations, it is clear that x; is the
minimum norm solution, since any other solution must have a component in L(c,)l
and this would increase the norm. The minimum norm solution then is

x=AT(AA) 'y

This result can also be derived by using Lagrange multipliers [3] and straightforward
minimization of ||x|* subject to the constraint Ax —y = 0. Although it is not pursued
here, many other classes of problems amount to using the minimum (or maximum) of
a cost function to single out one desirable solution from the infinite set available in the
underdetermined case. If the cost function is linear, a linear programming problem
results. The minimum norm problem is an example of quadratic programmmg Other
nonlinear programming problems can also be posed.

11 o™ I
EXAMPLE 6.6 The minimum norm solution of [ ] X | = { ] is

I: :| 1[ ]

EXAMPLE 6.7 Find the minimum norm solution to the projected problem derived in Example
6.4. From the previous analysis the projected problem is

5]

L

ke

|
O = =
-0 O
0 = =

]

[5.4772 12.7802 7.3030] o =[0.3651]
0 0.8165 0.8165]|**| ™ [0.4082

A direct calculation of x = A”[AA”] 'y can be made in this simple case. Alternately one can
form

AAT = [246.6670 16.3979]
16.3979  1.3333

and then solve AA”x’ =y for x’. Then, finally, x = A”x’. The advantage of doing this is that a
matrix inversion is not directly needed, and a routine such as the RRE package can instead be
used to solve for x'. This is the approach used here.

Wo [246 6670 16. 3979.03651] w,_[l 01 -0.10346]
16.3979  1.3333 1 0.4082 “lo 11 1.57862
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—0.5667
Therefore, x' = [—?ggggg] andx=1|-0.0334|. [
: - 0.5334 ' ‘

6.8 THE OVERDETERMINED CASE

When there are more equations than unknowns, the m X n coefficient matrix A has
m > n. If the equations are inconsistent, no solution exists. This situation often arises
because of inaccuracies in measuring the components of the y vector, or because the
relationship assumed to exist between x and y, as expressed by A, is oversimplified or
wrong. Approximate solution vectors x are desired in this case. Three approaches are
presented. The first method ignores some equations and places total reliance on those
remaining. The second method (least squares) places equal reliance on all equations
with the hope that the errors will average out. The third method (weighted least
squares) uses all of the equations but weights some more heavily than others. An
alternative computational procedure (recursive weighted least squares) is also given
for obtaining the latter two approximations.

A considerable amount of information, which is useful for the overdetermlned
case, has already been given. The GSE method of Section 6.5 applies to this case, as
already demonstrated. When the problem is overdetermined, (¥,.,y)# 0. The so-
called projected solution is then sought. If the projected solution is nonunique, the
minimum norm solution is often singled out, as was done in Example 6.4 and con-
tinued in Example 6.7. This combination of GSE plus minimum norm solution always
gives a solution to Eq. (6.1). It is true for the underdetermined, overdetermined, or
uniquely determined cases. The only difficulty that might remain on a machine solu-
tion is the ability to recognize the difference between 0 and a very small number, or the
difference between vectors that are linearly dependent or nearly linearly dependent.
The notion of machine zero was introduced, and an example of how it can be deter-
mined on a given problem has been given. The GSE-minimum norm solution combi-
nation has many things in common with the method of singular value decomposition,
but there are also some unique differences. ,

In this section a more traditional approach to the overdetermmed problem is
presented. It is assumed that A is of full rank » and that m > n.

Ignore Some Equations

If a subset of n equations is selected and the remaining m — n are ignored, an approxi-
mate solution can be obtained. The basis for ignoring certain equations is a subjective
matter. Perhaps certain equations are more reliable for one reason or another. Per-
haps other results are obviously “wild points” and can be discarded. If A; is a non-
singular n X n matrix formed by deleting rows from A and if y, is the n X 1 vector
obtained from y by deleting the correspondlng elements, then a result which satisfies n
of the original equations is '

x=Ar'y;
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Least-Squares Approximate Solution

If all the equations are used correctly, errors may tend to average out, and a good
approximation for x results. Since no one x can satisfy all the simultaneous equations,
it is inappropriate to write the equality Ax =y. Rather, an n X 1 error vector e is
introduced:

e=y— Ax

The least-squares approach yields the one x which minimizes the sum of the squares of
the e; components. That is, x is chosen to minimize

lelf* = e e = (y — Ax)"(y — Ax)

The vectors e, y, and Ax all belong to X™. But Ax belongs to the column space of A, the
space spanned by the columns a; of A, denoted by L (a;). ™ is decomposed, as shown
in Figure 6.1, into

X" =L(a))DL(aj)*
The error has a unique decomposition:
e=e +e,, e; € L(a)), e, € L(a)"
(The vector e, is the y, vector of Section 6.5). The norm of e satisfies ||e|* = |le,|* + |leJ]*.

Since y is given and since Ax € L(a;), the choice of x cannot affect e,. The
least-squares solution vector x is the one for which |le|> = 0, so e, = 0. This means that

the projection of y on L(a;), call it y,, must equal Ax= 2, x;a, Since r,=n, the
j=1

columns a; form a basis for L (a;) so thaty, = Z a; a;. Because of the uniqueness of this
=1

expansion, o; = x;, that is, x = a. The set of n reciprocal basis vectors r; is defined by
(r;, a;) = d;, or in matrix form

R - A =1

(nxm) (mxn)

Since A is not square, it cannot be inverted to find R. It is still true that o;; = (r;, y) = x;
so that

a=Ry=x (6.2)

Therefore, Ax=ARy=y,. Using e,=y—y, and the fact that (a, e;) =0 gives
A’ly — ARy] =0, or

Ry = (ATA)'ATy | (6.3)
Combining Eqs. (6.2) and (6.3) gives the least-squares solution

x=(ATA) ATy
The amount of error in this approximate solution is indicated by

el = flealf” = y'[I — A(ATA)™* AT]y = |ly — Ax|f
Recall that the square root of this quantity was given directly in the GSE method.



Sec. 6.8 The Overdetermined Case 223

The matrix R = (ATA)™' AT is a particular example of the generalized or pseudo-
inverse [5] of A, written A", If A™' exists, then AT=A"and lel* = 0. The minimum
norm solution of Section 6.7 provides another example of the pseudo-inverse that was
appropriate to those circumstances, namely, AT = A" (AAT)"!. The general solutions to
the n X n nonsingular case, the underdetermined minimum norm case, and the over-
deten%lined least-squares case can all be expressed in terms of the pseudo-inverse as
x=A'y.

Weighted Least-Squares Approximation to the Solution*

Ignoring some equations or placing equal reliance on all equations represents two
extremes. If some equations are more reliable than others, but all equations are to be
retained, a weighted least-squares approximation can be used. That is, x should
minimize e’ R™'e = (y — Ax)" R7'(y — Ax). R™! is symmetric, m X m, nonsingular, and
often diagonal. Those familiar with random processes should know that R is generally
selected as the covariance matrix for the noise on the vector y. Smaller values of r; will
cause e/ to be smaller, and the ith equation is more nearly satisfied. If a norm
lellk-' = e’ R e is defined, the method of orthogonal projections immediately leads to

ATR'Ax=ATR 'y

If r, = n, as assumed here, the n X n matrix ATR™! A is nonsingular and the weighted
least-squares solution is

x=(ATR'A) 'ATR 'y

Notice that if A is not full rank, the required inverse will not exist, signaling that the
least-squares solution is not unique.

The least-squares and weighted least-squares formulas can also be derived simply
by setting d|le|*/ax; = 0, using results of Sec. 4.12.

Recursive Weighted Least-Squares Solutions

The preceding sections dealt with what is commonly called “batch least squares,”
because all data equations are treated in one batch. A recursive method of using each
new set of data as it is received is now presented.

Assume that a set of m equations

yi=Ax+e

has been used to obtain a weighted least-squares estimate for x, denoted by x;:
x, = (ATRTA) TATR 'y,

As is often the case, assume that an additional set of relations

Ver1=Hei1x+ ey

£ The matrix R in this section is unrelated to the matrix of reciprocal basis vectors of previous
sections.
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then becomes available. It is desired to obtain a new estimate for x, denoted as x. 1,
which combines both sets of data and minimizes

R!i 0 e
J = eT eT [—————i——-—_ ————————
[ ] 0 [Riiillecs:
R;}, is the weighting matrix, analogous to R but applied to the new data y, . It is
not necessary to reprocess the whole set of equations involving [y, i Y«+1] in order to

determine x; .. It is shown in Problem 6.12, using partitioned matrices and a matrix
inversion identity, that

Xe+1= X + K [yee s — Hier1Xe]

where K, =P, Hf, [H; . PcH., + R;,,]"! and P, = (ATR™' A)™!, which is available
from the computation of x,. If still other sets of equations are to be incorporated, the
above relations can be used recursively. A new matrix, P; ., is then needed and is
given by

P, =[P + HL Rl Hioq]™ (6.4)
Using the matrix inversion lemma, page 132, this can also be written as
Pii1=P, — P H{ . [H;+ P, H], + R,y " Hy i Py (6.5)

The latter form is often more convenient. For example, if y, . ; is a scalar, then matrix
inversion is not required, just a scalar division.

Data Deweighting

A common occurrence is that data are received sequentially over time. As each new
group of data is received, it is used to improve the estimate of x. If this process is
carried out over a sufficient number of steps, one will find that the P,.; matrix has
decreased to very small values due to the repeated addition of a nonnegative term to its
inverse in Eq. (6.4). This in turn will cause the value of K, ;; to become small. This
means that the corrections made to x, in order to determine x, ., get small, indepen-
dent of what new or surprising information may be contained in the latest measure-
ments. In order to prevent the recursive estimator from failing to respond adequately
to new data (called going to sleep), some form of data deweighting is often used. Two
types will be presented here, additive deweighting and multiplicative deweighting. In
both cases the P matrix is prevented from getting too small. The easiest way to change
the former algorithm is to introduce another matrix M,, given by

M, =P,/B with B <1; this is multiplicative deweighting
or

M, =P, + Q with Q a positive definite matrix; this is additive deweighting
The gain is now computed as

K =M, H/{+1[Hk+1Mk Hi, .+ R]_l
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and the new Py, 1 is given by either Eq. (6.4) or (6.5), but with P, on the right-hand side
replaced everywhere by M,. The formula for updating the estimate of x remains the
same. If =1 or Q =0, both of these deweighting schemes revert to the original
algorithm. Values used for the so-called forgetting factor 8 depend on how much
deweighting is desired. A concept called asymptotic sample length, ASL, is a measure
of how much past data are having a significant effect on the current estimate of x. A
relation between ASL and { is

ASL =1/(1 - B)

Therefore, the commonly used values of B between 0.999 and 0.95 correspond to
asymptotic sample lengths of 1000 past measurements down to 20. Although Q is often
selected as a diagonal matrix with small diagonal elements, an idea of the appropriate
magnitudes can be obtained by assuming that Q = oP, with a a scalar. Then com-
parison of the two forms of deweighting shows that a = (1/B) — 1. Therefore, to get an
ASL of 1000, a would be 0.001 or Q should be about 0.1% of P. Of course, since P is
changing, this kind of comparison is not perfect. It does indicate roughly that a small Q
matrix can be an effective deweighting scheme. Figure 6.4 shows the relative weight
applied to past measurements when forming the current estimate of x. The curve is
normalized so that the current measurement weight is one. This is computed by using
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the recursive estimation algorithm backwards in time for a scalar x. Qualitatively
similar deweighting occurs in the vector case, but it is harder to normalize and display.

If the matrices P, Q, and R are given the appropriate statistical interpretation as
covariance matrices of certain signals, then the recursive equations constitute a simple
example of the discrete Kalman filtering equations. The Kalman filter is used exten-
sively in modern control theory in order to estimate the internal (state) variables of a
linear system based on noisy measurements of the output variables [6, 7]. A deter-
ministic state estimation procedure, the observer, is presented in Chapter 13. The
least-squares approach finds many other applications in modern control theory as well.

6.9 TWO BASIC PROBLEMS IN CONTROL THEORY

Consider the discrete-time state equations of Chapter 3,

x(k + 1) = Ax(k) + Bu(k)

y(k +1)=Cx(k +1) + Du(k +1)
Let the initial conditions for the state vector be x(0). Then the states at succeeding time
points are

x(1) = Ax(0) + Bu(0)

x(2) = Ax(1) + Bu(1)

= A[Ax(0) + Bu(0)] + Bu(1) = A*x(0) + ABu(0) + Bu(1)

Continuing in this fashion the state at a general time point k is found to be

x(k) = A*x(0) + Bu(k — 1) + ABu(k —2) + A*Bu(k —3) + - --

+ A*"2Bu(1) + A*"'Bu(0)

6.9.1 A CONTROL PROBLEM

One of the two basic control problems is the determination of a sequence of control
inputs u(i) which will transfer a known initial state vector x(0) to the origin of state
space at some finite time point k. It is convenient to stack up all the unknown control
vectors into one composite vector U defined as

(u(k — 1) ]
u(k —2)
ugk -3)

u:(1)
Lu(0)
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Also define P=[B {AB A’B | ... ! A“"'B]. Then x(k)=A*x(0)+PU. Setting
the final state to zero gives a set of simultaneous linear equations for the unknown
controls U:

PU = —A*x(0)

Under what conditions will there be a control sequence U that will drive a given x(0) to
zero? How about an arbitrary x(0)? If there is a solution vector U, is it unique? The
composite partitioned matrix P plays the role of the general matrix A, which was
discussed throughout most of this chapter. If the state vector has n components and if
each u(i) has r components, then B is n X r, as are AB and any power of A times B.
There are k partitions of this type in P, so P is an n X (kr) matrix; of course, U has kr
unknown components. If the n X 1 vector —A*x(0) happens to be a linear combination
of the columns of P, then a solution for U will exist. In order for this to be true for any
arbitrary vector —A*x(0), and hence for any arbitrary x(0) initial condition, it is
necessary that the range space of P must span the n-dimensional state space. This
means that there are n linearly independent vectors among the columns of P, and
therefore the rank of P must be n. If P has full rank »n, there will be solutions, but are
they unique? And what about the final time index k? If k =1, then P=B and
rank(P) =r. If the value of r is less than n, it is clear that no solutions can exist
for arbitrary x(0), although they may for certain x(0). As more time is allowed (i.e., as
k increases) the matrix P contains more columns, and its rank may increase. It is
shown in Chapter 8 that the rank of P will never increase beyond the value achieved for
k =n, the number of states, because further partitions will always be linear com-
binations of the first n. For this reason the test of whether controls can be found which
will drive an arbitrary x(0) to zero in finite time is equivalent to testing whether
rank[B | AB | A’B | ... | A" 'B] = n. If a particular system passes this test, it is said
to be controllable. This is pursued in more detail in Chapter 11. Assume that this
controllability condition is met. In general the sequence of controls making up U is not
unique for a given final time k. Many optional control sequences might all bring the
final state to the origin. One desirable solution might be the minimum norm solution of

Section 6.7. Let the subscript k indicate explicitly how many control cycles are being
used in U. Then

Uk = —P/{[Pk P/{]_1 Ak X(O)

Even though the rank of P, will not increase for k > n, the amount of control effort
required to drive the initial state to zero will change in general. The minimum norm
squared is

0P = x(0)7 (A*)" [P P] ™! A*(0)

The A* terms could increase or decrease with k depending upon the system stability.
The term inside the inverse is

PP”=BB” + ABB"A”+ - - + A*"'BBT[A*"!|”

It would be expected to grow with k as more terms are added to the sum. Thus the
inverse itself will diminish. It seems intuitive that if the system is stable so that its
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unforced state is decaying toward zero, not much control effort will be required to help
the state reach zero if k is large. This is borne out by the preceding results.

6.9.2 A State Estimation Problem

The same discrete-time system is considered, but now the inputs u(i) are all assumed
known. The question to be addressed is whether the unknown initial state vector
x(0) can be determined from knowledge of the sequence of output vectors y(j) for

J=0,1,... k. If the first kK +1 output vectors are stacked up into one composite
vector Y, =[y(0)" y(1)" ... y(k)"]%, the preceding results can be used to write
C ] D 0 0 0 -+ 0[u©]
CA CB D 0 0 --- 0] u®d
Y, = | CA? [x(0) + | CAB CB D 0 --- 0] u®?)
| CAY] |CA*"'B CA*B -+ D] u(k) ]

Since A, B, C, and D as well as all the input terms u(i) are assumed known, they can be
brought to the left side of the equation to define a new vector Y/ or all u(i) can be
assumed zero without loss of generality. This leaves a set of simultaneous linear
equations relating outputs in Y, (or Y/) and the unknown initial state x(0). Define
the matrix Qf =[C"{ A"CT ! (A*)TCT ... | (AY)TC']. The simultaneous equations
then become Y, = Q, x(0). If each y(i) vector has m components, the Q, matrix will be
of dimension mk X n. The maximum rank is n. Just as with the previous matrix P, it is
shown in Chapter 8 that the rank of Q, will not increase for values of k larger than
n — 1. If Q, achieves its full rank #n, then the n X n matrix Qf Q, will be invertible. If
this is true, then '

x(0k) = [Qf Q] Qf Y«

Is this the unique solution for x(0), or is it merely a least-squares approximation for
x(0)? If the vector Y, belongs to the n-dimensional range space of Q,, then this is
indeed the solution. This is just another way of saying that even though there may be
more equations than unknowns, they are not inconsistent. However, since the vector
Y, has mk components, it is very possible that Y, might not lie in the n-dimensional
range subspace, perhaps because of measurement errors or modeling errorsin A, B, C,
or D. In that case the equation for x(0|k) is a least-squares approximate solution for
x(0) based on the k available data points. Note that the existence of a unique least-
squares answer also requires that Q, be of full rank n. The condition that

[CT {ATCT | (A)TCT | ... |(A"")TCT] hasrank n

is necessary if x(0) is to be found from the observed data. A system which meets this
criterion is said to be observable. Chapter 11 looks into this further. The intent here is
to stress the importance of the theory of simultaneous linear equations. Problem 6.17
develops the equations for recursively updating the estimate of x(0) each time a new
noisy measurement becomes available. This gives an improved estimate x(0|k + 1) by
using the newest measurement y(k + 1) to add a correction to x(0|k). Problem 6.18
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modifies these results so that estimates of the current state x(k) are recursively
computed, rather than estimates of the initial state.

6.10 LYAPUNOV EQUATIONS

Another type of equation which occurs in control theory is
XA +BX=C (6.6)

where A, B, and C are known matrices and X is a matrix of unknowns. Assume that the
dimensions of A, B, C, and X are m X m, n X n, n X m, and n X m, respectively. This
is usually called the Lyapunov equation. It is linear in the unknowns, but it is of an
entirely different type than those that have been treated previously. For small-
dimensional problems it is not difficult to expand the equation into component form
and thus obtain simultaneous equations in the unknown x; components. However, a
more general procedure can also be developed using the concept of vectorized
matrices, which was presented in Sec. 4.12. The columns of the unknown matrix X are
stacked into a single column, referred to as (X). The two matrix products involving X
can be epxressed in terms of the vectorized (X) by using the Kronecker product of

Chapter 4. Specifically,
(XA) = [ATQL](X)
(BX) = [L, ® B](X)

so that the total vectorized equation can be written

{[A"®L] + [, ®BJ}X) = (C)

Of course, the vectors (X) and (C) are nm X 1 columns, and the coefficient matrix Q
created with the two Kronecker products is of size nm X nm. While the size of the
problem has seemingly been multiplied, what has been accomplished is the positioning
of both unknown X terms on the same side of a known square matrix Q. If Q has an
inverse, the unique solution for X is expressible, still in vectorized form, as

(X) ={[AT®L] + [L. ®B]}"(C) =Q'(C)

The matrix X is then recreated by undoing the vectorization process.

0 1 0 1 0
EXAMPLE 6.8 LetA=[_ },B = 0 0 1|,and C=

5 3 . Find the 3 x 2
-18 =27 -10

W N =
O = O

X matrix which satisfies Eq. (6.6).
The vectorized form of the equations is

0 1 0 =2 0 0[] X1 1

0 0 1 0 -2 0|} X2 2
-18 =27 -10 0 0 —2|xxn 3
1 0 O _3 1 R 0 X12 0

0 1 0 0 -3 1 X2 1
L 0 0 1 -18 =27 - 13_ | X32 ] 0_
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The 6 X 6 matrix Q has a determinant value of 6720. Solving and putting the x; components into
their traditional rectangular array gives

—1.407143 —0.4785714
X=| 0.042857 —0.0285714 |
1.942857  0.8714286

EXAMPLE 6.9 Repeat the previous example if the matrix B is changed to

0 1 0
B={0 0 1
18 -9 -8

Using the two Kronecker products forms a 6 X 6 coefficient matrix Q, which is singular of
rank 5. The preceding solution process is not possible, and no unique solution exists. Do
nonunique solutions exist? The rank of W = [Q E (C)] is 6, showing that the equations are now
inconsistent, and no solution exists. [ |

The conditions under which solutions to Eq. (6.6) exist are now stated without
proof. The concept of eigenvalues must be anticipated from the next chapter. Let
{\,i=1,...,m}be the eigenvalues of A. Let {p;, j =1, ..., n} be the eigenvalues of B.
Then a unique solution exists for Eq. (6.6) if and only if

N+ #0 foralli jpairs

In the two preceding examples A has eigenvalues of —1 and —2. In Example 6.8
B has eigenvalues of —1, —3, and —6, so the conditions for a unique solution are
satisfied. In Example 6.9 the modified matrix B has eigenvalues of 1, —3, and —6. Now
A\ + g =0, so that the conditions for solutions are not satisfied. A special case of Eq.
(6.6), which commonly occurs in stability, random processes, and optimal control
problems, has A and B both n X n and transposes of each other. Then X and C must
also be n X n matrices. Since A and A’ have the same eigenvalues, the existence
conditions fail to be satisfied only when A has one or more pairs of eigenvalues
positioned symmetrically with respect to the jw axis, such as —a and +a for some
scalar o.

If C is symmetric, then X will also be symmetric. In this case the vectorized
equations will contain unnecessary redundancies in both (C) and (X), which could be
removed. The corresponding rows of Q can then be removed, and the sum of the
columns which multiply X;; and X;; is used. This gives a reduced set of equations for the
n(n + 1)/2 unknowns. This need not be done, however. The full set of n* equations is
still solvable, and the resulting X will be symmetric (except possibly for rounding
error).

(1) ;],B=AT,andC=[8 _(5]
as X = diag{0.3125, 1.25}, which is symmetric, as promised. In fact, X is positive definite, a
property which is defined in the next chapter. This is related to the fact that both eigenvalues
of A have negative real parts and to the properties of C. These issues are clarified in later
chapters. n

EXAMPLE6.10 LetA = [ } . Then the solution for X is found
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B

ILLUSTRATIVE PROBLEMS

Use arguments in &” to draw conclusions about solutions to Ax =y.
Let the rows of A be considered as the conjugate transpose of n component vectors c;.
Then the set of simultaneous equations is equivalent to m scalar equations of the form

(¢, x)=y; wherei=1,...,m

Each of these equations defines an n — 1 dimensional hyperplane in £”, with a normal c;.

The existence of a solution means that there exists a vector x that simultaneously ter-
minates in all m of the hyperplanes. If the set {¢;} is linearly independent, so that r, = m, the
intersection of m hyperplanes of dimension n — 1 defines an n —m dimensional hyperplane.
Every vector x terminating in this hyperplane is a solution. If m = n, the hyperplane is of zero
dimension, 1.e., a single point, and defines a unique solution. Obviously, whenever r4 = m,
rw = m also.

If r4 <m, two or more of the n — 1 dimensional hyperplanes are either parallel or they
coincide. If parallel but distinct, they never intersect and the equations are inconsistent. It can
be shown that these geometrical conditions are equivalent to the algebraic conditions given in
terms of the W matrix.

Homogeneous Equations

Let A be an n X n matrix with o =n — 1. Show that a nontrivial solution to Ax =0 can be
selected as any nonzero column of the matrix Adj A.

For any n X n matrix, A[Adj(A)] = I,|A|. Any column j of this equation can be singled out
and written as A[Adj(A)], = [1.];|A|. If r4 <n, the determinant is zero, and A times any column
of Adj(A) then gives a zero vector. Selecting a particular column j which is not identically zero
thus gives a nontrivial solution.

Use the results of Problem 6.2 to find a nontrivial solution for
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Since r, = 2, the degeneracy is n —r4 =1, so a one-parameter family of nontrivial solu-

2 2 -1 1
tions exists. It is found by computing AdjA=| 0 0 O Thusx=k| 0],k #0, gen-
-2 -2 1 -1

erates the set of all nontrivial solutions.

If an n X n matrix has rank r, <n, it can be shown that Ax =0 has ¢ = n — r, linearly indepen-
dent solutions. They may be chosen as linearly independent columns of

g—1
deq— 1 {AdJ[A - IE]} -0
1 1 1
Find nontrivial solutions for this problem whenA=| 2 2 2]
-2 =2 =2
The rank of Ais 1, so ¢ =2 and
d 0 1 1
lim——{Adj[A-Ie}}=| 2 1 2
e—>0 dE -2 -2 =3

There are just two linearly independent cclumns, and nontrivial solutions are x; =[0 2 2],
x2=[1 1 =2]" or any linear combination of these two. x; and x, form a basis for the two-
dimensional subspace defined by (¢, x) = 0, where c is the transpose of any row of A.

Find all nontrivial solutions to

1 35 0
1 4 6 0
-1 5 3x=|0
-1 4 2 0
1 3 5 0

This is the same A matrix as appeared in Example 6.1(8). The RRE form for W is the same
as given in that example, except that the last column is all zeros. Therefore, all nontrivial
solutions must satisfy x; +2x3 =0 and x, + x3=0. Thus x=a[—-2 —1 1]7, for any scalar a,
constitutes the one parameter family of nontrivial solutions. From W’ it can be seen that the
rank of A is 2 and the number of unknowns is n = 3, so the degeneracy or nullityisqg =3 -2 =1.
This is the dimension of the null space of A.

Find all nontrivial solutions to

4 -2 3 0
1 3 1|x=]|0
1 31 0

For this problem the RRE form of W is

1 0 0.78571427 | 0
wo|0 1 007142857 | 0
0 0 0 ;0

Therefore, x, + 0.78571427x5 =0 and x, + 0.07142857x; = 0. All nontrivial solutions must be
proportional to

x=[11 1 —14]"
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- Do nontrivial solutions exist for the following?

2 =2 3 0
1 1 1{x=10
1 3 -1 0

Using the RRE method, or just computing its determinant, shows that the rank of A is 3.
Its degeneracy is zero, it is nonsingular, and so the only solution to this problem is the trivial
solution x = 0.

Minimum Norm Solutions

Find the minimum norm solution for [1 2] [2] =1.

Identifying A=[1 2], the minimum norm solution is

o[ 2] o- 41

A specified amount of constant current, i, must be delivered to the ground point of Figure 6.5.
Specify vy, v,, and vs so that the total energy dissipated in the resistors is minimized.

U

Vg

<

Figure 6.5

g 3% %

U3

It is required that
VR +va/R +vs/R =i or —115[1 1 1v=i
The total energy dissipated per unit time is

1 1
¢=pvi+vi+vi]=IvP

The desired solution is thus the minimum norm solution.
-1

1y
v= %72—2-[111] i=

= e
w |

_—
T,

1
R

Frequently, the norm can be given a physical interpretation of energy or power. This is
one reason why minimum norm solutions are often sought for underdetermined problems.

A small microcomputer has five terminals connected to it. The fraction of the time devoted to
each terminal is x;, so :
X1txXotx3+x4+x5= 1

The programmer at terminal 2 types four times as fast as the programmer at 1. They are both
typing in the same code and must finish at the same time so x; = 4x,. Both terminals 3 and 4 are
sending mail files to 5, s0 x3 + x4 = x5. Find the minimum norm solution for allocating CPU time.
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In matrix form the constraints are

1 1 11 1 1
1 -4 0 0 Ofx=]|0
0 01 1 -1 0

The minimum norm solution is

1 1 0 0.28436
1 -4 0 5 =3 111 0.07109
x=ATAAT]'y=|1 O 1}f-3 17 0| |0|=[0.15602
1 0 1 1 0 3 0 0.15602
1 0 -1 0.32739

Find the shortest four-dimensional vector from the origin to the four-dimensional hyperplane
described by

SX] _2X2+X3‘+‘7x.1: 12
This is the same as asking for the minimum norm solution to

5 -2 1 7x=12

Therefore,
5 0.7595
-2 -1 | —0.3038
x=| [|71A2) =\ 7519
7 1.0633

Least Squares, Weighted Least Squares, and Recursive Least Squares
Consider the set of simultaneous linear equations

__y_k..._ = -~—A———] + [__g__.:'
[yk+1] [Hk+1 X €+ 1

Find the vector x which minimizes

- ! —1 i -1 !
Xk +1 {[A : Hk+ 1][ 0 E-Rl:-‘e-l Hk+1 [A i k + 1] 0 rR;il _.y_k._+~1_

=[ATRTA+H{ R Hen ] ARy + Hi o ReL e ]
Defining A"R™' A = P, ' and using the matrix inversion identity of Sec. 4.9 gives
Xr+1 :{Pk - P HZ+1[H1{+1P/< HZ+1 +Rk+1]~1Hk+1Pk}{ATR_1y1c + HZ‘+1RI:-1+—1yk+l}

Note that P, ATR™'y, = x, is the weighted least-squares solution when only the first group of
equations is used. Therefore,

Xk +1= Xg “PkHZ+1[Hk+1PkHZ+1 +Rk+1]71Hk+1xk
+ Pk HZ+ I{I - [Hk+1Pk HZ+1 + Rk+1]_1Hk+1Pk HZ+ 1}R;l—1yk+l
The unit matrix in the last equation is written as

I= [Hk+1Pk HZ+1+Rk+1]ﬁ1[Hk+1Pk HZ+1+Rk+1]



6.13

6.14

Chap. 6 [llustrative Problems 235

This step is analogous to finding the common denominator in scalar algebra and leads to
Xe+1= X T Py HZ+1[Hk+1Pk H,{+1 + Rk+1]_l{yk+1 - Hk+1Xk}
If this recursive process is to be continued, then an expression for P, ; is needed. If A is
—1 I

replaced by [ﬁ_?;j and if R™" is replaced by [Bf)" —-Q——jl then the definition for P, is modified

to read

R'!I 0 [ A ]}—1

_ T T X, YV |t

Pk“'l‘{[A }Hk+1][ 0 IRk+1:| H,.,
=[ATR—1A+HZ+1R;+1Hk+1]_1:[PI:1+HZ+1R;}rlHk+1]A1

A tracking station measures 7, the time derivative of the range to a satellite, every second. The
measurements are noisy. Find the least-squares fit to a stralght line.
The measurements are assumed to fif the equatlon F(t) =a + bt + e(t), where a and b are

to be determined. Measurement times are t =1,2,...,k:
7:1 1 1 €
f'z _ 1 2 a 6%2
A [b] BE
Fr 1 k €k

The least-squares solution gives
-1

k
j >
1

k

mz S 21 éljr'j

j=1

S k(k+1) & k(k +1)(2k +1
Using the identities Z j =—( > ), E ji= ( )6( ), and carrying out the matrix
i=1 =1
inversion gives ' '

k k k k
22k +1) D H—6 2 i -6k +1) 2/ +12 2 ji
0= j=1_ j=1 b = i=1 j=1
k(k 1) . k(k*—1)

If kK =1, the results are indeterminate, indicating that an infinite number of lines can be passed
through a single point.

Investigate the following equations:

1 2 2
3 4i1x=| 3
56 14
|
1 00
The RRE form of Wis W' = | 0 1;0.
0 011

Since the rank of A is 2 and the rank of W is 3, the equations are 1ncons1ster1t Least-squares
solutions are investigated by several methods.
(a) The normal equation ATAx=AT y is in this case

Fed IR B
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Straightforward matrix inversion could be used, or the RRE method as follows:

w=[35 441 81]__ 1 0} 5.6666] “ [x1]=[ 5.6666]
44 56 1 100 0 1 !-2.6666 x2] | —2.6666

(b) Cholesky decomposition gives

ATA=[5.91608 0 ][5.91608 7.43736]=SS
7.43736 0.82808]L 0  0.82808

_ 81] . 13.69150
Solving §7v = [100] gives v= [—2.20818]

Then solving Sx = v gives the same answer for x as in part (a).

(¢) Using the GSE method, the two columns of the original A matrix, plus the vector y, are used
to generate an orthonormal basis set which is shown as columns of the matrix V.

5.0709254E — 01  2.7602646E — 01 —8.1649655E — 01

1.6903085E —01  8.9708525E — 01  4.0824756F — 01
V=
8.4515423E — 01 —3.4503257E —01  4.0824878E — 01

Then V7 Ax = V7y can be compactly written as V' W = W’. Rounding terms of order 107 to
Zero gives

W= 0  0.82808 | —2.20821 |.

5.91608 7.43736 | 13.69150
0 0 | 4.08249

Compare this with the Cholesky results.
The last row indicates that the norm of the residual error is ||y.|| = 4.08256. Ignoring
the last row and solving the first two obviously again give the same answer.

6.15 After seven semesters of college a student surmises that his cumulative grade point average
(GPA) is a cubic function of the number of semesters completed. His record to date is

Semester, s ' 1 2 3 4 5 6 7 8

Cum. GPA | 25 31 29 28 28 30 31 2

Find the coefficients for the least-squares fit to a cubic. Also determine the residual error norm.
Then use the cubic to predict his GPA on graduation day after semester 8.

It is assumed that GPA = ao + a;5 +a,5> + a;s°. In matrix form this student’s data and
postulated model are

= = p- -

11 1 1 2.5
12 4 8| 3.1
13 9 27([%} |29
1 4 16 64||%|=|28
1 5 25 125 Z"‘ 2.8
1 6 36 216|%d [3.0
(1 7 49 343] 3.1

Using the GSE method leads to the following W' matrix, rounded off.

2.646 10.583 52.915 296.324 ; 7.635
0 5.292 42322 291.033 ) 0.283

W= 0 0 9.165 109.982 | —0.033
O 0 ____ 14700 0.327
0 0 0 0 1 0.284

|
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From this the coefficients are determined as
a=[1.828 0.993 -0.270 0.022]" and |ly.|=0.284
Using these coefficients the estimated GPA after eight semesters is

1.828 + 8(0.993) — 64(0.27) + 512(0.022) = 3.756.

Use the recursive least-squares algorithm to estimate x from Problem 6.14. Start with an initial
estimate of x = 0 and set P, = diag [10000, 10000]. Use R = 10 and Q = 0 (no deweighting). Also
add the following additional equations to be processed:

0:3X1+6XZ, 10=2x1+x2
The recursive calculations are rounded off and tabulated in the order performed.
k M, H, Y« Kx Yie — He Xy Xk Py
0 _ L - (0) (10000 0 )
0 0 10000
10000 0 0.2 0.4\ 8000 —4000
1 ( 0 10000> a2 2 (0.4) 2 <O.8> (—4000 2000)
5 ( 8000 ~4000> G 4 3< 0.993> _14 (—0.990)( 49.628 —34.474)
—4000 2000 —0.495 : 1.493) \-34.474  24.815
49.628 —34.474 0.664 5.648\ ( 23.245 —18.264
3 (—34.474 24.815) (5 6) 14 (—0.415) 9.992 (—-2.652) (—18.264 14.529)
23.245 —18.264 —0.470 6.134 4.507 —3.037
4 (—18.264 14.529) 3 6 0 ( 0.382) —1.033 (—3.046)( ~3.037 2.155)
4.507 —3.037 0.331 6.392 2.526 —1.739
5 ( ~3.037 2.155) 2 110 (—0.217) 0.779 (-3.216)( ~1739 1.304)

Notice that the estimate of x after three measurements is not exactly the same as was found in
Problem 6.14. The difference is due to the initial estimates used for x and P.

Recursive Weighted Least Squares with Discrete-Time Systems

A homogeneous linear discrete-time system is described by x(k + 1) = A(k)x(k). Measured
outputs are given by y(k) = C(k)x(k) + e(k), where e(k) is an error vector due to imperfect
measuring devices. The precise initial conditions for this system, x(0), are not known, although
an estimate, %(0), is available. Use the recursive weighted least-squares technique to develop a
scheme for improving on the estimate %(0) each time a new measurement y(k) becomes avail-
able.

In order to place this problem in the framework developed in Sec. 6.8, page 223, all that is
required is a few notational changes and the elimination of the difference equation. The solution
to the difference equation is x(k) = ®(k, 0)x(0), so that the measurement equations can be
written as

y(k) = C(k)®(k, 0)x(0) + e(k)

1 The circumflex " is used in this and the next problem to indicate an estimated quantity. It should
not be confused with the notation for a unit vector used earlier.
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This is in the form used in Sec. 6.8, where C(k)®(k, 0) corresponds to H; used in that earlier
section. In Sec. 6.8 the index k referred to the kth estimate of a constant vector x. To avoid
confusion here, %(0]k) will be used to indicate the estimate of x(0) based on all measurements up
to and including y(k). Assuming that the original estimate %(0) is to be weighted by a nonsingular
n X n matrix Py ' and that each succeeding measurement is weighted by the m X m nonsingular
matrix R, ' the results of Sec. 6.8 give

%(0]1) = %(0) + Ko[y(1) — C()®(1,0)2(0)]
The gain matrix Ko is given by
Ko =P, ®7(1,0)C”(1)[C(1)@(1,0)P, ®"(1,0)C™(1) + R,] ™"

The estimate of x(0) may be further refined each time a new measurement y(k) is taken by using
the recursive relations

%(0lk + 1) = %(0|k) + Ke[y(k +1) — C(k + D)®(k + 1,0)%(0}k)]
where
K =P, ®"(k +1,0)C"(k + 1)[C(k + 1)®(k +1,0)
X P ®(k +1,0)C7(k + 1) + Resq] !
and where P, is computed recursively using Eq. (6.5), page 224, which can be written as
Pii1=Pr — K, C(k + 1)®(k +1,0)P,

If the error vector e(k) and the weighting matrices P, and R, are given the proper
statistical interpretation, the above technique constitutes a simple example of the fixed-point
smoothing algorithm [8]. A block diagram of the procedure is given in Figure 6.6.

Correction to
y(k+1) Measurement previous
(Actual measurement) Wt residual estimate S~ X (0 k+ 1),
+ - + o
- -

Delay x(0[k)

Expected measurement
based on x(0]k)

and assuming no
errore(k+1) Clk+1)®(k+1,0)

Figure 6.6

Consider the results of Problem 6.17. Instead of reestimating x(0) after each measurement, an
estimate of the current state is now desired. Let %(k|k) be the estimate of x(k) based on all
measurements up to and including y(k). For this estimate, use the intuitively reasonable relation

k(k + 1k + 1) =®(k +1,0)%(0k + 1)

Modify the previous block diagram so that %(k |k) is the output.

If the transition matrix ®(k + 1, 0) is inserted into the diagram of Figure 6.6 before the
delay, then the output will be %(k|k) as shown in Figure 6.7. To maintain the correct relations in
the rest of the diagram, the term %(0/k) = ®(0, k)x(k|k) is needed, so ®(0, k) is inserted in the
feedback path as shown in Figure 6.7.

Using standard matrix block diagram manipulations, ®(k + 1,0) is moved past the
summing junction, into both paths. A new gain matrix K;.1=®(k + 1,0)K, is defined. The
other ®(k + 1,0) term is shifted into the feedback path and combined with ®(0, k) to give
D(k +1,k) =P(k +1,0)P(0, k). This also removes the ®(k + 1, 0) term multiplying C(k + 1).
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y(k+1) £(0lk+1 R(k+1|k+ X(k|k
O K Qe k1,0 PRUEEEDS b, LIER,
200k
Clkt+ 1)D(k+1.0) |t 01K (0. k)
Figure 6.7

This results in the most commonly used form of the discrete Kalman filter [7, 8], shown in
Figure 6.8.

y(k+1) o~ [, N R(k+1]k+1) R(k|k)
+,\4( » K, e » Delay o= >
- +
Clh+1) Jerkt 1K) @(k+1, k)
Figure 6.8

For easy reference the five equations which constitute the discrete Kalman filter are
summarized below. An additive deweighting matrix Q, (see Section 6.8) is included. To appre-
ciate these results fully some knowledge of random processes is required [6]. Lacking this, the
procedure can still be interpreted and used successfully as a recursive least-squares algorithm
with ad hoc additive deweighting included.

To find the gain K, recursively compute

M, = ®(k, k — )P, ®7(k, k — 1) + Qu—: Q)
K =M, CT(k)[C(k)M, CT(k) + R(k)] " ©)
P, = [I— K/ C(k)]M. (3)

To use the gain to estimate x, recursively compute
k(k + 1lk) = ®(k + 1, k)r(k |k) (€))
&(k + 1k + 1) =&(k + 1lk) + Kis[y(k + 1) = C(k + D&(k + 1|k)] )

To initialize the procedure, there are two possibilities:

(i) If (k + 1|k) and M, ., are given, then start by using equation (2) to find K% . 1, then use (5),
along with the measurement y(k + 1), to find &(k + 1|k + 1). To get ready for the next cycle,
use (3), (4), and (7).

(ii) If ®(k|k) and Py are given, then start by using (I), then (2) to find K. ;. Then use (4),
followed by (5). To complete the first cycle and get ready for the next, (3) is then used.

Note that the above algorithm reduces to those at the end of Sec. 6.8 when ®(k + 1, k) =1, that
is, when x(k) is just a constant. Also be aware that the above algorithm can be written in several
other forms which are algebraically equivalent, but which may have different numerical behavior
on a finite word-length computer.
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Prove that if & is any linear transformation there are only two possibilities regarding the null
space: either (1) N(s) consists of only the zero vector or (2) N(s) contains an infinite number of
vectors.

Consider #{(x) =y. Since o is linear, H(x — x) = A(x) — A(x) =y —y so x =0 is always a
solution to &(x) = 0. Thus the null space always contains the zero vector. If x, also belongs to the
null space, (x;) = 0. Assume x; # 0. Then the infinite set of vectors defined by x = ax,, with «
any scalar, satisfies #(x) = #(ax;) = asd(x;) = 0. Thus if one nonzero vector belongs to the null
space, then so does the infinite set of scalar multiples of it. These need not be the only vectors in
N().

Consider the linear transformation o : ¥ — %. Prove that the null space of o is a subspace of ¥.

The solution to this problem consists of combining the results of the previous problem
with the definition of a subspace. A set of vectors is a subspace if for each xi, x; in the set,
ax; + Bx; is also in the set, for arbitrary scalars o, € F. Let x, and x, € N(s4). That is, sd(x,) = 0
and s(x;) =0. Then sﬁ(axl + Bx2) = ad(x;) + B&d(xz) 0. Thus ax; + Bx; € N(A) and so the
null space is a subspace. It is a zero dimensional subspace if its only element is the zero vector.
Let A : ¥ — % be a linear transformation, with & and % finite dimensional. Prove that the space
% can be written as a direct sum ¥ = N(sd) © R(A*).

It was shown in Problem 6.20 that N'(s) is a subspace of Z. Let N(s4) * be the orthogonal
complement of N'(s4). Then from the results of Section 5.9, & = N(d) BN(4) *.

It remains to be shown that R(#4*) = N () *. Let x be an arbitrary vector in N(s{) and let
z be an arbitrary vector in Y. Then $(x) = 0 so that (z, d(x)) = (d*(z), x) = 0. From this we see
that x is orthogonal to «¢*(z), which shows that N(sd) = R(4*)* . The orthogonal complements
are also equal, N()* = (R(«*)*)*, but (R(L*) )+ = R(4*). This completes the proof for ¥
finite dimensional.

For the infinite dimensional case, the decomposition is valid if the closure of R(4*) is used
in place of R(s4*). Every finite dimensional space is closed.

Consider the linear transformation #(x) =y, where o : ¥ — %Y. Show that there is no unique
solution for x if N'(s{) contains vectors other than the zero vector.

Suppose x; € N(A) and x; # 0. If x satisfies A(x) =y, then x + x; is also a solution, since
Ax+x) =dAXx) + A(x1))=y+0=y.
Prove that the linear transformation o : ¥ > %, with s{(x) =y, has a solution for every y €Y if
and only if N (s{*) = {0}. Assume that % is finite dimensional.

The linear transformation #{* and its finite dimensional domain % can be used in place of
s and ¥ in the result of Problem 6.21. That is, Y = N(4*) @ R((4*)*) = N(A*) D R(A). If
N(s4*) = {0}, then Y = R(sA), so that every y EY is the image of at least one x € ¥. Note that
y € R(d) is equivalent to the requirement for existence of solutions given in Section 6.2:
rank [A] =rank [A y]. If N(£*) # {0}, then Y # R(A); so there exists some y EY buty & R(HA).
Such a y is not the image of any x € ¥.
Prove: s{(x) =y has a unique solution for every y € ¥ if N(s4*) = {0} and N(«A) = {0}.

The results of Problem 6.23 guarantee that at least one solution exists. Assume x; and x,
are two solutions, that is, s4(x;) =y and #(x,) =y. Then d(x;) — d(x;) =0 or A(x; — x,) = 0.
But since N(s{) = {0}, this requires that x; — x, = 0 or x; = x; is the unique solution. Note that if
the domain ¥ is n-dimensional, N(s) = {0} implies that rank(#{*) = dim R(4*) = dim ¥ = n.
Also N(*) = {0} implies that rank(&d) dim 9%(&4) =dim%. But rank(#{) = rank(«*), so a

unique solution requires rank(s{) = n as shown in Section 6.2, using a matrix representation A
for A.

If the domain and codomain for o are restricted so that &4:971(&4*)—)97{(&4), show that « is
one-to-one and onto, and thus possesses an inverse.

Since, in general, ¥ = N() DR(A*) and Y = N(4*) DR(A), restricting A as stated
guarantees that the conditions for a unique solution, as stated in Problem 6.24, are satisfied, so
the restriction of & is one-to-one and onto.
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Let o : £— % be a linear transformation for which N(s{) # {0}, but N(s{*) = {0}.
(a) Show that the most general solution to «(x)=y is given by x=x,+x;, where

X1 € R(A*), X0 € N(A).

(b) Show that x; is the minimum norm solution given by x; = A *(ds4*)'y.

(1) For every x€¥, a unique decomposition is possible, x =x, + x; with x, € R(A*),
Xo - N(&i),

(2) Using this decomposition gives s{(x) = (o + x1) = s(x,) = y. Since x, € R(«4*), there
exists a y; €% such that &*(y;) = x;, from which d(x;) =y = A4*(y,). Since AA4* is a
one-to-one linear transformation from R(4) =% onto itself, and thus possesses an
inverse, y; = (d4*)'y. Using x, = 4*(y;) gives the minimum norm solution x; =
A*(Ad*) 'y, Any vector x, € N(s) can be added to x, and the result is still a solution,
but with a larger norm.

If N(4*) # {0} and y & R(A), no solution to «(x) =y exists. Give a geometrical interpretation of
the least-squares approximate solution, x = (*«) ™" sd*y.

Figure 6.9 illustrates the decomposition of ¥ and %. For any yE¥, y=z +w with
z € R(A) and w € N(A4*). Therefore

A*(y) =dA*(z + w) = 4*(z)

£ =N () ® R(A*) ¥ = N(*) & R(A)

ﬁ
/ 7 AN SN AN \\

Figure 6.9

Since z € R(«A), there exists some x € ¥ such that #(x) = z. Combining these results gives
A*(z) = A*A(x) = A*(y)

If N(s4) # {0} there will be many vectors x satisfying «(x) = z. The one such vector with min-
imum norm is selected, i.e. the one belonging to R(#A*). With this restriction, H*« is a
one-to-one transformation from R(s4*) onto itself and thus possesses an inverse. The least-
squares solution is x = (4*sf) ™" «d*(y). This solution is the pre-image of the projection of y on
R(A).
Prove that every finite dimensional linear transformation is bounded.

i LetA: X"— X", wri‘th xeX". Let{v,i=1,2,...,n}be an orthonormal basis for ¥". Then
x= 2 a; v;and A(x) = 2, a; A(v;). Therefore,

i=1 =1

It = 12 st = 2 fulish ()

Since the vectors y; = s{(v;) belong to ¥, they have a finite norm. Define K = max |yi.
Then =t

.....

It = 3 eyl = K 2
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But o; = (v;, x) so that the Cauchy-Schwarz inequality gives |o;| <|v:||-[Ix]| = ||Ix]| since [|v|| = 1.
Using this gives |4 (x)|| = Kn||x||, so that o is clearly bounded [Eq. (5.6)]. Notice the dependence
on the finite dimension n.

Let of : ¥— % be a linear transformation such that (s4*s{)™" exists. Prove that S(s{*sf) ™" o{* is
the orthogonal projection of ¥ onto R(A).
The indicated transformation is a projection if and only if

[s4(sd*58) " s*][sh(sh* o) ™" od*] = A(A*d) " A*

This condition is obviously satisfied. Decompose Y = N(s4*) D R() and let y =y, + y;, where
Yo €E N(4*), y1 € R(sA). The orthogonal projection of y onto R(s) is y; by definition.
We must show that (sd*) ™" d*y =y,. First note that

A (y) = (o) + 50*(31)

Both y; and sd(sd*) ' d*y, € R(A) = N(s4*) * so their difference, e, does also. Applying the
adjoint transformation #¢* to their difference gives

AH[A(A* ) Ay, — yi] =0

Since e€ N(«4*)* and s*(e)=0, the conclusion is that e=0. This leads to y,=
A(A*A) ! A*y.

PROBLEMS

Miscellaneous

8§ 2 1 10
Solveforxif[{1 1 3|x=| 5.
2 5 4 1

Assume that a dynamic system can be described by a vector of time-varying parameters x(z),
with initial conditions x(0). The relation between x(#) and x(0) is x(¢) = ®(¢)x(0), where ®(¢) is an
n X n matrix. Let x be partitioned into [—’9—(5—]. If x,(0) and x,(T') are known, find x,(0).

Xz([)

Homogeneous Equations

If Ax = 0 has g linearly independent solutions x; and Ax =y has X, as a solution, show that
q

(a) x. = > x; is also a solution of Ax = 0,
i=1

q
(b) x=x+ >, a; x; is a solution of Ax = y.

i=1

1 0 4]|™
Find the nontrivial solutions for [2 3 8 X2 |=0.

Find all nontrivial solutions for B % 5] X2 |=0.
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2

4 || x1 _

Hlx <.
-2

Find all nontrivial solutions of Ax =0, i.e, the null space, of

Determine whether nontrivial solutions exist for

_ O N =

26 17 8 39 35
17 13 9 29 28
A= 8 9 10 19 21
39 29 19 65 62
35 28 21 62 61

Least Squares

Solve for x, and x if
@ 2x1—x2=5,x1+2x, =3,
(b) in addition to the equations in a, a third equation is —x; + x> = —1. Use least squares.

Given that B 1} = [ﬂx + [il]. Measurements give [y, y.]=[3 4]. Find the least-squares
2 1

estimate for x. Use a sketch in the yy, y> plane to indicate the geometrical interpretation.
Verify the result of Problem 5.35, page 201 by determining the least-squares solution for x:

10 1
21 ~3
-3 3[“} 4
1 3|4 2
0 1 8

and then use the fact that the orthogonal projection of y on the column space of A is y, = Ax.

A physical device is shown in Figure 6.10. It is believed that the output y is linearly related to the
input u. Thatis, y = au + b. What are the values of a and b if the following data are taken?

v
)
v

Figure 6.10

The same device as in Problem 6.40 is considered. One more set of readings is taken as
u=>5, y=7
Find a least-squares estimate of a and b. Also find the minimum mean-squared error in this

straight line fit to the three points.

Consider the data of Problem 6.41, but assume that the first two equations are much more
reliable. Use

10 0 0
R'=| 0 10 0
0 01
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and show that the resultant weighted least-squares estimate is much closer to the values obtained
in Problem 6.40.

Estimate the initial current i(0) in the circuit of Figure 6.11, if R =10 Q, L =3.56 H, and the
following voltmeter readings are taken:

)
| Voltmeter
L R : gives v(?)
-—=7 Figure 6.11
t 0 1 2 3
v(?) 167.9 95.5 88.8 55.3

Least-squares fit a quadratic function to the data of Problem 6.15. Determine the coefficients
and the norm of the residual error. Then predict the GPA after semester eight.

An empirical theory used by many distance runners states that the time 7; required to race a
distance D; can be expressed as T; = C(D;)*, where C and « are constants for a given person,
determined by lung capacity, body build, etc. Obtain a least-squares fit to the following data for
one middle-aged jogger. (Convert to a linear equation in the unknowns C and «a by taking the
logarithm of the above expression.) Predict the time for one mile.

Time 185 min 79.6 min 60 min 37.9 min 11.5 min

Distance 26.2 mi 12.4 mi 9.5 mi

6.2 mi 2 mi

Apply the recursive least squares algorithm to the data of Examples 6.4 and 6.7. Try different
starting assumptions to determine their effect on the estimate. Recall that A is not full rank and
thus a unique least-squares solution does not exist. Add a fifth equation,

4x; — x>+ 6x3=2

so that the enlarged A matrix is of full rank. How do your results compare with Example 6.77

How should the results for the minimum norm and least-squares solutions of Problems 6.26 and
6.27 be modified if a weighted norm or weighted least-squares solution is desired?

Lyapunov Equations

Solve XA + BX = C for X if

__—1 3 AT -1 0
A—‘0 5], B=A", and C—[ 0 _1]
Solve XA + BX =C for X if
[ o 1 10 [-1 o0
A=]2 —3]’ B”[3 5] and C"[ 0 —1]
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Eigenvalues and Eigenvectors

7.1 INTRODUCTION

This chapter defines eigenvalues and eigenvectors (also referred to as proper, or char-
acteristic, values and vectors). Methods of determining eigenvalues and eigenvectors
are presented as well as some of their more important properties and uses. For a linear
continuous-time system—i.e., Eqs. (3.11), (3.12)—or for a linear discrete-time sys-
tem—i.e., Eqgs. (3.13), (3.14)—the eigenvalues of the A matrix completely determine
system stability. The eigenvectors of A form a very convenient choice for basis vectors
in state space. When a full set of eigenvectors can be found, it will be shown that the
nth-order system can be transformed into an uncoupled set of n first-order equations.
Each equation describes one natural mode of the system. The uncoupled form allows
for easier analysis as well as providing greater insight into the system’s structural
properties. Unfortunately, not all matrices have a full set of eigenvectors. This can
happen only when the matrix has repeated eigenvalues, plus an additional condition to
be described in detail later. The most annoying complications that arise in the
eigenvalue-eigenvector problem are due to this degenerate case, where less than a full
set of eigenvectors exist. It has sometimes been argued (erroneously) that the repeated
eigenvalue case is purely academic because small computational differences will always
exist between any two eigenvalues. In fact, the degenerate case cannot be avoided so
easily. Additional vectors, called generalized eigenvectors, will be defined and used to
supplement the eigenvectors when necessary. Doing this will lead to a system which is
as close to being uncoupled as possible.

7.2 DEFINITION OF THE EIGENVALUE-EIGENVECTOR PROBLEM
Let o be any linear transformation with domain %(s4) and range R(s4), both contained

within the same linear vector.space ¥. Let elements of ¥ be denoted as x,. Those
particular elements x; # 0 and the particular scalars \; € & which satisfy

245
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Ax;) =N X (7.1)

are called eigenvectors and eigenvalues, respectively. Note that the trivial case x = 0 is
explicitly excluded. Thus \; is an eigenvalue if and only if the transformation o — $\,
has no inverse. The set of all scalars A for which this is true is called the spectrum of 4.

The eigenvector problem of Eq. (7.1) applies to a more general class of operators
than is needed here [1]. With the exception of the material on singular value decom-
position, the transformations considered in this chapter map elements in X" into other
elements in ", so & can be represented by an n X n matrix A. The identity trans-
formation is represented by the unit matrix I. The matrix representation of Eq. (7.1) is

(A—I\)x; =0 (7.2)

and the determination of eigenvectors is a matter of finding nontrivial solutions to a set
of n homogeneous equations. If scalar eigenvalues A; are known, then any of the
techniques of the previous chapter for solving simultaneous linear homogeneous equa-
tions can be used to find the corresponding eigenvectors x;. The various row-reduced-
echelon- and Gram-Schmidt-based methods are easily adaptable to machine computa-
tion for this purpose. However, the eigenvalue-eigenvector problem is actually more
difficult than those considered in Sec. 6.6 because the scalar A; is also unknown. This
leads to a nonlinear problem because the product of the unknowns A; and x; enters into
the equations. As a starting point for this discussion, the determination of the eigen-
values is isolated and solved first. Once this is done, the remaining problem of deter-
mining the eigenvectors is linear, exactly of the type treated in Sec. 6.6. While splitting
the problem this way is a customary method of discussion, it is not necessarily the best
computational approach. A direct computational attack on the simultaneous determi-
nation of eigenvalues and eigenvectors is more efficient for many problems.

7.3 EIGENVALUES

It was shown in Chapter 6 that a necessary condition for the existence of nontrivial
solutions to the set of n homogeneous equations (7.2) is that rank(A — I\;) <. This is
equivalent to requiring |A — IN;| = 0. When the determinant is expanded, it yields an
nth-degree polynomial in the scalar A,—that is,

IA - I)\' = (—7\)’1 + Cn_l)\n~1 + Cn_z)\n_Z + e+ Cl)\ + C(): A(A) (73)

The roots of this algebraic equation are the eigenvalues \;. A fundamental result in
algebra states that an nth degree polynomial has exactly n roots, so every n X n matrix
A has exactly n eigenvalues. The nth-degree polynomial in \ is called the characteristic
polynomial and the characteristic equation is A(\) = 0. In factored form,

AN =(D"A=A)A=N) - (A=r,)=0

and the roots are Ay, \,, . . ., \,. In general, some of these roots may be equal. If there
are p < n distinct roots, A(\) takes the form

AN = (1" A = A)MN = Ag)™ - (A= N)™
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This indicates that A = \; is an mj-order root, A =\, is an my-order root, etc. The
integer m; is called the algebraic multiplicity of the eigenvalue \. Of course,
mitm,+---+tm,=n.

The problem of determining eigenvalues for s{ amounts to factoring an nth
degree polynomial. For large » this is not an easy computational problem, although it
is conceptually simple and will not be discussed here. Section 7.6 presents a direct
iterative method of determining eigenvalues and eigenvectors, which, when appli-
cable, avoids factoring the characteristic polynomial.

Many relationships exist between A, c;, and A,, three of which are

1. If the scalars ¢; in Eq. (7.3) are real (the usual case), then if \; is a complex

eigenvalue, so is A,
2. Tr(A) =M+ M+ -+ N, =(-1D)""c, -,
3. |A\=)\1)\2"')\n = (Cp.

The characteristic polynomial is often defined by |IN; — A| rather than |A — IN\;|. This
leaves the roots unaltered but changes Eq. (7.3) by a factor (—1)" (see Problem 7.46).

7.4 DETERMINATION OF EIGENVECTORS

The procedure for determining eigenvectors can be divided into two possible cases,
depending on the results of the eigenvalue calculations.

Case I: All the eigenvalues are distinct.
Case 11: Some eigenvalues are multiple roots of the characteristic equation.

Case I: Distinct Eigenvalues

When each of the eigenvalues has algebraic multiplicity of one (i.e., they are all
simple, distinct roots), then rank(A — IN) will be n — 1. This means that there is only
one independent nontrivial solution to the homogeneous equation

(A - D\,-)X,- =0

There are any number of methods of solving this equation for the eigenvector x;. One
which is easy to use for hand computations on small matrices is to compute the adjoint
matrix Adj(A — I, \), leaving N as a parameter. Then, successively substituting the
value for each \,; and selecting any nonzero column will give each x; eigenvector in turn.
The overhead of computing the adjoint matrix is done only once, and the result gives
all simple eigenvectors. Other methods involve reducing A — I, \; to a purely numeric
matrix for each eigenvalue. Then row-reduced-echelon methods, Gram-Schmidt de-
composition methods, singular-value decomposition (SVD) methods (see Problems
7.29 through 7.34), or other numerical methods of solution can be applied. The eigen-
vectors are not unique. If x; is an eigenvector, then so is ax; for any nonzero scalar a.
This fact is often used to normalize the eigenvectors, perhaps so that |x;| = 1. Another
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common normalization forces the largest component of x; to be unity. Regardless of
method, a full set of » linearly independent eigenvectors can always be found for this
case. They satisfy Ax; = \; X1, AX; = N2 Xp, . . . , AX, = \, X,. By defining an n X n modal
matrix M=[x; X, ... X,] and an n X n diagonal matrix A with the ith eigenvalue
in the i, i position, all n eigenvalue-eigenvector equations can be combined into one
matrix equation, AM = MA. Since the eigenvectors form a linearly independent set,
the rank of M is n, and M ! exists. Therefore, A = M~' AM. This shows that a matrix
A, which has distinct eigenvalues, can always be transformed to a diagonal matrix
A =diag[\; \; s ... \,] by a similarity transformation. A similarity transformation
is a relationship between two square matrices A and B of the form B = Q' AQ for any
nonsingular matrix Q. In the particular case before where B was the diagonal matrix,
the modal matrix played the role of Q. In some cases (see Problems 7.25 and 7.27) the
eigenvectors are mutually orthogonal and, when normalized, constitute an ortho-
normal set. In this case M is an orthogonal matrix, i.e., M~' = M”. The similarity
transformation simplifies to an orthogonal transformation A = M” AM in that case.

EXAMPLE 7.1 Consider the unforced portion of the state variable model

0 1 0
X= 0 0 1|x
-18 -27 -10

(These equations are from Problem 3.3.) Find the eigenvalues and eigenvectors of the 3 X 3
matrix A. Then form the modal matrix.
First find the eigenvalues. The characteristic equation is

JA—IN=—-N—10A>-27A—18=0

Note the correspondence between the coefficients of the characteristic polynomial and the
entries in the last row of A. This is not a coincidence and always occurs when A is expressed in
companion form, as it is here. To eliminate the minus signs, the characteristic equation can
obviously be multiplied by —1 without altering its roots. This is equivalent to writing
|IN — A| = 0. The cubic polynomial has three roots, \; = —1, A, = —3, and A3 = —6. Note that
these three distinct roots have the same values as the poles of the transfer function from which
the state equations were derived (Problem 3.3). This is also not a coincidence. Next find the
eigenvectors. Four different methods are demonstrated.

1. The adjoint matrix is

A2+ 10N + 27 A+10 1
Adj(A —Ir) = -18 AN+100 A
— 18\ —27A —18 \?

Any nonzero column can be selected to form the eigenvectors. For example, column 1 with
A= —1gives x; =[18 —18 18], column 2 with A = -3 gives x,=[7 —21 63]’, and so on.
However, column 3 is clearly the easiest to use for all three eigenvectors. It is seen that
x; =[1 N A]%, and the modal matrix becomes

1 1 1 1 1 1
M= )\1 )\2 )\3 = "‘1 _3 '_6
NS0 S ¥ 1 9 36
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This matrix has a very special form, due to the special companion form of the matrix A, and is
called a Vandermonde matrix. Notice that the numerical values selected before from the other
columns are just scalar multiples of the same vectors.

1 0 -3
2. The row-reduced echelon form of A —I(—3) is easily found to be [0 1 %] From
00 O

this it is clear that the rank is 2, as it must be for a nonrepeated root, and that the eigenvector for
A=-3isx=[1 -3 9} as before.

3. The Gram-Schmidt-based QR decomposition of A — I(—1) is found by the computer to
be

0 0.89470  —0.44666 | 0 1.11769 1.11769 | = [Q][R]

0.05547 —0.44597 —0.89332 | 18.0277 27.0139  8.9861
—0.99846 —0.024776  0.09629]] 0 0 0

Since Q is nonsingular, QRx = 0 is equivalent to just Rx = 0. This triangular set of equations has
all the same advantages as the RRE form and leads to the eigenvector x=[1 —1 1] for
A=-—1.

4. The singular-value decomposition of A — I(—~6) is USV’, where

[—0.12408  0.79904 —0.58835 33.3441 O 0
U=|-0.15213 -0.60122 —0.78446 |, 2=|0 5.5832 0
| 0.98055  0.00777 —0.196116 0 0 0

and

V=|-0.82508 —0.54058 —0.164337
| —0.12219 —0.11325  0.986024

[—0.55164  0.83363 0.0273896}

Solving USV”x =0 is simplified to solving 3 V' x = 0 because U is orthogonal. Let V'x=w
temporarily. Then, because 33 3 = 0, Zw = 0 implies that w=[0 0 1]7 or some scalar multi-
ple. V is also orthogonal, so that x = Vw, that is, the eigenvector x is that column (or those
columns) of V which correspond to the zero elements in X. In this case, column 3 of V is the
eigenvector, and it is proportional to [I —6 36]7, as found earlier. The extra complications of
the QR and SVD decompositions would normally rule out these methods for hand calculations.
However, they form the basis for reliable machine computations. Section 7.6 shows how the QR
decomposition can be used to find the eigenvalues as well as the eigenvectors. n

EXAMPLE 7.2 Use the modal matrix found in the previous example to decouple the modes of
the state variable system.

Define a new vector by x = Mw. Actually this is the same state vector expressed with
respect to a new basis set consisting of the eigenvectors. That is, x can be written in expanded
form as

X=wWiX;+WeXo+ -+ W, X,

The original state equations become Mw = AMw, and upon premultiplying by M, the result is
totally uncoupled, w = Aw. The three components of w satisfy wi = —w;, W, = —3w,, and
w3 = —6ws;. These uncoupled scalar equations each have an exponential solution of the form
w; () = exp(\;: )w;(0). This shows that if any eigenvalue has a positive real part, the correspond-
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ing component of w will grow without bound, thus forcing the entire vector w to infinity. The
lesson is that the eigenvalues of the matrix A completely determine the stability of a linear,
constant coefficient system. This should come as no surprise, since it was shown earlier that
transfer function poles are also eigenvalues. Pole locations are at the center of stability
discussions in classical control theory, as reviewed in Chapter 2. n

Case Il: Repeated Eigenvalues

When one or more eigenvalues are repeated roots of the characteristic equation, a full
set of eigenvectors may or may not exist, and a deeper analysis is required. The ques-
tion of whether two roots such as 4.000001 and 3.99999 are really numerical approxi-
mations of the same root or if they are distinct is postponed temporarily. The clean
idealistic case with a binary yes or no answer to the repeated-root question is addressed
first. The number of linearly independent eigenvectors associated with an eigenvalue
\; repeated with an algebraic multiplicity m; is equal to the dimension of the null space
of A — I\, This dimension is given by

q; =n —rank(A —I\;) (see Problem 7.18)

and is called the degeneracy of A — I\, The degeneracy is also called the geometric
multiplicity of \; because it is the dimension of the subspace spanned by the eigen-
vectors. The distinction between the algebraic multiplicity m; and the geometric multi-
plicity g; of a repeated eigenvalue is crucial to finding the associated eigenvectors and,
if needed, generalized eigenvectors. First, notice that the range of possible values for
the integer g; is given by 1 =< g; = m,. For example, a given matrix A might have \; as a
triple root of A(\) = 0 so that m; = 3. Yet there may only be one eigenvector (¢; = 1) or
perhaps two eigenvectors (q; =2) or even a full set of three. An important point is
restated for emphasis. Every n X n matrix A always has a full set of n eigenvalues, but it
might not have a full set of n independent eigenvectors. It is convenient to consider three
subclassifications for Case II. L 0 g ie i ”"Q
h ‘.‘N‘ v !

Case Il,: The fully degenerate case, q, m;. The fully degenerate case has a
full set of m; eigenvectors associated with the repeated root A;. They can be found by
the same types of methods described for Case I, with only minor modifications. In
numerical methods such as the row-reduced-echelon, Gram-Schmidt QR, or SVD
methods, the modification is fairly obvious: There will be g; independent solutions to
(A — IN))x; = 0 instead of just one, as in Case I and Example 7.1. In the adjoint matrix
method the modification is not quite so obvious, but it is based upon Problem 6.4. The
m; independent eigenvectors associated with the repeated root can be selected as
independent columns of the differentiated adjoint matrix

1 famr
(mi _ 1)!ld)‘mi -1 [Ad](A D\)]}

)\=)\i

A turther complication here as compared with Case I is that if x;, x,, . . . , X, are eigen-
vectors of A, then so is every vector y in the subspace spanned by the x; vectors. That is,
any y = 2. X; also satisfies (A — I\;)y = 0. This makes it more difficult to recognize the
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equivalence of the eigenvectors found by different solution methods, as is demon-
strated in Example 7.3. Notice that Case I is really a subset of Case II, with m; = 1. The
category must be determined separately for each eigenvalue. The only time a matrix
will have a full set of eigenvectors is when each of its eigenvalues is in either Case I or
Case II;. In this situation the modal matrix M is formed as before, and the similarity
transformation M~' AM will again give a diagonal matrix A with \; as its diagonal
elements. The state equations associated with a matrix A with these properties can be
fully decoupled, just as in Example 7.2. It is known in advance that real, symmetric
matrices and Hermitian matrices will always meet these conditions and thus have a full
set of eigenvectors. This property extends to the entire class of normal transformations
defined in Sec. 5.12 and revisited in Problems 7.26 through 7.28. Many physical
matrices, including impedance and admittance matrices of circuit analysis, fall into this
group. This might lead to the erroneous conclusion that in practical problems a full set
of eigenvectors will always exist. In control theory, the controllable canonical form of
the state equations gives a matrix A in companion form. A companion form matrix will
always have just one eigenvector for each eigenvalue, regardless of the multiplicity of
the eigenvalues. (See Problem 7.36.)

EXAMPLE 7.3 Find the eigenvalues, eigenvectors, modal matrix, and diagonal form of

Po1-1 -
004 0 0
A=
-3 1 3 -3
-2 1 -1 14

It is impossible to represent this matrix exactly with a finite number of digits. Keeping six-digit
input accuracy, a computer routine gave the characteristic equation

AN) =\ — 1407 + 720% — 160N + 128 =0

and the (approximate) roots were found to be

A =1.999999
N> =3.999980
A3 = 3.999982
A4 =4.000017

Is this a case of repeated roots? Here it is known that the exact eigenvalues are {2, 4, 4, 4}, but in
a general computer solution how is the question answered? The answer directly relates to the
numerical determination of the rank of a matrix. Several solutions to this problem will be
presented to demonstrate this point. Actually, A; =2 is a simple root, so Case I applies. Also
N> =4 is a triple root (m, = 3). In order to determine the degeneracy g., rank(A — 4I) must be
found. Three of the four solution procedures will indicate rank automatically as part of the
solution process. First the simple root is treated.

133333 -1 1  0.33333
0 -2 0 0 B

0.66666 —1 —1  0.33333[%~

0.66666 —1 1 —1.66666

(I— A)x = 0
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gives the solution
X, =[-0.99999 0 -1 -0.999999]"=~[-1 0 -1 -1}

The repeated root case gives

P-11 )
@1-Ax=|" _(1) g’ Olx=0

3 3

§ 11 3

Solution Method 1: Row-reduced echelon solution shows that the rank is 1, so g, = 3;
this is the fully degenerate case. There is just one independent equation for the four components
of x, and as a result three independent solutions can be found, all of which satisfy
[ -1 1 3i]x=0. Among the infinite number of possibilities, the three used here are x, =
[1 0 0 -2, xs=[0 1 1 0} ,andxs=[0 1 O 3]"

Solution Method 2: The modified Gram-Schmidt process was used to find the QR
decomposition

0.5774  0.2123  0.2634  0.7431|| 1.1547 -1.732 1.732 0.5773

AT A~ 0 0.6501  0.6384 -0.4121}|0 107 107 10°°
0.5774  0.3987 —0.6258 —0.3407(|0 0 107 10°°
0.5774 -0.6110  0.3624 -—0.4024 ][0 0 0 107°

For the small numbers only the power-of-ten magnitude is shown. The “almost” upper-
triangular R part shows the type of judgment necessary to determine rank. The input data were
accurate only to about six decimal places, so it is reasonable to conclude that the last three rows
of R are actually zero, giving a rank of 1 to R, and hence to 41 — A, since Q has full rank. Thus
q- = 3, and there are three independent solutions of

[1.1547 -1.732 1.732 0.5773]x=0

This is proportional to the equation found using the row-reduced-echelon form, so the same
eigenvectors are again valid. It is very likely that a computer would give three different members
of the eigenspace, however. This will be evident in the SVD solution.

Solution Method 3: The SVD decomposition of 41 — A gave I = diag(2.7688 107°
1077  0). The last three singular values are zero to within the accuracy of the input data. The last
three colunns of V are, therefore, eigenvectors for A = 4. These columns are

x; = [—0.90767 —0.29505  0.29505  0.04505]”
x;=[0.04715  —0.14711  0.14711 —0.97698]"
xs=[0 -0.7071  —0.7071  0]”

The last vector is clearly recognizable as being a normalized form of the previously found xs. The
other two are linear combinations of the vectors found using the previous methods, but this is
not obvious.

Solution Method 4: The adjoint matrix, as obtained by computer [2], is
AdjM - A)=NL+NF+\G+H

where
-10.66667 1 -1 —-0.33333 37.3333 -8 8 2.6667
F= 0 —10 0 0 G= 0 32 0 0
—0.66667 1 —-11 —-0.33333}|’ 5.3333 —8 40 2.6667 |’

—0.66667 1 -1 -10.33333 5.3333 —8 8 34.6667



Sec.7.4 Determination of Eigenvectors 253

and

—42.6667 16 —-16 —5.3333
0 =32 0 0

—-10.6667 16 —48 —5.3333

—10.6667 16 -16 —5.3333

When \ = 2 is substituted,

266667 4 —4 —1.33333
. oo 0 0 0
AdJEI-A)=| 5 go667 4 —4 —1.33333

—2.66667 4 -4 -1.33333

All columns are proportional to the previously found x;. Then, with A =4, Adj(41 — A) = [0],
and d/d\[Adj(A\I — A)] = 3A\*1 + 2\F + G. When \ = 4 is substituted, this again gives the matrix
[0]. Another derivative gives 3d*/d\*[Adj(NI — A)] = 3\I + F. With \ = 4, this gives the follow-
ing 4 X 4 matrix, but only three columns are independent:

1.3333 1 -1 -0.3333
0 2 0 0

-0.6667 1 1 -—0.3333
-0.6667 1 -1  1.6667

Any three of these four columns could be selected as eigenvectors, or any combination of them.
For example, the sum of columns 2and 3is[0 2 2 0]7, which has appeared as an eigenvector
in the other solution methods.

Any valid set of eigenvectors can be used to form M=[x; X, X; X4, and then
M 'AM=Diag[2 4 4 4] to within the 107° accuracy established by the input. [ |

Case II,: Simple Degeneracy, ¢; =1. For this case there is just one eigenvector
for each eigenvalue, regardless of the algebraic multiplicity. It can be found by using
any of the methods mentioned in Case 1. The more interesting question here is how to
fill in for the missing eigenvectors. If the purpose is to construct a basis set, then the
eigenvectors must be augmented with additional linearly independent vectors. This
can be done in various ways. The additional vectors could be constructed to be
orthogonal to all of the eigenvectors by using a Gram-Schmidt process. Assume this is
done and the resulting set of vectors is used to form columns of the n X n matrix T. The
result of the similarity transformation T~* AT will not be diagonal, although it will be
upper triangular and perhaps close to diagonal, depending upon how many non-
eigenvectors are included in T. This means that state equations with this A matrix
cannot be fully decoupled. In fact, no similarity transformation exists which will
diagonalize A in Case II, or Case II; to follow. If a special class of augmenting vectors,
called generalized eigenvectors, is used instead of constructing some arbitrary orthogo-
nal set, the diagonal matrix (i.e., the possibility of decoupling) is more nearly
achieved. From here forward it is assumed that generalized eigenvectors will be used to
fill in where needed. The matrix formed from the set of n eigenvectors and generalized
eigenvectors will again be reférred to as the modal matrix M rather than the matrix T
just used. The claim is that M~ AM = J will be as nearly diagonal as possible. The
matrix J is called the Jordan form.
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The determination of generalized eigenvectors and the Jordan form is now
discussed in detail. Suppose that A\; has an algebraic multiplicity m;. Since g; =1 by
assumption in Case II,, there is one eigenvector x; and m; — 1 generalized eigenvectors
are required. They are defined by the string or chain of equations

Ax; =N Xy (the usual eigenvalue equation)
AXZ = )\,‘ X, + Xy, AX3 = )\i X5 + X5, ... ,Axmi = )\i X T Xpmio 1

Each equation in the chain except the first is coupled to the preceding equation.
Assume for the moment that there are no other eigenvalues, that is m; =n. The
preceding chain of equations can be written as one matrix equation:

v 10 0]

O N 1 .- 0

0 0 N 0
AlX; Xp...X,-1 X, ]=[X1 Xo...X,-1 X.]| -

0 0 0 --- N 1

_O 0 0 O )\,‘_‘

This explicitly shows one example of the Jordan form matrix J. It has the same
repeated eigenvalue in every diagonal position and a 1 in every position above the main
diagonal. In the more general case where there are other eigenvalues in addition to the
m; multiple root, the Jordan form will be a block diagonal matrix

J = Dlag[Jh J25 LR )Jp]

with each of the J; submatrices, called Jordan blocks, having the structure just shown
explicitly. There will be one m; X m; Jordan block associated with each eigenvalue of
multiplicity m; that satisfies the conditions of Case II,. Repeated eigenvalues satisfying
Case 11, will have m; separate 1 X 1 Jordan blocks J; = [A;], and the nonrepeated Case I
will also have separate 1 X 1 blocks along the diagonal. That is, the diagonal matrix A
is included in the definition of the Jordan form J as a special case. From what has been
presented so far, it may be surmised that the Jordan form of a matrix will have as many
separate Jordan blocks as there are eigenvectors and as many ones just above the main
diagonal as there are generalized eigenvectors. This observation is true in general,
even for Case II;, which is discussed shortly.

EXAMPLE 7.4 Find t‘he eigenvalues, eigenvectors, generalized eigenvectors, if needed, and
the Jordan form for the companion form matrix

0 1 0 O

0 0 1 0}

0 0 0 1
-8 -20 -18 -7

A=

The characteristic equation A* + 7\> + 18\* + 20\ + 8 = 0 has roots \; ={—1, —2, —2, —2}. The
simple root \; = —1 belongs to Case I, and the corresponding eigenvector is easily found to be

x=[-11 -1 17

For A, = =2, m, = 3, and g> =1, since the row-reduced-echelon form of
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2 10 0 100 0125

1o 2 1 ol . lo1 0 -025
A-De=1 g g 52 1| % 1o 01 05
~§ -20 -18 -5 000 0

From this, the only eigenvector for \; is x,=[0.125 —0.25 0.5 -1]". The generalized
eigenvector x; must satisfy (A — IN2)x; = x,, which gives x; =[0.1875 -0.25 0.25 0]". Then
(A —I\)xs = x5, giving x4 =[0.1875 —0.1875 0.125 0]". There are many other valid an-
swers. Using the four x; vectors as columns in M gives

I
-11.0._0_0
—1 _ O :—"2 1 O _ _ . _
M 'AM= 0l 0 -2 1 = J = Diag[—1, J;]
01 0 0 -2
where J, is a 3 X 3 Jordan block for \, = —2. [ ]

Case Il;. The general case for an eigenvalue of algebraic multiplicity m; and
degeneracy g; satisfying 1 =g, = m; still has g; eigenvectors associated with A;. There
will be one Jordan block for each eigenvector; that is, A; will have g; blocks associated
with it. Case II; is really just a combination of the previous two cases, but knowledge of
m; and g; still leaves some ambiguity. Assume A, is a fourth-order root of the character-
istic equation and assume g; = 2. Then it is known that there are two eigenvectors and
two generalized eigenvectors. The eigenvectors satisfy Ax, = \;x, and Ax, = \; X;, but
it is still uncertain whether the generalized eigenvectors are both associated with x, or
both with x, or one with each. That is, the two Jordan blocks could take one of the
following forms:

Mo 1O
| Y I I (AN
0 0 N ' !
The first pair corresponds to the equations
AX; =\ Xy, AX; = N\ X, + X4, AX; = \; X3 + Xo, AX, = N\ X4
The second pair corresponds to ‘
Ax; =\ Xy, AX; =\ X, +Xq, AX; = \; X3, Ay = N X4+ X3

Ambiguities such as this can be resolved by a trlal-and-error process [3] or they can be
avoided by using a systematic method from Section 7.5. Combinations of the preceding
cases may be required for a given n X n matrix A. The applicable case can be different
for each eigenvalue. For example, if the eigenvalues for some 9 X 9 matrix were
{2,3,3,5,5,5,6,6,6}, A =2 is of necessity an example of Case I. A = 3 might have two
eigenvectors, i.e., Case II;; A = 5 might have only one eigenvector, i.e., Case II,; and
A =6 might have two eigenvectors and one generalized eigenvector, i.e., Case II;.
Finding a total of n vectors, m; for each eigenvalue with multiplicity m; allows the
nonsingular modal matrix M to be formed. The similarity transformation M~' AM
again gives the Jordan form J. The diagonal matrix A of Case I is considered a special
case of the Jordan form with all of its Jordan blocks being 1 X1.
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Summary. Every n X n matrix has n eigenvalues and » linearly independent
vectors, either eigenvectors or generalized eigenvectors. The eigenvalues are roots of
an nth degree polynomial. For each repeated eigenvalue the degeneracy g; should be
found. There will be g; eigenvectors and Jordan blocks associated with \;. If g; <m,,
then generalized eigenvectors will be required. This type of analysis makes it clear how
many eigenvectors, generalized eigenvectors, and Jordan blocks there are, as
demonstrated in Example 7.5. The actual determination of the generalized eigen-
vectors and the removal of any remaining ambiguities are discussed in more detail in
Section 7.5.

EXAMPLE 7.5 Let A be an 8 X 8 matrix and assume that the eigenvalues have been found
as M=M=2,A=M=As=N¢= —3,\; =Ag=4. If rank[A —2I] =7, rank[A + 3I] =6, and
rank[A — 4I] = 6, find the degeneracies and determine how many eigenvectors and generalized
eigenvectors there are. Also, write down the Jordan form.

For \; = 2,q, = 8 — 7= 1. This is the simple degeneracy Case II, so x, is one eigenvector
and x, must be a generalized eigenvector. For A3 = —3, g3 = 8 — 6 = 2. This falls into Case II; and
there are two eigenvectors (and Jordan blocks) and two generalized eigenvectors must be
associated with this root. For A\, =4, g, =8 — 6 = 2. This is Case II, since g, = m, = 2. There are
two eigenvectors and no generalized eigenvectors associated with this eigenvalue. There are a
total of five eigenvectors (and Jordan blocks), and three generalized eigenvectors. The Jordan
form is either

2 11 2 1!
0 21 0 2| 0
_____ —l—-——————-——‘ _“___.J..____._--————_‘
=3 1] 0 =371 0]
_ | 0 -3 _ 10 -3 1!
L Rt T R A AT = 1
0 1 0 -3 30
141 0 4
4L 004 L
L 4 i 4] W

7.5 DETERMINATION OF GENERALIZED EIGENVECTORS

It is assumed throughout this section that one or more multiple eigenvalues exist for a
matrix A and that a need for generalized eigenvectors has already been established.
Three alternative methods are presented for finding generalized eigenvectors.

1. The first method is a bottom-up method in that the eigenvectors are found first
and then a chain of one or more generalized eigenvectors is built up from these. That is,
first find all solutions of the homogeneous equation \

(A - I)\,‘)X,’ =0

for the repeated eigenvalue \;. For each x; thus determined, try to construct a gen-
eralized eigenvector using

(A—IN)xi1=x

If the resultant vector x;. , is linearly independent of all vectors already found, it is a
valid generalized eigenvector. If still more generalized eigenvectors are needed for A,
then solve
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(A= IN)Xih2= X4

and so on until all needed vectors are found. This method can be efficiently used in the
simply degenerate cases such as Example 7.4 because there is only a single eigenvector
and a single chain of generalized eigenvector equations. Because of possible ambi-
guities about how the chains of equations are connected in the general case, a more
systematic method is desirable.

2. A second method is to use the adjoint matrix Adj(IN — A), which is also called
the resolvent matrix of A, and its various derivatives. Effective algorithms for com-
puting the resolvent matrix are available [2]. This is a bottom-up method also, since
eigenvectors are found first. This is done by selecting linearly independent columns of
Adj(IN — A) with a particular eigenvalue \,. Judgment is withheld about the final set of
vectors to be retained, since repetitions often will occur in the process to follow. If \; is
an m;-repeated eigenvalue, it is possible that fewer than the required m; vectors will be
found on the first step. Some or even all columns of the resolvent matrix may be zero,
and others may be linearly dependent. The derivative of the resolvent matrix is then
evaluated at the repeated eigenvalue. Some columns may still be zero on this second
step. If a given column j is not zero on step 2, then (1) it is an eigenvector if column j
was zero on the previous step and (2) it is a generalized eigenvector if column j was not
zero on the previous step. Step 2 may still not yield the required m; independent
vectors, so the second derivative of the resolvent matrix is taken. Again, any column j
which is nonzero is either an eigenvector or a generalized eigenvector, depending on
whether column j was zero or not on the previous step. These relationships require the
retention of the factorial divisor, which appeared to be an irrelevant scale factor in
Case II,. The vectors obtained by this process cannot be arbitrarily rescaled on a given
step, since they are all tied together in an interdependent chain. Also note that the
same eigenvector can appear more than once. That is, column j on one step may yield
the same eigenvector as column k on some other step. For this reason the final selection
of eigenvectors should be made only after seeing all the columns from all of the steps.

1 23
EXAMPLE 7.6 Consider the matrix A=]0 1 4. Clearly \; =1 has algebraic multiplicity
0 01

m =3, and the rank of A — I\ is 2, so g = 1. There is just one eigenvector, so two generalized
eigenvectors are required (Case II,). The adjoint matrix is

(1-A)? =2(1-A) 8-3(1-N\)

Adj(A—-IN) = 0 (1-X))7 —-4(1—-\) |=NI+N\F+G
0 0 (1 = N)?
where
-2 2 3 |1 =2 5
F=| 0 -2 41 and G=|0 1 —4
0 0 -2 0 0 1
0 0 8

With A =1, this gives |0 0 0|, and one eigenvector is evident in column 3. The derivative
0 0O
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0 2 3
gives d[Adj(A —IN)/dN =2\ + F. When evaluated at A = 1, this gives {O 0 4j|. Column 2 is
0 0 O
nonzero for the first time and hence is an eigenvector. However, it is just a rescaled copy of the
one found on the first step in column 3. On this second step column 3 is a generalized
eigenvector. The final derivative (the m,th for this Case II,) is 3d’[Adj(A — IN)])/d\? = 1. Col-
umn 1 is nonzero for the first time and hence is an eigenvector. But, except for scaling, it is the
same one found twice before. Column 2 is a generalized eigenvector if column 2 of step 2 is used
as the eigenvector. This would still leave us one short of the needed three vectors, and further
derivatives will only give zero columns. Therefore, column 2 must be rejected. From column 3
the final setisx; =[8 0 0], x,=[3 4 0], andxs=[0 0 1]" |

The adjoint (or resolvent matrix) method is workable for small hand calculations
and can be adapted to machine calculation as well. The next method may be better
suited to machine implementation for larger problems and can also be used for hand
calculation with small problems.

3. The third method of finding eigenvectors and generalized eigenvectors is a
top-down method. Rather than finding all the eigenvectors first and then building the
necessary chains of generalized eigenvectors on them, we find the maximum number
m; of linearly independent vector solutions to a modified problem (A — I\;)*x = 0. All
the eigenvectors and generalized eigenvectors associated with \; belong to the
m;-dimensional space spanned by the m; solution vectors. The eigenvectors belong,
because for any integer j >1, (A —IN;)x =0 if it is true for j = 1. A jth-order gen-
eralized eigenvector must satisfy (A —IN)Yx=0 and (A—-IN)Y 'x=x.#0, for

j=k k—1,...,2. This is consistent with the bottom-up construction equations for
generalized eigenvectors:
(A=IN)x, =0

A-I\V)x=x2>A-IN)x,=(A-I\)x; =0

A-I\)x:=%2>A-IN)x35=(A-I\)x,=x; #0
A-IN)Pxs=(A-I\)x, = (7.4)

(A-D)X =% (A~ N )% = (A — IN)X; =%, % 0
A-INx=A-I\)x=x,#0
(A—I\)'%=(A—-I\)x =0

This pattern continues up to some maximum integer k;, the index of A,. The key to the
top-down method is finding the correct integer k. It is the index of the eigenvalue and is
the smallest integer such that

rank(A —IN) =n —m;

The index k; indicates the length of the longest chain of eigenvectors-generalized
eigenvectors for A, It also is the size of the largest Jordan block for A; in the Jordan
form.
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After finding the index and the m; independent solution vectors, a simple testing
procedure, consisting of matrix multiplications from the left side of Eq. (7.4), indicates
whether each vector is a generalized eigenvector or an eigenvector. The same matrix
multiplications also give each successive vector in the chain until the final member—
i.e., the eigenvector—is found. The procedure is complete if it is explicitly ensured
that the eigenvectors are included in the set of m; vectors found at the top.

Finding the index is the key to avoiding the ambiguities about how the various
chains should be formed. If in Example 7.5 the index for A; = —3 were found to be 2,
then the first form for J would be correct. If the index were 3, then the second Jordan
form would be correct.

EXAMPLE 7.7 Find the eigenvalues, eigenvectors, generalized eigenvectors, and Jordan form

for
1 1
-5 & s 0
1 __16 1 1
2 3 3 2
A=l v 1 _m
2 3 3 2
1 1

The characteristic equation is A(A\) = (A + 5)* =0, so A = —5 has algebraic multiplicity m = 4.
Since n =4, the index k must be found for which rank(A — IN)* = 0. Singular-value decom-
position, Gram-Schmidt QR decomposition, or RRE methods can be applied to find that
rank(A — IN) = 2. To be specific, the SVD decomposition gives 3 = diag(1.2176,0.27395, 0, 0),
and the last two columns of V give eigenvectors x, =[0 1 1 0]"andx,=[1 0 0 1]~
These are the only two independent eigenvectors, but so far it is not clear if the two generalized
eigenvectors are connected in a single chain to one eigenvector (giving a 3 X 3 Jordan block and
a 1x 1 Jordan block) or if they form two separate chains (giving two 2 X 2 Jordan blocks).
Forming ‘

0 0 0O
7_2_0_%%0
A-D)y=1y _1 1

0000

reveals that its rank is 1. So far it has been found that the index k is neither 1 nor 2. Forming
(A —1IN)’>=[0] (on the computer it was zero to within order 1077) shows that k = 3. It also
indicates that one chain is of length 3. The other will be just an isolated eigenvector, and J will
have 1 X 1 and 3 X 3 Jordan blocks. All ambiguity has been removed, except for the unimportant
order of the Jordan blocks within the Jordan form. This depends only on the order in which the
isolated eigenvector and the chain of three are placed in the modal matrix M. The actual finding
of these vectors is now demonstrated using the top-down method. Any nonzero vector is a
nontrivial solution of (A —I\)’x =0 in this case. Choices consisting of the two known eigen-
vectors plus any two additional independent vectors will suffice. (Actually, if the eigenvectors
are not explicitly included, one will be found automatically at the end of the chain of length 3.
The eigenvector equation can then be used to find the other one.) Four convenient linearly
independent vectors for this problem are

x=[1 0 0 17,  x=[0 1 1 0
x=[0 10 07  x=[0 0 0 1]
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It is not clear yet how these vectors chain together, so the testing procedure is invoked. Let
C =(A—1I\,), with \;, = —5. Then C?x, and C*x, are zero, confirming that x, and x, are not
generalized eigenvectors. It is also found that C*x, = 0, so x, is also not a generalized eigen-
vector. Only Cx. is nonzero, so x. is the generalized eigenvector which starts the chain of three.
Call it x4, thus indicating its ultimate column position in the modal matrix. Then (A — IN)x, =
x; = [0.16667 —0.33333 —0.33333 —0.166667]". Next in the chain is (A —I\)x;=x,=
[0 —0.16667 —0.16667 0]. This is a multiple of x, found earlier and is an eigenvector (not a
generalized eigenvector), as seen at the next step, (A — IN)x; = 0. The zero vector always signals
the end of the chain. The fourth vector is a stand-alone eigenvectorx, = [1 0 0 1]7, renamed
x;. Using these four vectors as columns in M gives

=51 000
-1 0:-5 1 0
MEAM=1 91 0 =5 1
0 0 0 -5
where the zero elements all had magnitude on the order of 1077 or less. |
EXAMPLE 7.8 Let
0 010
{0 0 0 1
A=10 0 0 0
0 0 0O

The characteristic equation is A* =0, so A; = 0 with m; = 4. Since rank(A — I\,) = 2, there are
g =2 eigenvectors and also 2 generalized eigenvectors. Since n —m =0, and since
rank[A — I\ ) =0, k; =2. The largest Jordan block is 2 X 2. Since there are just two blocks,
they both must be 2 x2. To find the eigenvectors and generalized eigenvectors, consider
(A —IN)*x=0. Any vector satisfies this equation, but there are at most four linearly inde-
pendent solutions. Select x, =[1 0 0 0]}". This is not a generalized eigenvector since
(A =1I\)x, =0. Similarly x,=[0 1 0 0]” is not a generalized eigenvector. Select x. = -
[0 0 1 0]" Thensince [A—IN]x.=[1 0 0 0]"#0, x.is a generalized eigenvector asso-
ciated with the eigenvector [I 0 0 O0]”. Finally x,=[0 0 0 1]7is a generalized eigen-

vectorand [A —I\]x, =[0 1 O 0] is the associated eigenvector. Thus the modal matrix and
the Jordan form are

100 0 0 1/0 0
{0 01 0 _[0 010 O
M=10 1 0 o] 2 J=|579T01
0001 0 0/0 0

See page 259 of Reference 3 for a trial-and-error solution to the same problem. |

7.6 ITERATIVE COMPUTER METHODS FOR DETERMINING EIGENVALUES
AND EIGENVECTORS

In all discussions to this point the eigenvalue-eigenvector problem has been split into
two parts. First the roots of the characteristic equation—i.e., the eigenvalues—were
found by some sort of polynomial root-finding routine such as Newton-Raphson. Only
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then was the eigenvector problem considered. Because of the difficulty in accurately
factoring high-degree polynomials, other iterative computer algorithms are often used
to determine the eigenvalues more directly. In some cases, such as real, symmetric
matrices, the eigenvectors are found simultaneously with the eigenvectors. In other
procedures the determination of the eigenvectors is still a separate calculation. Two
general methods are presented in this section. The first method is restricted to real,
symmetric matrices. Thus it is known at the outset that (1) all \; will be real, (2) even if
some eigenvalue is repeated, a full set of eigenvectors will always exist, and (3) the
eigenvectors form an orthogonal set. The simple version of the first algorithm to be
presented here assumes that no two eigenvalues have the same magnitude, that is,
I\;| # |\;| if i # j. Any vector z, can be written as

L= Xy topX+t -+, X,
Therefore,
AZO=(X1}\1X1 +0£2)\2X2+ s +(Xn An x,,ézl

A21=OL1)\%X1+(12)\%X2+ s +(x,, )\3, X,,élz

AZk: al)\’fﬂxl + (12)\12(+1X2+ e o, )\l,i+1 X, ézk+1
If A, is the eigenvalue with the largest absolute value, then for k sufficiently large,
Lo =M T'x = Bx; and Az, =Nz, = N Bx

Hence starting with an arbitrary vector z, and repeatedly calculating z,., = Az,4 until
Z,ew 1S proportional to z,4 leads to the maximum magnitude eigenvalue (the constant of
proportionality) and the corresponding eigenvector. At each step of the iterative
calculations, the vectors z can be normalized in any number of ways. In the subsequent
discussion it is assumed that the final vector is normalized to a unit vector.

The next largest eigenvalue and its eigenvector can be found by constraining all
vectors in the iteration process to be orthogonal to the first eigenvector. From Chapter
5, the projection operator P; = I — x, x{ takes any arbitrary vector z into the subspace
orthogonal to x;. Thus an arbitrary zg. gets mapped into P;zZge. = Zeongrainea and
AZnsmainea 1 €quivalent to defining A; = AP;. Then the same iteration process is per-
formed with A, and freely selected z vectors, A;z, =z, , ;. The end results will be the
next largest |\,| and its eigenvector x,. For the eigenvalue with the third largest mag-
nitude, iteration vectors z are restricted to be orthogonal to both x; and x,. This can be
done by defining a new projection matrix P, = I — x; Xx] — x,x; and then using A, = AP,
in place of A. The sequence of P; matrices are often called sweep matrices. The
similarity with the vector version of the Gram-Schmidt construction process of Prob-
lem 5.17 is noted. The process continues in an obvious way until all eigenvalues and
eigenvectors are found. This is a very rapid and effective calculation method for the
limited class of matrices to which it applies. Ordinarily the eigenvalues are not known
at the outset, so it is not clear whether this method applies or not. Actually, the
method sometimes gives the correct answers even when two eigenvalues have the same
magnitude. For a trivial example, consider A = Diag(2,2). If the starting vector is
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zo=[1 0]%, then one iteration gives z, =12z, and \; =2. Then P, is found to be
Diag(0, 1) and A, = Diag(0, 2). If the same z,=[1 0]” is used to start the search for x,
and \,, one iteration gives the wrong final answer A, = 0. If zo=[1 1]" is used to start
the second stage, two iterations give the correct final answer x,=[0 1] and \, = 2.
This type of dangerous behavior can be minimized but not avoided by starting with
randomly selected z, vectors. Another type of failure, which is less dangerous because
it is recognized as a failure, is illustrated by

-2

This matrix has A = *=2. For any.initial vector, the two components flip-flop back and
forth each iteration, and convergence never occurs.

Another commonly used method of finding the eigenvalues by iteration is the
so-called QR method. Only the rudiments of the method are given here. It, like many
other methods, depends on transforming the original matrix to a form in which the
eigenvalues are obvious. For example, if a similarity transformation could be found
such that T™' AT = D is diagonal, then those diagonal elements are the eigenvalues of
A. D and A have the same eigenvalues, since

ID—I\=|T'AT — T-'TA| = [T"|A = I\||T| = |A — I\

The eigenvectors of D are not the same as the eigenvectors of A, however. If the
decomposition A = QR is found and then a new matrix A; = RQ is formed, A, and the
original A are related by a similarity transformation. Since Q is orthogonal, it can be
inverted to give R = Q' A. Using this in the reversed-order product gives A; = Q' AQ.
If A, is now decomposed into A; = Q; R, and then A, = R, Q, is formed, it can be seen
that A, = Q' Q'AQQ; = (QQ:) ' A(QQ,). Thus A, is also related to A by a similarity
transformation, and they have the same eigenvalues. This remains true for any number
of steps. It is an interesting fact that because of the upper triangular nature of R; at
each step, this procedure will (usually) converge to a matrix with either a 1 X 1 or a
g (E;} The eigenvalues of this block-
triangular structure are the eigenvalues of F and of E. The eigenvalues of E are just E
itself if it is 1 X 1. If E is 2 X 2, a simple quadratic equation can be solved to find its
eigenvalues. Complex conjugate pairs of eigenvalues can be found using only real
arithmetic by this method. In either case, the E portion can be stripped out, and the.
QR — RQ procedure can be continued on just the F portion. As just described, the
convergence would be very slow. Good QR eigenvalue procedures have various refine-
ments, including initial conditioning on A to speed convergence [4, 5]. Another modi-
fication which speeds convergence is to do the Q. ; R+ ; decomposition on R, Q; — I«
rather than on R; Q,, for some judicious choice of a. A common choice for a is the
current lower-right corner element in R, Q. Once all the eigenvalues are found, one
more QR decomposition of A — I\ can be carried out to find each eigenvector. Since Q
is nonsingular, (A —IN)x =0=Rx =0, and this is easily solved due to the triangular
nature of R.

2 X 2 block E in the lower-right corner, A, = [
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7.7 SPECTRAL DECOMPOSITION AND INVARIANCE PROPERTIES

Definition 7.1. Let & be a linear vector space defined over the complex number
field. Let o : ¥ — & be a linear transformation and let &, be a subspace of ¥. Then ¥, is

said to be invariant under the transformation « if for every x € ¥, s4(x) also belongs to
.

Definition 7.2. The set of all vectors x; satisfying
AX;) = N x;

for a particular \; is called the eigenspace of \;.

It consists of all the eigenvectors associated with that particular eigenvalue A,
plus the zero vector. The eigenspace of A; is a subspace of €, and may alternatively be
characterized as the null space of the transformation (4 — $\;), denoted as N for
brevity.

Theorem 7.1. N is a g; dimensional subspace of ¥ which is invariant under «,
where g; is the degeneracy, ¢; = n — rank(sd — $\)).

Definition 7.3. If the linear transformation ¢ has a complete set of n linearly
independent eigenvectors (i.e., Case I or Case II,), then « is said to be a simple linear
transformation.

Theorem 7.2. If o is simple, then
2?=.N1€9N}GB'°'€9$%

where the direct sum is taken over the p distinct eigenvalues. (Note that p <n for
Case 11;.)

Theorem 7.3. If « is normal, N; and N; are orthogonal to each other, for all
i #j. Note that normal transformations are a subset of simple transformations.

Let o : X— % be a simple linear transformation, with the matrix representation
A. Then the eigenvectors of A, {x;}, form a basis for ¥. Let {r;} be the reciprocal basis
vectors. Then, for everyz€ %,

n n

2=, (r, z)x; and Az= 2 (r, DAX; = 2 \(r;, D)X,
i=1

i=1 i=1
This allows A to be written as

A= i N X Xr; (7.5)

This is called the spectral representation of A. If o is normal, then its eigenvectors are
mutually orthogonal (see Problem 7.27) so that the reciprocal basis vector r; can be
made equal to x; by normalizing the eigenvectors. Then
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A= i i X XX (7.6)

When a linear transformation is not simple, its eigenvectors do not form a basis for ¥
(Cases II, and II;). It is still possible to construct a basis by adding generalized eigen-
vectors, as discussed in Section 7.5. These vectors, along with the eigenvectors, belong
to N'%, the null space of (4 — $\,;)" (see Problem 7.35). The power k; is called the index
of the eigenvalue \; and is one for simple transformations. Using this generalization, it
is again possible to write ¥ as a direct sum of invariant subspaces of «.

% =N DNeD - DN 7.7)
Alternatively, the space € can be decomposed into
% = N{(' @g{f: 1

Since all m; eigenvectors and generalized eigenvectors associated with \; belong to N ki
dim(N¥) = m;. Thus, rank(A —I\;)% = n —m; and the index k; is the smallest integer
for which this is true.

Theorem 7.4. If f: X — &, with dim(¥) = n, and if ¥ can be expressed as the
direct sum of p invariant subspaces, as in Eq. (7.7), then o can be represented by a
block diagonal matrix, with p blocks, each of dimension k;, provided a suitable basis is
selected.

The block diagonal representation for « is the Jordan form, and “the suitable
basis” consists of eigenvectors, and if necessary, generalized eigenvectors. This pro-
vides the simplest possible representation for a linear transformation, and will be most
useful in analyzing systems in later chapters.

7.8 BILINEAR AND QUADRATIC FORMS

The expression (y, Ax) is called a bilinear form, since if y is held fixed, it is linear in x:
and if x is held fixed, it is linear in y. When x =y, the result is the quadratic form,
Q (x) = (x, Ax). Every matrix A can be written as the sum of a Hermitian matrix and a
skew-Hermitian matrix. It will be assumed that all quadratic forms are defined in terms
of a Hermitian matrix A. For real quadratic forms, there is no loss of generality since
(x, Ax) = 0 for all x if A is skew-symmetric.

Quadratic forms arise in connection with performance criteria in optimal control
problems, in consideration of system stability, and in other applications. Here the
several types of quadratic forms are defined and means for establishing the type of a
given quadratic form are summarized.

Definitions.

1. Q (or the defining matrix A) is said to be positive definite if and only if
(x, Ax) >0 for all x # 0.
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2. Q is positive semidefinite if (x, Ax) =0 for all x. That is, Q = 0 is possible for
some x # 0.

3. Q is negative definite if and only if (x, Ax) <0 for all x # 0.

4. Q is negative semidefinite if (x, Ax) =0 for all x.

5. Q is said to be indefinite if (x, Ax) > 0 for some x and (x, Ax) < 0 for other x.

Tests for Definiteness. Let A be an n X n real symmetric matrix with eigen-
values \;. Define

an ap ag
As=\ay an axp|,...,A, =|A|
as a3 ds

a;; ap

A, =ay, A=

b
axy axn

The A, are called the principal minors of A. Two possible methods of determining the
definiteness of a Hermitian matrix A are given in Table 7.1.

TABLE 7.1
Tests Using:
Principal Minors of A
Class Eigenvalues of A (for real symmetric A)

1. Positive definite AllN; >0 A >0,A,>0,...,A,>0
2. Positive semidefinite AllN; =0 A =0,A,=0,...,A, =20
3. Negative definite All\; <0 A <0,A,>0,A:<0,...

(note alternating signs)
4. Negative semidefinite AllN; =0 A=0,A,=0,A:=0,...
5. Indefinite Some \; >0, some \; <0 None of the above

7.9 MISCELLANEOUS USES OF EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors are useful in many contexts. Four of the more important
uses in modern control theory are mentioned.

1. Existence of solutions for sets of linear equations: In Chapter 6, the existence
of nontrivial solutions for homogeneous equations and of a unique solution for non-
homogeneous equations was seen to depend upon whether or not the coefficient
matrix A had a zero determinant. Stated differently, the existence of unique solutions
depended upon whether or not the null space of a linear transformation contained
nonzero vectors. Both of these conditions are related to the question of whether or not
zero is an eigenvalue. Even when the transformation maps vectors from a space of one
dimension to a space of another dimension (and thus cannot define an eigenvalue
problem), conditions can be expressed in terms of the eigenvalues of transformations
AA* and/or d* . This will be done in Chapter 11 when discussing controllability and
observability.

2. Stability of linear differential and difference equations: It is not difficult to
show that the characteristic equation of the companion matrix (Problem 7.36) is the
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same as the denominator of the input-output transfer function for the »nth order differ-
ential equation. Thus the system poles are the same as the eigenvalues of the matrix.
The influence of pole locations on system stability has been discussed in Chapter 2. It
will be seen in Chapter 10 that the eigenvalues of a system matrix, not necessarily the
companion matrix, determine the stability of linear systems described either by differ-
ential or difference equations.

3. Eigenvectors are convenient basis vectors: When eigenvectors and, if needed,
generalized eigenvectors are used as basis vectors, a linear transformation assumes its
simplest possible form. In this simple form independent modes of system behav10r
become apparent. As a simple example, consider the equation

y = Ax

where A is an n X n matrix, and y might be a set of time derivatives or any othern X 1
vector. If a change of basis is used, x = Mz, y = Mw, where M is the modal matrix, then

Mw=AMz or w=M'1AMz=]z

J is the Jordan form in general, but will simply be the diagonal matrix A in many cases.
The simultaneous equations are now as nearly uncoupled as is possible.

When considering the real quadratic form Q = {x, Ax), with A symmetric, all
second-order products of the components of x are usually present. If a change of basis
x = Mz is used, then Q = (Mz, AMz) = (z, M" AMz). Since A is real and symmetric, it
can always be diagonalized by an orthogonal transformation, so Q = (z, Az) reduces to
the sum of the squares of the z; components, weighted by the eigenvalues \;. This
makes the relationships between eigenvalues and the various kinds of definiteness
rather transparent.

4. Sufficient conditions for relative maximum or minimum: When considering a
smooth function of a single variable on an open interval, the necessary condition for a
relative maximum or minimum is that the first derivative vanish. To determine whether
a maximum, minimum, or saddle point exists, the sign of the second derivative must be
determined. In multidimensional cases it is again necessary that the first derivatives
(all of them) vanish at a point of relative maximum or minimum. The test of the sign of
the second derivative in the scalar case is replaced by a test for positive or negative
definiteness of a matrix of second derivative terms. Eigenvalue-eigenvector theory
plays an important part in the investigation of these and many other questions.

Additional material related to this chapter may be found in References 3
through 7.
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ILLUSTRATIVE PROBLEMS

Determination of Eigenvalues, Eigenvectors, and the Jordan Form

Find the eigenvalues and eigenvectors and then use a similarity transformation to diagona-

. _| 0 1
lize A = [_3 _4].

The characteristic equation is |A —IN| = \> + 4\ + 3 = 0. Therefore \, = —1,\, = —3. For
simple roots (Case I) compute

Y —1}

Adj[A —I\] = [ N

Substitutingin A = —1 gives x, = [—-1 1]” or any vector proportional to this. Using A\ = —3 gives
x=[-1 3]

-1 =17, -1 -1}|_|-1 0
A I I e S
Consider the eigenvalue-eigenvector problem for A =| % _g]

The characteristic equation is |A —IN|=\>+ 2\ + 1= (\ + 1)°>. Therefore, A = —1 with
algebraic multiplicity 2. Rank[A —IN]|y- -, = 1 and degeneracy g =2 — 1 = 1. This is an exam-
ple of simple degeneracy, so there is one eigenvector x; and one generalized eigenvector x,:

) =2 =2
Adj[A —I)\] T [ 5 2]
Select x; = [—ﬂ

Generalized eigenvector, method 1:

Set Ax, = —x,+ x;andletx,=[a b]". Thena +2b = —a — 1 or2a +2b = —1. We could
seta=1,thenb = —3andx,=[1 —3]%, orifa =—1,b =3 Ifx, wasselectedasx, =[2 —2],
1 1

then x, =[1 0]”. Either of these choices is valid and each gives J=M™'AM = [—‘0 _1l

Generalized eigenvector, method 2:
If x; is selected as column 1 of Adj[A +1], i.e., x; =[—2 2], then x; is column 1 of the
differentiated adjoint matrix

=l M=
2Tdn 2 N 0
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If x;=[-2 2]" (column 2 of Adj[A —1J), then x; is column 2 of the differentiated adjoint

matrix
l: :| =— |: :|
d)\ 1 }‘ A 1 1

Eigenvector and generalized eigenvector, method 3:

Since n = m = 2, we seck the smallest k such that rank[A — IN]“|y, = -1 = 0. The index k is
2. Then (A —1I\;)’x =0 has two independent solutions, one of which is x,=[1 0]”. Since
[A-IMx=[2 —-2]"#0, x, is a generalized eigenvector and x; is the eigenvector.
Alternatively, one could select x,=[0 1]” and this also leads to x, =[2 —2]". All of these
methods give the same Jordan form.

X2

Find the eigenvalues-eigenvectors and the Jordan form for A = H i]
The characteristic equation is |[A —IN|=A?—2\=\(\ —2). Therefore, \; =0,\,=2.
Since \; # \,, Case I applies:
. _[1=-x -1
Adj[A —-I\] = [ 1 1- )\]
Using the first column with A =0 gives x; =[1 —1]". Using the first column with A =2 gives
xx=[-1 —-1]"or[1 11"

[ 11 L1t -1 M AM o]0 O
M"[—l 1]’ M _2[1 1]’ =M AM”[O 2}

Find the eigenvalues, eigenvectors, and Jordan form for

1 0 0 -3
0 1 -3 0
-05 -3 1 05

-3 0 0 1

The characteristic equation is A\*—4\>— 12\*+ 32\ + 64 =0. The roots are found to be
N =—2,—2,4,4 With \ = —2

3 0 0 -3
0 3 -3 0
-05 -3 3 05

-3 0o 0 3

This matrix has rank 2, so ¢ =n — r = 2. This shows that there are two eigenvectors associated
with A = —2, and since the multiplicity of that root is also 2, no generalized eigenvectors
are needed for this eigenvalue. Two linearly independent solutions of [A +2I]x; =0 are
-3 0 0 -3

0 -3 -3 0
-05 -3 -3 05[
-3 0 0 -3
rank is 3 and g = 1. There is only one eigenvector, and since the algebraic multiplicity m =2, a
generalized eigenvector is needed. Solving [A — 4I]x; = 0 gives only one independent solution,
x3=[0 1 —1 0]". Therefore, a generalized eigenvector is needed and it can be found by
solving

[A - 4I]X4 = X3

The resultisx,=[2 —3 0 —2]". The modal matrix is thus

A=

A-N=A+2]=

x=[0 1 1 07andx,=[1 0 0 1]”. WithA=4,A— N = The

M= [X1 X X3 X4]
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and the Jordan form is

-2 000
J= 0 -2 00
0 0 41
0 0 0 4
A is a 5 X 5 matrix for which the following information has been found:
)\1 - }\2 - 2, Rank[A - 21] = 4
AM=N=N\s= _2, Rank[A + 21] =3

Determine the Jordan form for A.

0 2

_(2) _ﬂ and
Js =[—2]. The arrangement of these blocks within the Jordan form depends upon the ordering
of the eigenvectors and generalized eigenvectors within M. Assuming that x; and x, are an
eigenvector and generalized eigenvector for A = 2, x; and x, are an eigenvector and generalized
eigenvector for A = —2, and xs is the second eigenvector associated with A = —2, then

For A =2, the degeneracy is g, =1, so there is a single Jordan block J; = [2 1]. For

A= -2, the degeneracy is gs =2. Thus there are two Jordan blocks Jzz[

[\8]
—

i

i

|

027 _° o
diag [J1,J2,J3] = ! -2 1) =]
0 | 0 -2 _

“““ =2
3 1.0 0000
0300000
003 0000

LetA=[0 0 0 4 1 0 0

0000400
0000041
LO OO 0 0 0 4.

(a) What are the eigenvalues?
(b) How many linearly independent eigenvectors does A have?
(c) How many generalized eigenvectors?

a. A is upper triangular and so is A —IN. Thus the eigenvalues are the diagonal
elements of A, A=3,3,3,4,4,4,4. b. The matrix A is already in Jordan form with four
Jordan blocks. There are four eigenvectors. c. There are three generalized eigenvectors. The
number of “ones” above the main diagonal is always equal to the number of generalized
eigenvectors.

Find the eigenvalues, eigenvectors, and, if needed, the generalized eigenvectors for

4 2 1
A=1|0 6 1. Also find the Jordan form.
0 -4 2

The characteristic equation is |A —I\|= (4 —\)>. Then \; =\, =\; =4 with algebraic
multiplicity 3.

0 2 1
[A—4I]=|0 2 1] hasrank.r = 1. The degeneracy is g = 2. This is an example of
0 -4 -2 ’

the general Case II; with two eigenvectors and one generalized eigenvector.
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Method 1:
(6—N)(2—-A)+4 2\ —8 A—4
Adj[A —IN] = 0 4-N2-1N) A—4
0 16 — 4\ (4-=N)(6—N)
With A = 4, this reduces to the null matrix.
d 2\ -8 2 1 0 2 1
d—{Adj[A —I\]} =/ 0 2N—6 1 ={0 2 1
A . 0 —4  2A-10 0 —4 -2
= A=4
One eigenvector can be selected asx, =[1 1 —2]".
2 00
1d? . 1
= —={Adj[A —I\]} =10 2 0
2 dN\? r=4+ 200 0 2

The first column can be selected as another eigenvector, call it x,=[1 0 0]". A generalized
eigenvector is given by the third column x;=[0 0 1]”. Note that x, and x, are selected as
columns that are nonzero for the first time as the adjoint matrix is repeatedly differentiated.
Note also that x5 is selected from the same column that gave x,, but with one more differ-
entiation.

Method 2:

We require two independent solutions of [A—4I]x=0. Let x=[a b c]”. Then
2b +c =0 is the only restriction placed on a, b and c. Since a is arbitrary, set a =1 and
b=c=0,orx;=[1 0 0]". Anothersolutionisa=1,b=1,c=-2,orx,=[1 1 -2]"

A generalized eigenvector is needed, and it must satisfy (A — 4I)x; = x, or (A —4I)°x; =
(A — 4I)x, = 0. This reduces to [0]x; = 0, s0 X3 is arbitrary, except it must be nonzero and linearly
independent of x; and x,. x;=[0 0 1]7 is one such vector.

1 10 1 -1 0 410 0
SettingM=|0 1 OfgivesM '=[{0 1 O|,sothatJ=M'AM=(0{4 1]|.
0 -2 1 0 21 00 4

Method 3:

Alternatively, the index of A =4 is k = 2, since rank[A — 41} =n —m = 0. A generalized
eigenvector satisfying [A —4Ix; =0, [A —4I]x;#0is x;=[0 0 1]”. Then x, =[A — 4I]x; =
[1 1 -—2]". Thisis one eigenvector, with the other one obviously beingx; =[1 0 0]".

Rework Example 7.6 using the top-down method of finding the eigenvectors or generalized
eigenvectors.

Since N = 1 has algebraic multiplicity m = 3 and since the matrix A has n = 3, the index k
must give rank{[A —I]*} = 0. It is easily verified that k =3 and that [A —I]’ = [0]. Therefore,
any vector will satisfy the kth-order generalized eigenvector equation. Select x,, x,, and x. as
columns of the unit matrix. Define C =[A —I]. The testing procedure shows that Cx, =0,
indicating that x, is not the sought-for generalized eigenvector. It is an eigenvector, but we do
not select it at this point because of scaling considerations. Then Cx, =[2 0 0]” # 0 is found,
indicating that x, is a generalized eigenvector. It is not selected yet either. Continuing with the
testing shows Cx. =[3 4 0]"=x, # 0, so x. is also a generalized eigenvector. Since Cx, gives
an eigenvector (and not a generalized eigenvector), it cannot be used to start our chain of three
vectors. Testing at the next level shows that Cx, =[8 0 0]7, another copy of the eigenvector.

The final selection can now be made as x3 = X, X, = X4 and x; = 8x,. This is the same set found
in Example 7.6.

Find the eigenvalues, eigenvectors, and if needed, generalized eigenvectors, and the Jordan
form for
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-4.5 -1 0.5 0.5
0.333333 —5.33333  0.666667 0

—0.083333  0.33333 —4.916667 —0.25
0.25 0 0.75 -5.25

Computer solution gives
N ={—4.99959, —5.00063, —4.99958, —5.00035}

It seems likely but not certain that this is a case of repeated roots, but with rounding and
truncation errors. The matrix C=5I— A was formed and subjected to both SVD and QR
decomposition. The rank was determined to be two, since the singular values X; were 1.5759,
0.8989, 10~°, and 10~°. This indicates that we have at least two repeated roots. Next C> was
computed and found to be [0] to within 107°. This indicates that the second-order generalized
eigenvector problem has four independent solutions for A = —5. The conclusion is that m =4,
n=4, g =2, and kK =2. There are two eigenvectors and two generalized eigenvectors and

the Jordan form will have two 2 X 2 Jordan blocks J = Diag[Ji, J.] with Ji =J,= [_8 _%J

There are many ways to find the eigenvectors. The last two columns of the SVD V matrix

could be used. Here we note that C*=[0], so any column of C could be selected as an

eigenvector. Rank(C)=2, so only two independent columns exist. We select x, =

[0.5 0.33333 —0.08333 0.25]" and x, =[0.5 0.66667 0.08333 0.75]". Two other inde-

pendent vectors x, =[1 0 0 0]" andx,=[0 0 1 0]7 are selected. They all satisfy the

2nd-order generalized eigenvector problem. The top-down testing procedure shows that

Cx, = x, and that Cx; = x,. The columns of the modal matrix are thus selected as x; = x,,

X; = X, X3 = Xp, and x; = X,.

Noting that AM — MJ =[0] is in the class of problems considered in Section 6.10, the solu-

tion for the vectorized version of M can be found by solving the n’xn® problem

I ®A - J"®L]M) = (0).

(a) Apply this approach to Problems 7.1, 7.2, and 7.13 assuming J is known.

(b) Use the same approach on Problem 7.2, but this time try using J = Diag[—1, —1].

(a) Computer solution of the four simultaneous equations obtained for Problem 7.1 gives two
independent nontrivial solutions, (M);=[1 -1 0 0]" and (M),=[0 0 35 -1]"
Neither of these provides a valid nonsingular matrix M, but any linear combination of (M),
and (M), is also a solution. Using (M) = — (M), — 3(M), gives the previously obtained modal
matrix. For Problem 7.2 there are also two solutions to the 4 X4 problem, (M), =
[T -1 05 0]"and(M),=[0 0 1 —1]". The first solution gives an acceptable modal

matrix M = _} 8'5 . For Problem 7.3 a similar result is obtained. Two vectorized solu-

tions M);=[1 -1 0 0] and (M),=[0 0 —1 —1]7 are obtained. The former an-
swer is obtained from (M) = (M); — (M)..

(b) When the wrong J matrix is used, two solutions are obtained; (M), is the same as when the
correct J was used in (a) and (M), is [0 0 1 —1]". No linear combination of these will
give a nonsingular matrix M because the two nonzero columns are linearly dependent. This
problem suggests another approach to determining eigenvectors and generalized eigen-
vectors, based on assuming J and testing the resulting M. Although it works, the dimension
of the vectorized problems quickly get out of hand. Using the method on Problem 7.4
requires solution of a 16 X 16 set of equations. When this was done, six linearly independent
(M); vectors were found, and the previous answer was a linear combination of these six.

If ,=0+jo is a complex eigenvalue for A, with the associated complex eigenvector
x; = xr; + xc;j, then the complex conjugate of \; is also an eigenvalue associated with an eigen-
vector x;.1 = xr; — x¢;j. The methods already presented for solving the eigenvalue-eigenvector
problem apply on the complex number field. Most examples have been restricted to real
eigenvalues to maintain simplicity. In the complex case, purely real arithmetic can again be used

A=
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on a double-sized problem. By combining Ax; = \; x; and AX; = \; X; and equating real parts and
imaginary parts, the following a set of equations are obtained:

Alxr; xc;]=[xr; x¢]E

E— [ o w:l
-0 o
This is the type of equation dealt with in Sec. 6.10; it can be written in vectorized form as a set of
six simultaneous equations: "

@eA) - EORI X | =0

where

Find the eigenvalues, eigenvectors, and Jordan form for

-4 -2 1
A=|-1 -2 1
-1 -4 -6

The iterative QR method and direct solution for the characteristic equation roots both give
eigenvalues as A ={—1.56516, —5.21742 + 1.85843j}. The eigenvector associated with the
real root is found by solving (A —1I\;)x; =0 and is x; =[—1 0.916739 —0.60136]". With

E= {—iggg :égigig] the 6 X 6 coefficient matrix (I, ® A) — (E” ® L) is

Row 1 1.217420E + 00 —2.000000E +00  1.000000E + 00  —1.856430E + 00
0.000000E + 00 0.000000E + 00

Row?2 —1.000000E + 00 3.217420E + 00 1.000000E + 00 0.000000E + 00
—1.856430E + 00 0.000000E + 00

Row3 —1.000000E +00 —4.000000E +00 —7.825799E — 01 0.000000E + 00
0.000000E + 00  —1.856430E + 00

Row 4 1.856430E + 00 0.000000E + 00 0.000000E + 00 1.217420E + 00
—2.000000E + 00 1.000000E + 00

Row 5 0.000000E + 00 1.856430E + 00 0.000000E +00  —1.000000E + 00
3.217420E + 00 1.000000E + 00

Row 6 0.000000E + 00 0.000000E + 00 1.856430E + 00  —1.000000E + 00
—4.000000E + 00 —7.825799E — 01

Its rank is 4, yielding two independent solutions for the stacked eigenvector,
Row 1 1.041709E - 01 6.530732E — 01
Row 2 1.696022E - 01 3.008392E — 01
Row 3 —1.000000E + 00 0.000000E + 00
Row 4 —6.530732E - 01 1.041709E - 01
Row 5 —3.008392E - 01 1.696022E - 01
Row 6 0.000000E + 00 —1.000000E + 00

From this, x, =[0.10417 — 0.65307j 0.169602 —0.30084; —1]7, and x;=X,. The complex
modal matrix is formed from these columns, and it yields
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~1.56516 0 0
Lo ~5.21742 — 1.85643] 0
J=M-AM={ 0 ~5.21742 + 1.85643]

Note that if columns of T={[x; xr, xc,] are used as basis vectors instead of M, a block
diagonal real matrix is obtained in place of J, namely, T~' AT = Diag|[\,, E].

Similar Matrices

Prove that two similar matrices have the same eigenvalues.
A and B are similar matrices if they are related by A = Q™'BQ for some nonsingular
matrix Q. The characteristic equation for A is

A-I\=]Q 'BQ-Q'Q\|=0
or
Q7'[B-I\QI=Q'|QIB~I\=B-T\|=0

The characteristic equations for A and B are the same so they have the same eigenvalues.
Are the following matrices similar?

2 000 2100 2. 000 2100
0 2 00 0200 0 210 0210
0 0 2 0p 0 0 2 1p 0 0 2 1p 0 0 21
0 0 0 2 0 0 0 2 0 002 0 0 0 2

All four matrices have the same characteristic equation (2—\)*=0, so A =2 is the
eigenvalue with algebraic multiplicity m = 4. The given matrices are expressed in Jordan form.
Since similar matrices must have the same Jordan form, the answer is no. Note that the index of
the eigenvalue is 1, 2, 3, and 4, respectively, for these matrices.

Miscellaneous Properties

Prove that |A| = \j N2+ - - N,

Any n X n matrix A can be reduced to the Jordan form J = M~ AM; so A = MJM™". From
this |A| = [MJM™!| = [M||J|[M~}| = |J|. Since J is upper triangular, with the eigenvalues on the
main diagonal, |A| = |J| = A1z - - - \,.. Thus |A| = 0& at least one \; = 0.

Prove Tr(A) =\; + Na+ -+ + N

Since A=MJM™!, Tr(A) = Tr(MIM ).

But Tr(AB) = Tr(BA), so Tr(A) = Tr(JM ™M) or Tr(A) = Te(J) = Ay + Ao + + - - + A
Prove that if A is nonsingular with eigenvalues \;, then 1/\; are the eigenvalues of A™".

The 7 roots \; are defined by |A —I\| =0. But |A —IN = |A[I-A'\]|=|A|-I- A"\ =
0. Since A is nonsingular, |A| can be divided out leaving [I — A~ | = [I(1/A) — A™'|\" = 0. Since
|A|, and hence \, are not zero, the characteristic equation for A leads to |A~" — I(1/A)| = 0. Thus
if \; is an eigenvalue of A, then 1/\, is an eigenvalue of AL

Let A be an n X n matrix with # distinct eigenvalues. Prove that the set of » eigenvectors x; are
linearly independent.

Let
01X1+a2X2+"'+anxn=0 (1)
If it can be shown that this implies that a; =a,=---=a, =0, then the set {x;} is linearly

independent. Define T; = A — I\, and note that T, x; = 0. T; x; = (\; — \,)x; if i # j. Multiplying
equation (/) by T; gives
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az(xz - )\1)X2 + (13(}\3 - )\1)X3 + - +a, ()\n - )\1)Xn =
Multiplying this in turn by T,, then T, ..., T, -1 gives
613()\3 - )\1)()\3 - )\2)X3 + .- +a, (}\n - A1)(}\n - }\2)Xn =0

an—l()\n—l _)\1)()\n‘1 - >\2)' : '()\nfl ")\n—z)xrwl

+ an ()\n - )\1)()\n - )\2) te ()\n - )\n~2)xn = 0 (2)

an (An - }\1)()\n - )\2) e ()\n - An —2)(Kn - }\n — 1)xn =0 (3)

Since x,, # 0, and \,, # \; for i # n, equation (3) requires that a, = 0. This plus Eq. (2) requires
that a,, _; = 0. Continuing this reasoning shows that Eq. (1) requiresa; =0fori =1,2,...,n, so

the eigenvectors are linearly independent.

Let T, : ¥ — ¥ be defined by T; = A — I\, where ¥ is an n-dimensional space. Prove that there
are always ¢; = n — rank(T;) linearly independent eigenvectors associated with eigenvalue A..
The space ¥ can be written as the direct sum ¥ =R(T/)DN(T;) and dim(¥) =
dim(R(T})) + dim(N(T;)) or n =rank(T}) + dim(N(T;)). But since rank (T:)=rank(T}),
n —rank(T;) = g; = dim(N(T;)). The null space of T; is of dimension g; and, therefore, it con-
tains g; linearly independent vectors, all of which are eigenvectors.
Let A be an arbitrary n X r matrix and let B be an arbitrary r X n matrix, so that AB and BA are
n X n and r X r matrices respectively. Assume that n =r and prove:
(a) The scalar \ is a nonzero eigenvalue of AB if and only if it is a nonzero eigenvalue of BA.
(b) If x; is an eigenvector (or generalized eigenvector) of AB associated with a nonzero
eigenvalue, then {; 2 Bx; is an eigenvector (or generalized eigenvector) or BA.
(c) AB has at least n — r zero eigenvalues.
Assume ABx; = \x; with A # 0,x; # 0. Then multiplying by B gives BA(Bx;) = ABx; or
BA{; = A Thus \ and {; are an eigenvalue and eigenvector of BA provided {; # 0. But since
Ax; # 0, Bx; # 0; otherwise ABx; = 0. Therefore, A and {; are an eigenvalue and eigenvector of
BA, provided \ # 0 and x; are an eigenvalue and eigenvector of AB. Now assume BA{; = \(,,
N#0, and {; #0. Using the same kind of arguments as above show that A and x; = A{; are
an eigenvalue and eigenvector of AB. These results can be generalized for the case of gen-
eralized eigenvectors. This proves a and b. To prove c, it is only necessary to note that AB
has n eigenvalues and each nonzero eigenvalue is simultaneously an eigenvalue of BA. Since BA
has r eigenvalues, AB has at most r nonzero eigenvalues and, therefore, at least n —r zero
eigenvalues.

Let A and B be defined as in Problem 7.19. Define N=1,, + AB and R =1, + BA. Prove:

(a) x;is an eigenvector of AB if and only if it is an eigenvector of N and A is an eigenvalue of AB
if and only if 1 + X is an eigenvalue of N.

(b) {;is an eigenvector of BA if and only if it is an eigenvector of R, and \ is an eigenvalue of BA
if and only if 1 + X\ is an eigenvalue of R.

(a) The proof requires showing that

(AB - )\,’ In)Xj = 0©(N - ()\, + 1)In)x,- =0

ButN-(\; + ), =AB+ L, -\ L, — L, =AB — \; L.
(b) The proof is a simple matter of applying the definitions of the two eigenvalue problems in
question, just as in part a.

Show that the r eigenvalues of R defined in Problem 7.20 are also eigenvalues of N. The
remaining n — r eigenvalues of N are all equal to one.

If X is an eigenvalue of BA, then it is also an eigenvalue of AB. Since the eigenvalues of N
and R are shifted by one from these eigenvalues, the result is proven for the r eigenvalues of BA.
It was shown in Problem 7.19 that the remaining n — r eigenvalues of AB must be zero, so the
corresponding eigenvalues of N are one.
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Let A and B be as defined in Problem 7.19. Prove the determinant identity of Problem 4.5,
page 142, i.e., prove |I, = AB| = |I, = BA|.

Since the determinant is equal to the product of the eigenvalues (see Problem 7.14) and
since N=1, + AB and R =1, + BA have been shown to have r eigenvalues in common with the
rest of the n — r eigenvalues equal to one, the identity is proven for the plus sign. The identity
also holds for the minus sign, since we can always define B, = —B or A; = —A. The previous
results placed no restrictions on A and B other than their dimensions. Another form of the same
identity is

|A;1B = \L,| = (£N)"""|BA; = \L|

which is established by defining NA = A, and using the rule for multiplying a determinant by a
scalar.

Let P be a nonsingular n X n matrix whose determinant and inverse are known. Let C and D be
arbitrary n X r and r X n matrices, respectively. Show that [P + CD| = [P|-|I, + DP™' C|.

Simple manipulations show |P + CD| = [P[I, + P"' CD]| = |P|-|l, + P~' CD|. Using the re-
sult of Problem 7.22 allows the interchange of factors (P~' C) and (D) and the corresponding
change from an n X n determinant to an r X r determinant.

Let N be an n X n matrix given by N=1, + AB, where A and B are n X 1 and 1 X n matrices.
Show that the n X n determinant can be expressed in terms of the easily evaluated trace:
IN| =Tr(N) + 1 — n.

Since |N|=|L, + AB| =L, + BA| and since in this case the dimension r of BA is one,
IN|=1+BA =1+ Tr(BA). But Tr(BA) =Tr(AB) and Tr(N)=Tr(AB) + Tr(I,) or Tr(AB)=
Tr(N) — n, so [N| =1+ Tr(N) — n.

Self-Adjoint Transformation

If A is a self-adjoint transformation (see Section 5.12), show that all of its eigenvalues are real
and that the eigenvectors associated with two different eigenvalues are orthogonal.

Consider A(x;) = \; x; and form the inner product (x; S(x;)) = (x;, \; X;) = \;(X;, X;). The
definition of #{* ensures that (x;, {(x;)) = (A*(x;),x;) and if s{ =*, this gives (\;x;, x;) =
Ni{X,, X;). Subtracting gives 0 = (\; — \;){x;, X;). Since x; is an eigenvector |x,||* # 0, so \; = \; and
all eigenvalues are real.

Now consider #A(x;) =\ x; A(x;)=N;x; with N; #\A. Then (x; A(x;)) = \(X;, X:).
Also (x;, A(x;)) = (A*(x;), x;) = (A(x;), X;) = N;(x;, X;). But X\; =\;, so substracting gives 0=
(\: — N)(x;, x;). Since \; # \;, we have (x;, x;) = 0 and x; is orthogonal to x;.

Normal Transformation

Let of be a normal transformation (see Section 5.12). Prove that s{(x;) = \; x; if and only if
&ﬂ*(x,-) = )\,‘ X;. _
This is equivalent to showing (s — $\;)x; =0 (A* — IN)x; = 0.
<(5ﬁ - ‘g)}\i)xi: (&Q - 55)\1)Xi> = <&Q(Xi)7 ‘ﬁ(xi» - <}\i Xi, &Q(Xi)>
— (A(x:), N Xi) + (N X5, N Xi)
= (sA*s(x;), x:) — Xi(_‘%*(xi)a X;)
= N(Xi ¥ (X)) — N N, Xa)
Using d*d = 4™ allows this to be rewritten as
<‘Sﬁ*(xi), &Q*(X,)) — (‘Sd*(xi), X,’ X,’) - (X, Xi, &Q*(X,)> + <X, X, X,’ X,‘) _ _
= <(&€* - 3’)\,-))(,-, (-ﬂ* - 3’}\,»))(,-}



7.27

7.28

7.29

276 Eigenvalues and Eigenvectors Chap. 7

or
(8 = X)Xl = (4™ — SN x|

The desired result follows.

Prove that the eigenvectors x; and x; associated with eigenvalues A; and \; are orthogonal for any
normal transformation, provided \; # \;.

A normal transformation satisfies d*s = AA*, and therefore the class of normal trans-
formations includes self-adjoint transformations as a subclass. Consider s{(x;) =\;x; and
A(x;) = \; x; with \; # \;. Then

(%, () = Ny, ) = (607 (3,), %) (1)
From the previous problem #*(x;) = N X;, SO
(A*(x;), %) = (N X, %) = Nidx;, %) )

Subtracting Eq. (2) from Eq. (1) gives 0 = (\; — \; (X, X;). Since \; # \;, it follows that (x;, x;) =
0 and, therefore, x; and x; are orthogonal.

Prove that if A is the n X n matrix representation of a normal transformation, then A has a full
setof n linearly independent eigenvectors, regardless of the multiplicity of the eigenvalues.

Let T; 2 A — I\. The eigenvectors satisfy T, x; =0, and a generalized eigenvector X;. 1
must satisfy T; x; + 1 = X;. The required proof consists of showing that if A is normal, the condition
on x;+ ; leads to a contradiction and thus cannot be satisfied. For A normal, A*x; = \; x; for each
eigenvector x;; that is, T/ x; = 0. Then T} T; x; ., = T{" x; = 0. This means that

<Xi+1,Ti TiXi+1>=<TiXi+1,TiXi+1>=O or “Tixi+1l|2=0

This requires that T; x; + ; = 0, but this contradicts the original assumption, since x; # 0. When A
is normal, it cannot have generalized eigenvectors and, therefore, must have a full set of n
linearly independent eigenvectors.

Singular Value Decomposition SVD [6]

Consider an m X n matrix A with m =n, and with rank(A) = r. Show that A can be written as
A =UZV’, where Uand V are m X m and n X n orthogonal matrices respectively and where ¥, is
m X n and “diagonal ”’ (A nonsquare matrix is diagonal if all £, j entries are zero for i #j.)

Since A is not square, it cannot be used directly i in an eigenvalue problem However, two
related problems are pertinent. Consider AAT¢; =07 & and AT A, =\ e AAT is m X m,
symmetric, and hence normal. It is also positive semldefmlte and thus the o7 notation for the
eigenvalue is justified: From Problem 7.28 there is a full set of m eigenvectors. From Problem
7.25 or 7.26 these eigenvectors are mutually orthogonal, at least for two different eigenvalues.
They still can be selected as orthogonal even if there are repeated eigenvalues. For a multiplicity
k we are assured there are k independent eigenvectors, and Gram-Schmidt can be used to
construct k orthogonal vectors from them. The new vectors are still eigenvectors. By proper
normalization, all §; are also unit vectors, i.e., they are orthonormal. These vectors form the
columns of an m X m orthogonal matrix U.

AT A is n X n symmetric and at least positive semidefinite. Thus it also has a full set of n
orthonormal eigenvectors v; and nonnegative eigenvalues ;. Use the ), vectors to form columns
of an n X n orthogonal matrix V. From Problem 7.19 it is known that ATg ={; will be an
eigenvector of AT A, at least in the case where o; # 0. This is still true even for o; =0, as will be
seen when the length of {; is computed below. From that same problem the nonzero values of o;
and \; are the same. Thus AA” §; = o7 & becomes A{; = o7 £. But {;is generally not a unit vector.
In fact its length is found from ||{,|F = (L, {) =(AT&, ATE) =(AATE, &) = o?(§, &) = o7. There-
fore, dividing the earlier equation by o; gives An; = 0; &. The entire set of such equations is
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(O3]
Almme. ] =[o16r . 0n & =[EiEe 8] 0 diagonal,

}(m —n) X n zero

or AV = UZ.. Using the orthogonality of V gives V™' = V’. The final result is A = USV’. For
exposition purposes it was assumed that m > n. This was not at all essential. For example, if
m <n, define B = A” and then all the above applies to B.

The positive square roots of the eigenvalues of A” A, namely the o; = \,, are called the
singular values of A. The eigenvectors of AA”, namely the &, are called the left singular vectors
of A and the v, are called the right singular vectors of A.

Show that any m X n matrix A of rank r can be written as
A — UrzrvlT

where U’ and V' are m X r and r X n matrices, respectively, with orthonormal columns, and
where 2’ is an r X r full rank diagonal matrix.

Starting with the previous problem results, all the zero columns of % can be deleted as long
as the corresponding rows of V7 are also deleted to maintain conformability. The values in the
resulting matrix product are unchanged. Likewise, all the zero rows of 3, can be deleted without
changing the answer, so long as the corresponding columns of U are deleted to maintain a
conformable product. Actually this last set of deletions can be done in every case, whether A is
full rank # or not. The first set of deletions only applies when A is of less than full rank, say r,
because in the full rank case there are no zero columns in 3. The row-deleted version of V7is V'
and the column-deleted version of U is U’. Likewise for 3 and X’. The primed matrices form
what has been called the economy-sized version of singular value decomposition. It can save a
lot of computer storage. Even though U’ and V' are no longer square, it is still true that U'7 U’ =
I and V'V’ =L In both this form of the singular value decomposition and the previous
full-sized form, the rank of A is the number of nonzero singular values in 2 or 3.

Show how SVD can be used to solve simultaneous linear equations Ax =y.

Using the SVD form for A gives UXV”x =y. Using the orthogonality of U and defining
U’y 2 wand V'x 2 v gives 3v = w. Because of the diagonal nature of 3, these are easily solved
for v in most cases. Then a simple matrix product gives x = Vv. An expanded form of the crucial
equation is

SR
[ O ! 7] C Wy )
|
) ' :
| v, w,
—_ ] = | e
V=Ww ===
2 = : Vet Wrii
____________ 9ri___ .
0 10 .
L _ | Wm _|
L Vn |

From this it can be seen that the original equations are inconsistent and have no solution if A and
3 have rank r <n unless w also has these last m — r rows zero. A least-squares solution is still
possible. The solution (or least-squares solution) for v will have some arbitrary components
whenever there are zero columns in 3. Setting these components of v to zero will give the
minimum norm solution (or least-squares solution if required) for v. Since x and v are related by
an orthogonal matrix, they have the same norm, so x is also minimum norm in that case.
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Show that the SVD provides the means for extending the spectral representation of Eq. (7.5) to
nonsquare matrices.
Starting with A = U V7 as defined in Problem 7.29,

Ut Ut
Az[gl gz' . gm][z] :[0-1 51 0'2%2 o Op ‘En]
. m

= 2 o &m =2 o &)

i=1
This is of the form of Eq. (7.5). It has similar uses. For example, in approximation theory this

series can be truncated prior to including all n terms if some values of o; are considered to be
sufficiently small to be neglected.

Find the singular value decomposition for the matrix A of Problem 6.14.
1 2 5 11 17
A=[3 4| so ATA= [ii gg] and AAT=|11 25 39
5 6 17 39 61

The nonzero eigenvalues are approximately oF = 90.7355 and o3 = 0.2645. The square roots of
these form the diagonal terms in % below, and the two sets of normalized eigenvectors are shown
as columns of U and rows of V” next.

U 2 \4
6.2298 —0.8835  0.4082 || 9.5255 0 [

-~

0.6196 0.7849}

A=10.5247 -0.2408 -0.8165 0 0.5143 0.7849 —0.6196

0.8196  0.4019  0.4082 0 0

The efficient computational determination of the SVD form is crucial if it is to be useful. The
indicated eigenvectors can be determined by the means presented in this chapter. This easily
leads to the SVD form in simple cases like this one. However, Reference 6 should be consulted
for a superior algorithm for use in more realistic cases. The real value of the discussion of this
and the four previous problems is in understanding the concepts of the method, not in develop-
ing a general-purpose algorithm.

Resolve the equations of Problem 6.14 using the SVD results of Problem 7.33 and the method of
Problem 7.31.

The simultaneous equations are

1 2 2
(3 4|x=| 3
5 6 14

Using U from Problem 7.33 gives w & UTy = [13'5095].

3.1372

Then v, =13.5095/0, = 1.4182 an v, =3.1372/0, = 6.0999. A matrix product then gives x =

T 5.666
Vy= [—2.666]'

Independence of Generalized Eigenvectors

If x; 1s an eigenvector and x,, X3, . . ., X, are generalized eigenvectors, all associated with the
same eigenvalue A;, show that:
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(a) All of these vectors belong to the null space of (A — In;)*.
(b) This set of vectors is linearly independent.
(a) The defining equations for the set of vectors are

AX1 )\1 X1, Xi # 0, or (A - I)\l)xl =0 (1)
AX2 = )\1 X5 + X3 (A - I}\l)XZ =Xi (2)
AX3 )\1 X3 + Xo (A - I)\1)X3 = X2 (3)
Axk=)\1xk +Xk—1 (A—I)\l)xkzxkﬂ

From Egs. (1) and (2), (A —I\)*x, = (A — IN)x; = 0. Multiplying Eq. (3) by (A —1I\,)?
gives (A —IN;)’xs = (A —IN))’x, = 0. In general, it can be seen that (A —I\,¥’x, =0, and
(A—IN)Y " 'x, =x;. Since (A—IN) =(A-IN)"P(A—IN)Y, (A—IN)*x, =0 for p =
1,2,...,kand part a is proven.

(b) Let

Xyt axxt ot arxe =0 4)

and show that this implies that each a; = 0. Multiplying Eq. () by (A —I\)* ' gives
ar(A —IN)* " 'xe = 0. Since (A —IN)* " 'x, =x; # 0, a, must be zero. Using this fact and
then multlplyn}(g equation (4) by (A — I\,)* ~? shows that a, —; = 0. Continuing this process

shows that if 2, a;x; =0, then a; =0 for i = 1,2, ..., k. This means the set {x;} is linearly
i=1

independent.
Companion Matrix

When considering nth-order linear differential equations of the type

d"x d"~'x d" *x dx _
T +a, - P +a,- - e +oota ” +aox = u(r)
0 1 0 0 0
0 0 1 0 0
the n X n matrix A= | 0 0 0 1 0
“.ao —a4; —a4 —az --- —a.n-l

will often arise. A is called the companion matrix. Show that the companion matrix always has
just one eigenvector for each eigenvalue, regardless of its algebraic multiplicity.

The matrix A — I\ always has rank r, which satisfies r = n — 1. To see this, delete the first
column and the last row, leaving a lower triangular n — 1 X n — 1 matrix with ones on the
diagonal. If \ is an eigenvalue, rank(A — IN) <n. Together, these results imply rank(A — I\;) =
n — 1, so the degeneracyis g =n — r = 1. The case of simple degeneracy always applies, so there
is exactly one eigenvector for each eigenvalue.

Quadratic Form

Show that the eigenvalue problem for a real, symmetric matrix can be characterized as one of
maximizing or minimizing a quadratic form subject to the constraint that x be a unit vector.

Consider Q = (x, Ax). If the change of basis x = Mz isused, O = z \:z7. Because of the

orthogonal transformation, z is also a unit vector. Slnce all z2 <1, “this suggests that the
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maximum value of Q will be attained if all z; = 0 except z; = 1, where Ay = Apmay. Then Q = Apay.
Alternatively, adjoining the constraint |[x|* = 1 to Q by means of the Lagrange multiplier A shows
this directly. That is, maximizing x” Ax — A(x” x — 1) requires that the derivative with respect to
each component x; must vanish. This gives the set Ax —Ax =0, which is the eigenvalue-
eigenvector equation. If x satisfies this condition, then Q = x” Ax = x" X\ =\, 50 OQmax = Amax-
AISO Qmin = )\min-

If x, is the eigenvector associated with Am.x, then selecting x to maximize Q subject to
(x1,x) =0 and ||x|| = 1 will lead to the second largest eigenvalue and its associated eigenvector.
The remaining eigenvalues-eigenvectors are found in a similar way by requiring orthogonality
with all previously found eigenvectors.

Reduce the quadratic form Q =3[16y7 + 10y; + 16y; — 4y, y, + 16y,y; + 4y, ys] to a sum of
squared terms only by selecting a suitable change of coordinates.

This quadratic form can be expressed in matrix form as Q =y’ Ay, where y=

16 -2 8
[y1 y2 ys]"and A =% -2 10 2 . The eigenvalues of A are \;=8,\,=4,\;=2, and
8 21

since A is real and symmetric, a set of orthonormal eigenvectors can be found. They are used as
columns of the modal matrix

V2 -1Ve —-1V3
M=| 0 2V6 —1/V3
V2 Ve 1V3

Since M is orthogonal, M™' = M’ and A is diagonalized by the orthogonal transformation
M7 AM = diag[8, 4, 2]. If the change of variables y = Mz is used, then

QO =12"M"AMz =8z + 423 + 2z3

PROBLEMS
2 -2 3
Find the eigenvalues, eigenvectors, and Jordan form for A= 1 1 1
1 3 -1f
. . _12 0
Find the eigenvectors of A = 0 2l
2 010
. . _|10 0 0 1
Analyze the eigenvalue-eigenvector problem for A = 00 0 0
0 00O
4 -2 0
Compute the eigenvalues, eigenvectors, and Jordan form for A = (1) (2) (6)

Are A = %[_i é} and B = [é g] similar matrices?

Use the iterative technique of Sec. 7.6 to find approximate eigenvalues and eigenvectors for
8 2 -5

A= 2 11 -=2|
-5 =2 8



7.45
7.46

7.47

7.48

7.49

7.50

7.51

7.52

7.53

Chap.7 Problems 281

Find an approximate set of eigenvalues and eigenvectors for A = using iteration.

— N W
= NN
Pt

If A(\) is defined as in equation (7.3) and if
AN AIN—A| =N+, N 4N T2+ s+ el N+ 6
show that
(@) co=|A]; co=|—A| = (~1)"Al.
) (-1 'cpo1 =Tr(A); ci-1 = —Tr(A).
Find the eigenvalues, eigenvectors, and Jordan form for

— -

1 2 3
A=[(-2 3 -4
1 1 -4
Find the eigenvalues, eigenvectors, and Jordan form for
[ 4 2 1]
A= 1 2 1
| -1 -4 8]

Draw conclusions about the sign definiteness of

[-6 2
(a)A_~ 2 _I:Ia
[ 13 4 -13
b A=| 4 2 -4
-13 -4 13)
(-1 3 0 0
13 -9 0 0
©@A=l o o -6 2
L0 0 2 -1
[ 8§ 2 -5
@A=| 2 11 -2|,
-5 -2 8
(3 2 017
2 1 -2 10
©A=| 0 -2 6 3 8|
1 1 32 4
7 0 8 45

Let A= [_i’ _:15] and let x=[x; x,]7 be any unit vector. Consider Q = (x, AX) as a scalar

function of x. From among all unit vectors find the one which gives Q its maximum value. Also
determine Qmax.

Show that any simple linear transformation can be represented as A = > ME, where E; is a
i=1

projection onto N(A — I\;).

Show that any normal linear transformation can be writien as a sum of orthogonal projection
transformations. ‘

Analyze the simultaneous equations of Example 6.4 using the SVD method.



