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Preface

This book covers the physics of high-power laser interaction with plasmas,
a subject related to both fundamental physics and the applied sciences.
The book covers high-power laser irradiation, from low-laser intensity
I ~ 10° W/cm? up to extremely high intensities I; ~ 10*° W/cm?, and for
laser pulse duration between 71 =~ 10 nanoseconds to as short as 73 ~ 10
femtoseconds. The plasma medium varies from low densities (dilute gases)
to very high densities (highly-compressed solid state). The relevant tempera-
tures can change over many orders of magnitude, and electric and magnetic
fields can reach enormously high values.

The interaction of high-power lasers with matter should be of interest
to people from different branches of science who may be unfamiliar with
plasma science. Therefore, the relevant basic plasma physics is developed
and explained in detail. Three basic approaches to plasma physics are
considered, namely the two fluids model, the Boltzmann—Vlasov equations
and the particle simulation method.

This book is not a summary of research results, but rather it is a
pedagogical presentation where the basic physics issues are addressed and
simple models are used wherever appropriate. The material covered could
serve as a good foundation on which the undergraduate as well as the
graduate student can build an understanding of the past and present research
in this field. For the experienced researcher, I hope that this book is a
comprehensive and useful presentation of laser—plasma interaction.

The book describes the laser absorption and propagation by a plasma
medium, the electron transport phenomenon and the analysis of the relevant
plasma waves. The physics of the electric and magnetic fields in a laser-
induced plasma medium is comprehensively described. The subjects of
laser-induced shock waves, rarefaction waves, heat waves and the related
hydrodynamic instabilities (Rayleigh-Taylor, Richtmyer—Meshkov and
Kelvin—Helmholtz) are developed and discussed. The very important subject
of applications was purposely omitted as it merits a volume of its own.



vi Preface

A prerequisite in plasma physics is to know and master both systems of
units: the m.k.s., known as the SI (International System) units, and the c.g.s.—
Gaussian units. Furthermore, one of the most useful physical quantities is the
laser intensity (energy flux) /; , which is usually given in mixed units (Watts/
cm?). Although most of the time the c.g.s.—Gaussian units are chosen, both
systems of units are used, in addition to the practical units such as electron-
volt (eV) for energy or temperature.

I would like to thank my colleagues from the plasma physics department
at Soreq in Yavne, Israel, and from the Institute of Nuclear Fusion at the
Polytechnic University in Madrid, Spain, for the fruitful discussions which
were very inspiring, stimulating and useful. I am grateful to D. Fisher for
his critical reading of the manuscript and to Y. Paiss for the valuable
discussions regarding the first chapter of this book. I greatly acknowledge
the help from A. Borowitz, E. Dekel and M. Fraenkel for their help with
the technical problems in preparing the manuscript. My thanks are also
extended to R. Naem for the preparation of the figures. Last, but not
least, my deep appreciation to my wife Yaffa for her encouragement to
write the book and to bear with me to its successful completion.
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Chapter 1

High Power Lasers, from Nanoseconds
to Femtoseconds

This chapter is an introduction to high power lasers and it is intended to
present the principles and the parameters of such systems. Lasers (acronym
of light amplification by stimulated emission of radiation) are devices that
generate or amplify electromagnetic radiation, ranging from the long
infrared region up through the visible region and extending to the ultraviolet
and recently even to the x-ray region (Ross 1968, Sargent et al. 1974, Svelto
1976, Thyagarajan and Ghatak 1981, Siegman 1986, Elton 1990, Diels
and Rudolph 1996 and Robicux 2000). The 1964 Nobel Prize for physics
was shared between Charles Townes, Nikolai Basov and Alexander
Prokhorov for their fundamental work in the 1950s that led to the construc-
tion of the laser.

Maiman demonstrated the first laser in 1960; the lasing medium was
a ruby crystal, pumped by xenon flash discharge, and the pulse duration
was between 1 ms and 1 pus (Maiman 1960). In 1961 Hellwarth invented the
concept of Q switching and put it into practice with a ruby laser by using a
Kerr cell shutter. Hellwarth reported (Hellwarth 1961) a pulse duration of
about 10 nanoseconds (1 nanosecond =1 ns = 1070 s).

The first active mode locking was achieved in 1964 for a helium—neon
laser yielding a laser with pulse duration above 1ns. The mode locking
was achieved by modulating the index of refraction acoustically at the
period that the light travels (a round trip) in the cavity (Hargrove et al.
1964). Using a saturable absorber, the idea of passive mode locking was
suggested (Mocker and Collins 1965), and in 1966 a neodymium glass laser
pulse shorter than a nanosecond was first obtained (DeMaria et al. 1966).
Today pulses of the order of 10 picosecond (1 picosecond =1 ps=10""%5)
duration are common in many laboratories around the world. In the past
decade 10 femtosecond (1 femtosecond = 1 fs = 10~'% s) pulses were achieved
from a Ti—sapphire laser (Zhou et al. 1994, Glezer 1997). The chirped pulse
amplification technique (used in microwave devices for many years) was
first suggested for the lasers in 1985 (Strickland and Mourou 1985) in
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2 High Power Lasers, from Nanoseconds to Femtoseconds

order to amplify short laser pulses. In this scheme the femtosecond laser pulse
is first stretched in time (chirped in frequency), then amplified and finally
recompressed (Perry and Mourou 1994, Gibbon and Forster 1996, Backus
et al. 1997). An interesting brief review of how the development of laser
pulse duration, from nanosecond to femtosecond, has changed many fields
of science and technology is given by Bloembergen (Bloembergen 1999).

1.1 Basics

Although it is assumed that the reader is familiar with the basics of laser
physics, it is inconceivable not to mention the Einstein coefficients. In 1917
Einstein postulated that an atom in an excited level (2) could decay to lower
energetic level (1) either spontaneously or by stimulated emission. In order to
prove this statement, Einstein studied a system of atoms at a temperature T
in thermal equilibrium with electromagnetic radiation (Einstein 1917).

Let n; and n, represent the number of atoms per unit volume of levels 1
and 2 having energies E; and E, respectively. Regarding these two levels, an
atom can emit or absorb a photon with an energy /v (w = 27v), given by

h is the Plank constant and 7 = h/2.
The spectral distribution of the photons in thermal equilibrium is given
by black body radiation, as suggested by Planck’s law,

o) ] e

where ¢ is the speed of light, kg is Boltzmann’s constant and U,(w)dw is
the radiation energy per unit volume within the frequency interval
[w,w+ dw]. Up(w) is in J.s/m® in mk.s. (note that Up(v) = 2nUp(w)
since U, (v)dv = U,(w) dw).

The populations of the upper level 2 and the lower level 1 obey the
following rate equations:

dn
d_[z = —Ai’lz — le Up(w)nz + Bl2Up(w)nl =0
(1.3)
dn
d_tl = +An, + By, Up(w)nz - BIZUp(w)nl =0.

The quantities 4 (in s™'), B}, and B,; [in m*/(J - s*)] are known as Einstein
coefficients, and in thermal equilibrium the populations are constant, imply-
ing dn;/dt =0, dn,/dt =0. An, is the rate of spontaneous emission of
photons from the upper level, By n, U, (w) is the rate of stimulated emission
from the upper level to the lower level, and Bj,nU,(w) is the rate of
stimulated absorption from the lower level to the upper level.
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In thermal equilibrium the levels 1 and 2 are related by the Boltzmann

distribution
n h(E,; — El))
M _ 82 g (2R 1.4

ng P < kgT (14)

where g; and g, are the degeneracy of the atomic levels 1 and 2 accordingly.
Equations (1.1)—(1.4) yield

81 A A iw
B,(==) =By =B —= = — ) — 1. 1.5
12 <g2> 21 ) B 23 BU,(w) exp kyT (1.5)

From the last equation of (1.5) and the rate equations (1.3), one can see
that for hiw < kgT the number of stimulated emissions is much larger
than the number of spontaneous emissions, while for 7w > kgT the
number of spontaneous emissions exceeds the number of stimulated
emissions. For example, for typical light sources the temperature is less
than 7 ~ 3000K, implying kg7 /h <4 x 10"s™" and for the optical
spectrum w ~ 4 x 10" s7!; therefore, the emission in the optical spectrum
from usual light sources is incoherent (i.e. it is due mainly to spontaneous
emissions, 4/(BU,) ~ e').

The Einstein coefficients can also be understood by analysing the rate
equations (1.3). A" and (IS’Up)_1 have dimensions of time; therefore, one
can define the spontaneous emission lifetime 7, (of the excited level, denoted
above by 2) and the induced emission lifetime 7; of the excited level by

1 1 11 1

7-sp A, T BUpa T Tsp + T ( )

The physical quantity 1/7 is the transition probability per unit time for the
excited state under consideration.

It is important to note that the ratio 4/B given in the first two relations
of (1.5) is correct not only in thermal equilibrium but is valid in general. 4
and B are describing atomic physics, and atomic physics does not depend
on temperature. The ratio between the probabilities of induced transitions
and spontaneous transitions as given by (1.5) is independent of the particular
case for which it was calculated.

Einstein’s genius idea, as described above, shows how dynamic physical
quantities, such as ‘lifetimes’, transport coefficients, etc., can be related from
analysing a system in thermodynamic equilibrium.

In the above analysis only one laser frequency was considered, the
resonant frequency, with the energy difference between the two levels
(E, — E)). In general, the atom transition from the exited level to the lower
level (from level 2 to level 1) can be induced by radiation over a range of
frequencies around the resonant frequency. The probability of the
interaction is a function of frequency. Therefore, the laser beam is not a
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delta function in frequency (i.e. one single frequency) but a function g(w),
known as the line shape function, normalized by

Jg(w)dw:l. (1.7)

The change in the total number of stimulated emissions per unit time per unit
volume is changed according to the following (using (1.5) and (1.6)):

_7rzc3n U, (w)g(w) dw

By Up(w)ny = nszlep(w)g(W) dw "

The natural line shape is given by a Lorentzian profile

1

1
s (l + 4T52p(w — Wy

)2>7 (Aw)pwhm = — (1.9)

sp

B 276

Zn(w)

where 7, is the natural lifetime of the excited state, wy = (E, — E})/h is the
centre frequency, the normalization (1.7) is satisfied for wy7y, > 1, and the
natural full width at half maximum of g(w) is (Aw)pwam = (Tsp)il.

The line shape changes because of collisions. In a solid, the interaction
of the atom with the lattice causes line broadening. In a gas, the collisions
are between the atoms; in plasma, there are collisions between ions (not
fully ionized) and other ions or electrons. For example, in a gas medium,
random collisions occur and an atom sees an electromagnetic field that
changes its phase at each collision. If the average time between two colli-
sions is 7, the line shape broadening due to collisions is also of a Lorentzian
profile

« =3 (o)

(Aw) 21 (aMkgT\'?
IEWEM =T o s R\ 16 '

(1.10)

The normalization condition (1.7) is satisfied for wy7. > 1. The right-hand
side of the second equation is satisfied for an ideal gas with a temperature
T and pressure P, and this medium contains atoms of mass M and radius
R. For the general case this expression is considerably more complicated.

The Doppler effect also changes the line shape, since resonance absorp-
tion at wy is possible even for a non-resonant frequency w, if the atom moving
with a velocity v satisfies

w[l £ (v/e)] = woy (L.11)

where ¢ is the speed of light.
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The Doppler broadening produces a Gaussian profile, given by

(w)—i Mc? 1/2ex _Mc'2 (w— wp)?
08 = o ok T Pl T2k U 2

2kgT In2
(Aw)rwam = 2wy (#) .

Equations (1.9), (1.10) and (1.12) consider the broadening produced by
different mechanisms separately. In general, all mechanisms may be present
simultaneously. In this case the line shape is a convolution of the different
line shapes.

The various spectral line-broadening mechanisms are also classified as
homogeneous and inhomogeneous. If the spectrum of each atom is
broadened in the same way, like the natural and the collisional broadening,
then it is considered as homogeneous broadening. On the other hand, if local
inhomogeneities, as in Doppler broadening or inhomogeneities in a laser
medium (for example, the inhomogeneity in a solid crystal lattice), produce
the broadening then it is considered as inhomogeneous broadening. If the
effects which cause the inhomogeneous broadening are occurring at
random then the broadened line has a Gaussian shape. On the other hand,
in homogeneous broadening there is a Lorentzian profile. The propagation,
in the x direction, of a monochromatic electromagnetic beam in a medium
is described to a good approximation by the following equation for the
energy flux 7(w) (dimension of energy/area second)

_ mi(ny —m)g(w)

ar(w) _
dx (G - H)I(w)v G W27‘sp

(1.12)

(1.13)

where 7 is the refractive index of the medium, so that ¢/7 is the phase velocity
of the electromagnetic field in this medium. G is the gain for a system with
population inversion satisfying 7, > n;, and « is the dissipation (losses) due
mainly to collisions. In order to achieve a population inversion it is required
to pump energy into the laser medium. However, pumping is necessary but
not sufficient. In thermal equilibrium the Boltzmann distribution does
not permit population inversion, independent of the power of the pump.
Therefore, population inversion is required ‘to violate’ thermodynamic
equilibrium. For example, this is possible for three (or more) atomic levels
where the pumping excites atoms from level 1 (ground level) to level 2,
which is energetically higher than some level 3. In this case it might be
possible to achieve a population inversion between levels 3 and 2.

There are various ways to insert energy into the laser medium. For
example, a solid state laser can be pumped with flash lamps or with other
laser devices such as a laser diode. A gas laser can receive its energy from
various electrical discharges and also from different particle beams. One of
the important issues for a large laser system is the quality and the uniformity
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of the energy input, and for some applications the overall efficiency of the
laser pumping is crucial (e.g. for the use of inertial confining fusion in an
energy reactor).

Assuming that n; — n, is independent of I(w), i.e. the laser intensity is
not very large, and G and x do not change with x, then the solution of
(1.13) is

I(w; x) = I{w;0) exp[(G — k)x]. (1.14)

If the medium is in thermal equilibrium, i.e. n; > n,, there are fewer atoms in
the excited level than in the lower level (see (1.4)), then the energy of the
radiation beam decreases exponentially as it propagates through the
medium. On the other hand, if there are more atoms in the excited level
than in the lower level, n, > n; (population inversion), and also G > k,
then the intensity of the radiation increases exponentially. This is the effect
of light amplification.

In the oscillator, the medium is placed between two mirrors. Defining the
energy reflectivity of the mirrors by R; and R, and the medium length by L,
then the laser oscillation begins if the following relation is satisfied:

Ry Ry exp[2L(G — k)] > 1. (1.15)

In comparison with other radiation sources the laser is characterized by the
following properties: the laser is monochromatic, coherent in time and in
space, is directional and has a high brightness.

The laser is monochromatic since the amplification is done for frequen-
cies satisfying equation (1.1). Moreover, the two mirrors form a resonant
cavity, causing the natural line-width (of the spontaneous transition 2 to 1)
to be narrowed by many orders of magnitude.

The spatial coherence of the laser is defined by the phase change of the
electric field (and magnetic field) of two separated points in space. If the
phase difference of two points separated at a distance L is constant in
time, then these two points are coherent. The maximum value of L, denoted
by Lo, is the laser coherent length.

The temporal coherence is defined by the phase change of the electric
field (and magnetic field) in time at a point in space. If the phase of this
point is equal at time ¢ and at time ¢+ 7 for all times ¢, then this point is
coherent during the time 7. The maximum value of 7, denoted by 7, is
the temporal coherence of the laser.

In general, the spatial coherence and the temporal coherence are
independent concepts. The above definitions are only qualitative. For a more
accurate definition of coherence, one has to analyse the appropriate correlation
functions: (F(r,7+ 7)F(r, 1)) for temporal coherence and (F(r + L, )F(r, 1))
for spatial coherence, where F denotes the laser electric or magnetic field.

The small divergence of the laser beam is due to the fact that only a
propagating wave along the cavity direction can be sustained. However,
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due to diffraction from a finite aperture there is always a beam divergence.
For a perfect spatial coherent wave, with a wavelength A and a beam
diameter D, the diffraction limited divergence 6, is given by

_A

)
L)Y

(1.16)
where ( is a numerical coefficient of order 1. For example, 5 = 1.22 for a
plane wave beam with a constant intensity over its circular cross section.

Last but not least, the laser is a very bright light source. The brightness,
defined as the power emitted per unit surface area per unit solid angle, of the
laser is usually many orders of magnitude brighter than any conventional
sources.

There are two classes of high power lasers: solid state lasers (Nakai et al.
1995) and gas lasers (Key et al. 1995). The term solid state laser is usually used
for the lasers having an insulating crystal or a glass as their medium. These
lasers use impurity ions as their active medium. The neodymium doped
glass (Nd:glass) lasers are the most popular type of solid state laser. Neody-
mium lasers can oscillate on several lines; the strongest and therefore the
most commonly used have a wavelength of A = 1.06 pm.

At present there are five different laser media which are of interest to
high power laser interactions: the neodymium glass with a wavelength
A= 1.06 um, the CO, with A = 10.6 um, the iodine (/;) with A = 1.3 um,
KrF with A = 0.249 pm and titanium sapphire with A = 0.8 pm. In the follow-
ing section the glass laser (Holzrichter 1980) is schematically discussed.

1.2 A Stroll through a Glass Laser System

The laser—target interaction system consists of oscillator, amplifiers, propa-
gation and isolator devices, a target system and diagnostics. The purpose
of this system is to deposit energy in an appropriate time interval on various
targets. The laser input to the target must be well controlled, repeatable and
predictable, in order to study the laser—target interaction physics or to oper-
ate laser-induced plasma devices. To investigate the laser—target interaction
the ‘target response’ parameters such as plasma density and temperature,
x-ray productions, nuclear reaction yields, particle accelerations, shock
waves, heat waves, etc. are measured.
The components of the laser system are:

1. The oscillator creates the laser pulse with output energy of about 10—
107'J. The output energy of the oscillator is kept small in order to
control the laser pulses.

2. The telescope system magnifies the laser beam radius emerging from the
oscillator and projects it into the amplifiers.
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Table 1.1. Orders of magnitude for an Nd:glass laser.

Laser on target energy 10-10°7

Laser pulse duration 10721075 (0.1-10 ns)
Laser medium pumping time 107610735

Capacitor charging time 1-10%s

Beam diameters 5-50cm

Laser energy fluency (limited by breakdown thresholds 1-20J /em?

and self-focusing)

Typical beam intensities (before focusing on the target) 10°-10' W/cm?

Beam (peak) electric field (before focusing on the target) 10°-3 x 10° V/em
Beam (peak) magnetic field (before focusing on the target) 3000-9000 Gauss

3. The amplifiers amplify the oscillator pulse to energies in the domain of
10-10°J. Thus the amplifier gains are in the range of 10°-10%. In
order to obtain maximum energy one requires about 10 amplifiers in a
series. The diameter of the amplifiers increases from about 1cm to
about 50cm, in order to avoid glass damage, while increasing the
energy in the beam. Using state of the art technology and design, mega-
joule lasers are now under construction in the USA and France.

4. Theisolating elements prevent target reflections returning and damaging
the oscillator. These isolators also prevent the amplifiers from self-
oscillating off the target (i.e. precluding an undesired resonance between
the target and one of the optical surfaces). With a gain of 10*~10® even
the smallest reflection from the target through the amplifiers can totally
damage the oscillator and many other small optical components at the
beginning of the laser line. To avoid destruction, isolation is a necessity.

5. The mirror and focusing lens system directs the laser light along the line
into the target.

6. The target.

7. Last but not least, the diagnostics that analyse the laser beam and mea-
sure the parameters of the laser—target interaction.

To comprehend and get a feeling for such laser systems the relevant orders of
magnitude are summarized in table 1.1.

In order to build a laser system, it is necessary to understand the physical
constraints and the performance of the individual components.

1.2.1 The oscillator

The oscillator must generate the desired pulse shape in space and in time with
the appropriate bandwidth.

Consider a volume (V) of the laser medium that has a constant gain for
frequencies v + Av/2. The number of electromagnetic modes N in the laser
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medium is

N 8miAv

AR (1.17)
where c is the velocity of light. The number of possible modes available for a
laser with wavelength A = 1 pm is obtained from (1.17) using the typical
values of v =3 x 105!, Av=3x10"s7", yielding N/V =2.5x 10’
modes/cm’. For an oscillator with a rod of 10cm long and 1 cm diameter,
the number of free space modes are N = 2.5 x 10!°. The purpose of the
oscillator is to select only a few modes for amplification and propagation.

The mirrors are added around the gain medium to form a ‘cavity’ in
order to limit the spatial direction of the oscillation and to obtain standing
waves in the cavity. Due to the mirrors, stable electric field modes occur
only at frequency intervals Av = n(¢/2L), where n =1, 2, 3, ..., and L is
the cavity length of the oscillator. Furthermore, an aperture is added in
order to obtain the lowest transverse mode (called TEM) which is Gaussian
in its spatial profile.

Finally, a stationary mode is obtained in the oscillator when the desired
field builds up relative to all transient modes. This is obtained with the help of
a time-variable loss element. By modulating the loss element at a rate equal to
the round trip cavity time 2L /¢, the build-up of the pulses that cycle through
the oscillator are forced to follow the periodicity of the time-dependent loss.
Modes that are very close in frequency are ‘locked’ together and therefore
this is called ‘mode-locking’.

Another technique that allows the generation of high-power laser is
called ‘Q switching’. An electro-optical shutter (e.g. a Pockels cell or a Kerr
cell which change their index of refraction when a suitable voltage is applied)
is opened in a short time compared with the build-up time of the laser pulse,
after the cavity has gained energy in excess of the losses. This technique is
called ‘Q switching’ since it switches the cavity Q factor (the ratio of stored
energy in a volume to the dissipated energy in that volume, during a round
trip of the photons in the cavity) from a high to a low value so that the accu-
mulated energy in the cavity is released in a short time.

The oscillator pulse, Q switched or mode locked, can be coherently
amplified through a set of amplifiers to very high energies (as given in
table 1.1). In addition, the oscillator pulse can be shaped in time in order
to achieve the desired time-dependent profile (Jackel et al. 1982).

1.2.2 The amplifiers

Amplifiers increase the beam radiance from the oscillator to the level
required for target experimentation or for suitable application. They operate
on the principle that their medium has been pumped and a population
inversion was created before the oscillator output enters the medium of the
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amplifier. The medium gain should have a good optical quality in order to get
phase uniformity and gain uniformity.

The Nd:glass laser is based on the lasing properties of neodymium in an
amorphous glass host. The concentration of the Nd ion in the glass is about
2%. The Nd:glass is excited by photons from broadband xenon flash-lamps.
The energy storage time of this medium is long, about 300 ps, thus allowing
the use of electrical pulse discharge technology (flash lamps). The pumping is
done from the periphery of the medium and the Nd population that can be
excited is limited by the radiance of the xenon flash lamps. The efficiency
of the conversion of energy from flash lamps to stored energy and finally
to laser energy is about 1-2%, thus making it a low-efficiency conversion
device. However, new technology pumping with diode lasers increases this
efficiency up to about 40%.

1.2.3 Spatial filters

Spatial filters are needed in order to ‘clean’ the laser beam front from the
diverging modes caused by the inhomogeneity of the optical system. In a
laser chain of amplifiers the diameters of the laser beams are increasing
through the line, and therefore imaging elements, such as ‘astronomical
telescopes’, are required to control the divergence and the diameter of the
laser beam. When an aperture is added to the focus between two lenses,
the system behaves as a spatial filter relay. In constructing the filter, one
has to avoid the creation of plasma in a pinhole. This is usually achieved
by inserting the aperture into a vacuum system.

1.2.4 Isolators

Optical isolators act as ‘diodes’, allowing the laser light to pass only in one
direction. The isolators are used to prevent back-reflected light from destroy-
ing the ‘source’ from which the laser originally came. The main optical
isolators are based on either the Faraday effect or the Pockels effect. In the
Faraday rotation system, the polarization plane of the laser is rotated by
an amount proportional to the magnetic field applied along the direction
of propagation. For example, linear polarized light can be rotated 45° with
respect to the magnetic field so that the back-reflected light will be perpendi-
cular to the original beam and therefore rejected by a polarizer.

1.2.5 Diagnostics

The laser beam diagnostics should provide a complete description of the laser
input on target in order to define the initial conditions in laser—plasma inter-
action. Measurements are made to determine the oscillator pulse-shape in
space and time, its intensity and output energy. The amplifier performance
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is known by measuring the input and output energies and beam profiles.
Finally, the laser incident on target is diagnosed by directly imaging a frac-
tion of the incoming beam and analysing it spatially and temporally. The
input energy on target, the pulse shape and the existence of pre-pulses are
checked routinely. Besides the laser beam diagnostics, a comprehensive set
of spectrometers, optical and x-ray streak cameras, charge particle collectors,
etc. is used to measure the laser—target interaction.

1.3 Highlights of the Femtosecond Laser

Usually a ‘femtosecond laser’ is a laser with a pulse duration less than 1 ps,
and a state of the art laser can be as short as a few femtoseconds
(1fs=10""s). What is so exciting about these ‘femtosecond’ lasers? First,
their short duration; second the extremely high power achieved today,
about petawatt (= 10'° W); and last but not least is the fact that a terawatt
(10> W) laser can be a tabletop system and available also to small labora-
tories. By focusing these lasers, power flux densities up to 10%° W/cm2 were
attained.

The first constraint on the femtosecond laser medium is the requirement of
a large bandwidth, Ay, . Since Avy7 = 1 (the uncertainty principle), one
requires a laser wavelength bandwidth of A\; ~ 18nm (1 nm=10"" m) for a
laser with \; = 0.8 um to have a pulse duration 7 &~ 100fs (1, ~ ] /(cAXL)).
Since the temporal and spectral behaviour of the electromagnetic fields are
related through the Fourier transform, the laser bandwidth Ar; and the
laser pulse duration 7 are related by

AVLTLZK. (118)

The equality in (1.18) is known as ‘bandwidth limited” or ‘Fourier limited’
and is satisfied for pulses without frequency modulation (such as chirping).
K is a numerical constant depending on the field pulse shape, for example
(Diels and Rudolph 1996)

Gaussian pulse: E oc exp[—1.385(¢/7.)"] K = 0.44
Lorentzian pulse: E o [1 +1.656(z/7)%] ' K =0.14 (1.19)
sech-pulse: E o< sech[1.763(z/m )] K =0.32.

One of the most practical media for very short laser pulses is the Ti—sapphire
crystal. The spectrum emission of this crystal is very broad with a maximum at
about 800nm. Taking the optics of the cavity into account, a Ti—sapphire
oscillator output can achieve a wavelength band [at full width half maximum
(FWHM)] of about 25 nm. The Ti-sapphire crystal can produce ‘spontaneous’
mode locking without using a saturable absorber (Spence et al. 1991). The
nonlinear index of refraction 7, (note that 7 and 7, are dimensionless while
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i, is in cm?/W) causes self-focusing with the increasing of the laser irradiance
I} (dimensions of power/area):

it = iy + iy I . (1.20)

This effect, together with a suitable aperture, increases the round trip gain
when the laser is focused to pass through the aperture in the resonator. In
order to obtain the very short pulses it is also necessary to compensate for
the dispersion of the group velocity. The Ti—sapphire femtosecond oscillators
are today available in many laboratories around the world.

The dramatic increase in power of the femtosecond laser pulses became
possible (Strickland and Mourou 1985) thanks to the chirped pulse amplifica-
tion (CPA) technique (developed more than 40 years ago for radar devices).
In a chirped pulse the frequency of the electromagnetic wave varies with time.
The time-dependence of the laser electric field £ can be described by

E(1) = 1 {Eeny (1) explip(1)] exp(iw 1) + c.c.} (1.21)

where FE,,, is the field envelope, c.c. is the complex conjugate,
wp = 2wy = 2me/ A\ is the angular frequency at the peak of the laser
pulse, and ¢(7) is the time-dependent phase so that the time-dependent
laser frequency w is

de(7)
dt

If f(¢) # constant, then the laser pulse is frequency modulated, or in other
words it is chirped. For example, consider a Gaussian pulse with a linear
chirp, i.e. f(t) = at, then the laser electric field is given by

E(1) :Eoexp{—(l +ia)(’ 21‘12)2} (1.23)

L

w(t) =wy + =wp +/(1). (1.22)

and the product of 71 with the bandwidth is

21n2
Ay =221+ & (1.24)

™

Without chirp (a = 0), the bandwidth times the pulse duration is equal to the
Fourier limited value, 2In2/7 = 0.44 (see (1.19)), while with chirping this
value is increased by a factor of V1 + a°.

In the CPA scheme, the output femtosecond laser pulse from the
oscillator is first stretched in time (chirped in frequency), then amplified
and finally recompressed (see figure 1.1).

Before the oscillator output is injected into the amplifier it is stretched in
time by a factor ~10*. The pulse duration is increased in order to avoid
damage to the crystal and to the optics, and to avoid nonlinear distortions
to the spatial and temporal beam profile (maximum 10 GW/cm?). The
intensity dependent index of refraction, equation (1.20), creates a nonlinear
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Oscillator —{ Stretcher —{ Amplifier —j Compressor —

\

|

Short Stretched Amplified Compfessed
pulse pulse pulse pulse
~50fs ~1ns ~1ns ~100fs

Figure 1.1. Principle of chirped pulse amplification.

phase retardation given by the B integral

L
A z=0

where I (z) is the peak value of I} (z,7) and L is the propagation length of the

beam. The nonlinear index of refraction for sapphire is 71, ~ 2.5 x 10~ '® cm?/

W. For B > 1, this nonlinear phase retardation causes wave-front distortion

and filamentation that can damage the amplifiers’ medium.

A frequency-chirped pulse could be easily obtained by propagating it
through an optical fibre. However, the high-order phase terms introduced
by a fibre make it unsuitable for stretching and compressing a femtosecond
pulse. The stretching and the compression are obtained by using a pair of
gratings (or prisms). The grating pairs can be arranged to separate the
output pulse spectrum from the oscillator in such a way that the different
wavelengths follow different paths through the optical system. This enables
pulse compression by using the reverse procedure.

The sub-nanojoule output from the oscillator is stretched in time by a
factor of 10%, and then its energy is amplified by a factor of 10° in a smaller
system and up to 10'% in the larger systems. After that the laser pulse duration
is recompressed to almost its initial value. In this way one can achieve a table-
top laser system with peak power >10"> W (terawatts = TW) and for larger
systems (Wharton et al. 1998, Norreys et al. 1999 and Perry et al. 1999) a
peak power >10'"W (petawatts=PW) was obtained. By focusing the
lasers, power flux densities up to 10*° W/cm? were attained. These laser
systems have opened up many scientific fields and new technological possi-
bilities, and in particular it became possible to investigate a domain of
plasma physics not available before in the laboratory.



Chapter 2

Introduction to Plasma Physics for
Electrons and Ions

This chapter reviews the important features of a plasma medium and sets the
background for the next chapters. An introductory and popular book on
plasma physics is by Eliezer and Eliezer (2001). For more serious studies
of basic plasma physics, books by the following authors are recommended:
Ginzburg (1961), Spitzer (1962), Schmidt (1966), Shkarofsky et al. (1966),
Clemmow and Dougherty (1969), Krall and Trivelpiece (1973), Chen
(1974), Nicholson (1983), Kruer (1988), Tajima (1989), Stix (1992), Dendy
(1993), Ichimaru (1994), Goldston and Rutherford (1995), Hazeltine and
Waelbroeck (1998), Salzmann (1998) and Hora (2000).

2.1 Tlonization

The word ion, in Greek ‘to go’, was introduced by the famous English
scientist Michael Faraday in 1830 to describe the state of an electrically
charged particle. Tonization is the process where a neutral atom becomes
an ion, or more generally, an atom that lost j (=0, 1, 2, ...) electrons
(denoted by 4)) is converted to an atom that lost j 4 1 electrons (4;, ). In
thermal dynamic equilibrium this process is described by

Ao A +e,  j=0,12... (2.1)
SN; = —6N;, | = —6N, (2.2)

where N is the number of particles per unit mass of the ions 4;, 4;, | and the
electrons accordingly and 6 is the appropriate variation on the number of par-
ticles. The thermodynamic state can be described by the free energy F (dimen-
sion energy/mass). The variables of F are the plasma temperature 7', the specific
volume V" and the number of particles N. V' is related to the density p by
V= 1 (2.3)
p

14
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In a thermal dynamic equilibrium the free energy F(7, V', N) is minimized:

eQ.

F(T,V,N) ZNkBTln —N.kgT In (2.4)
(5F SF
6F = 5 6]\G+5_zve‘we =0. (2.5)

ky is the Boltzmann constant and Q; and Q, are the partition functions for the
ions and electrons appropriately, defined by

0= Zexp <— k?T> (2.6)

where ¢; are the energy eigenstates of the Hamiltonian describing the plasma
system. Solving equations (2.2), (2.4) and (2.5) yields
NjpiNe _ Q410
N; 0

implying the famous Saha equations

3/2
My 1N _ 2[Jj+1 <27TmekBT>/ exp <_1/ _Alj)’ j= 1’2,.”’(2_ 1)

nj Ui > kT

j=0,1,2... (2.7)

(2.8)

where n = N/V, ie. Mg and n; are the densities of the (j+ 1)th and jth
ionization state and 7, is the electron density, U, and U, are the internal
parts of the ionic partition function, m, is the electron mass and h is Planck’s
constant, /; is the ionization energy of the ground state and I; = ;19 — €.
Al is the reductlon of the ionization potential due to local electrostatic fields
in the plasma. The density of the ionization states n; includes all possible

excited states, whose partial densities 7, satisfy
nj = anm' (29)
m

The sum over m extends over all bound levels for which ¢;, < I; — Al
Equation (2.8) is subject to the following constraints:

z
ng = Zn/ (2.10)
=0

7
ne = Z‘jnj =Zn, (2.11)
j=0

where 7, is the total ion number density, Z is the atomic number and Z; is the
average degree of ionization.



16 Introduction to Plasma Physics for Electrons and Ions

Table 2.1. A few examples of the approximation (2.12) in comparison with the exact
results (Cowan 1981). The last column is the absolute difference between the
approximation and the exact result divided by the exact result (in %). H is
hydrogen, He is helium, Li is lithium, etc.

Equation (2.12) Cowan (1981)  Accuracy

Zon @V V) (%)
Z =13, Al H-like 12 1 2298 2304 0.26
Z =13, Al He-like 11 1 1958 2086 6
Z =13, Al Li-like 10 2 411 442 7
Z =13, Al Be-like 9 2 340 399 14.8
Z =26, Fe H-like 25 1 9194 9277.7 0.9
Z =26, Fe He-like 24 1 8500 8828 3.7
Z =26, Fe Li-like 23 2 1958 2045 4.2
Z =26, Fe Be-like 22 2 1799 1950 7.7
Z =26, Fe B-like 21 2 1646 1799 8.5
Z =26, Fe C-like 20 2 1499 1689 11.2
Z =126, Fe Ar-like 8 3 122.4 233.6 47.6

The ionization energy [ of a partial ionized atom can be estimated by the
‘hydrogen-like’ model
2
I(eV) ~ 136%72“) (2.12)
where 7 is the principal quantum number of the outermost bound electron
(see table 2.1).

The Saha equations are satisfied for plasma in local thermodynamic
equilibrium (LTE). LTE is characterized by the fact that the dynamic proper-
ties of the plasma particles, such as electron and ion velocities, population
partition among the excited atomic states and ionization state densities,
follow Boltzmann distributions

Mjpy X EXP (— ;;"}) (2.13)

where ¢, is the level energy above the ground state.

In contrast to complete thermodynamic equilibrium, in LTE the radia-
tion may escape from the plasma; therefore the radiation is not necessarily in
equilibrium with the plasma particles. More generally, in this case all laws of
thermodynamic equilibrium are valid except Planck’s radiation law. LTE
may also be valid when there are temperature gradients in the plasma, i.e.
VT # 0, in which case complete thermodynamic equilibrium cannot occur.

LTE is valid mainly for high-density plasmas, where the frequent
collisions between electrons and ions or between the electrons themselves
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produce equilibrium. For this to happen it is necessary that the electron and
ion densities must be high enough for collisional processes to be more impor-
tant than the dissipative radiative processes.

As a simple example of the Saha equation (2.8) consider the case j = 0
in (2.1), i.e. the first ionization of a neutral atom. Denoting the degree of
ionization in this case by Z,

Ne ny

) =—= 2.14
=t 2.14)

the Saha equation (2.8) can be written as (Zeldovich and Raizer 1966)

7 2 (27mekg T\ I
~N— | — ——. 2.1
1—21 ny ( /’12 ) eXP( kBT> ( 5)

ForI/(kgT) > 1, one gets Z; < 1; that is, most of the atoms are neutral and
only a few have been ionized. Moreover, in this case ng is proportional to the
density p, and therefore equation (2.15) yields

1 I
7, x %exp (— m) (2.16)
implying that the degree of ionization increases very rapidly with increasing
temperature and increases slowly with decreasing density. The first ionization
energy, I, for the majority of atoms and molecules varies between 7 and 15¢V
(an exception is the alkali metals, which have a lower 7). For example, the
ionization of an oxygen atom, an oxygen molecule, a nitrogen atom and a
nitrogen molecule are accordingly: I = 13.6€V, Ip, = 12.1eV, Iy = 13.6eV
and Iy, = 12.1eV. For air at standard density (py = 1.29 x 10> g/em’), the
Saha equation yields n./ny =024 for T ~20000K, n./ny~ 1.5 for
T ~ 50000K and n./ny ~ 5.0 for T ~ 250 000 K.

The Saha equations, which are valid only in LTE, were derived using
general thermodynamic consideration without considering the dynamics
of ionization. However, if LTE is not satisfied then one has to write in
general a complete set of rate equations for all ions and their respective
quantum levels, taking into account all possible collision processes causing
ionization and recombination (opposite of ionization). In this case one has
to know the different cross sections and collision frequencies for the relevant
processes.

2.2 Cross Section, Mean Free Path and Collision Frequency

The cross section is one of the most important concepts of basic physics. A
simple explanation of this concept is now described. Consider a beam of
particles a, such as electrons, ions or photons, with a flux of F, particles
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per unit area per unit time (the dimension of F, isin cm >s~ ' in c.g.s.). These

particles collide with the particles of a medium b of density n;, (in cm ). The
beam flux crossing a thickness d/ of the medium, containing n, d/ particles
per unit area, is attenuated by an amount dF,, that is proportional to F
and ndl,

dFa = —aabFanb dl/. (217)

The proportionality factor o,, has the dimension of area and is called the

cross section for the collision between a and b. From the geometrical picture

of this collision one can see that o, is the effective area of one collision.
The integration of (2.17) for constant o, and n, yields

F,(1) = F,(0) exp(—m,0,1) (2.18)

where F,(0) is the incident flux and / is the thickness of the medium b that a has
traversed. Equation (2.18) is not always correct since o, can be effectively a
function of the distance / and therefore the integration of (2.17) is not as
simple as above. This usually happens when the particles lose energy during
collisions, and in general the cross section is a function of the energy.

The physical quantity s, (in cm ™), defined as the absorption coefficient,
is given by

1
Ha = anioab = 7 (219)
b a

where the sum is over all species of the medium. The reciprocal of p,,
sometimes defined as the attenuation, is the mean free path /,. If (2.18) is
not correct then it is necessary to define the absorption coefficient and
the mean free path in a more sophisticated way (for example, by making
appropriate averages with respect to the energy of the projectile).

The cross section is not only a function of energy but it may also depend
on the direction in which the particles are scattered. When o, (E, 6, ¢) is a
function of the centre of mass energy E of the colliding particles and the
direction in spherical coordinates (6, ¢) of the scattered particle, one has to
define the differential scattering cross section, d’c,,/(dE d€2), where dQ is
the infinitesimal solid angle in the direction (6,¢). In this case, equation
(2.17) for the flux change of the particles due to collisions dF, is replaced by

dF, [into dQ in direction (6, ¢), in energy interval dE]

dZO'ab
= < i do dEdQ)Fanb di (2.20)

and the total cross section o, is

dzUah
Oup = ” dEdQ 2. (2.21)
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The cross section for elastic scattering between an electron (not very energetic)
and a neutral atom (or molecule) in a gas, 0.y, can be described in good
approximation by the effective area of the atom (or the molecule). Denoting
by R, the radius of the neutral particle, the cross section is

0o ~ TR, (2.22)

For most atoms and molecules in a gas, oy is in the range 107121071 cm?.
The mean free path, i.c. the average length between two collisions of a particle
(electron, ion, photon, etc.) with the background particles, was introduced by
Clausius as early as 1858. The concept of the mean free path is useful for
irreversible processes and is also important for problems where ordinary
thermodynamics is not applicable. As one can see from (2.19), the informa-
tion obtained from the mean free path is equivalent to the information
contained in the appropriate total cross section.

The collision frequency v, between a particle « with a velocity v, and the
background is defined as the number of collisions per second of the particle
under consideration (sometimes called the test particle) with the background
particles b:

va
Vah = NpOapVgq = n (223)

vy, 1s also the probability per unit time for the collision to occur.

For the air density, 7y~ 3 x 10" cm ™3, the mean free path of an
electron at room temperature (v, &~ 6.7 x 10%cm/s) is about 3um (for a
cross section of 107" cm?) and its collision frequency is about 2 x 107!

In ionized plasma the Coulomb forces dominate the trajectory of the
charged particles. The famous Rutherford differential scattering cross section
describes the collision between an electron and an ion (with a charge Ze)
possessing an infinite mass, as described in figure 2.1.

This cross section is given by

doy; N\ [z 1
— (=) (Z5) —— 224
dQ (4) (mevz) sin4(0/2) ( )

¢

Figure 2.1. Orbit of an electron colliding with a positive ion of charge Ze. b is the impact
parameter, /., is the closest approach for » = 0 and 6 is the scattering angle.
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where m, and v are the mass and the velocity of the electron accordingly, 6 is
the scattering angle and df2 is the differential solid angle. In spherical
coordinates with an azimuthal symmetry, d) is related to the scattering
angle 0 by

dQ = 27sin 0.do. (2.25)

The impact parameter b, defined asymptotically before the Coulomb interac-
tion is effective, is related to the scattering angle 6 by

0 Ze
btan= = 5
2 mgw

(2.26)

Although equations (2.24)—(2.26) are given for an electron—ion collision in
the laboratory system of reference, these equations are also valid for the colli-
sion of any two charged particles with masses m1; and m, and charges ¢; and
q» appropriately. For this general collision the following changes are to be
done in the above equations to be valid in the centre of mass:

(a) —Zeé* is replaced by ¢,¢>.
(b) The electron mass is replaced by the reduced mass m, defined by
1 1 1
—=—t—. (2.27)
me  mp Ny
(c) wis the relative velocity between the colliding particles.
(d) The scattering angle € is given in the centre of mass of the colliding
particles.

The (total) cross section oy; is defined by

dog 7 (Z* N (™ sin 0
= [d=F =3 df—r——. 2.28
7 J o 2 <mev2> ,[o sin*(0/2) (2.28)

The above integral diverges at = 0, or equivalently (using equation (2.26))
for b — oco. However, the very distant interactions are screened by the
surrounding charged particles so that there is an effective b,,,, instead of
b — oo. In general b, is taken as the Debye length (section 2.4).

In calculating the collision frequency in (2.23) for electron—ion
collisions, one has to take into account the velocity distribution of the
particles, i.e. o,,v, has to be replaced by (o,,v,), an average over all possible
velocities. For ions at rest and electrons in LTE (for 7; = 0 and an electron
temperature 7,), the electron velocity distribution f(v) is given by the
Maxwell distribution,

fv) = mexp (— %), J;c dv%exp <— %) =1 (229




Cross Section, Mean Free Path and Collision Frequency 21

The distribution is isotropic, f(v) has the dimension (cm/s) > and the thermal

velocity (vy) is defined by
v = kT (2.30)
mC

The 0,0, in (2.23) is replaced by

TapVa — (TapVq) = Jo Gabvf(v)47w2 dv
47-(- blnﬂX UZ 3

For Coulomb interaction, e.g. using the Rutherford scattering (2.28), the
above integral diverges logarithmically at b = 0. o(v) is proportional to
1/ v* and therefore one also has an integral over dv/v (integrating by parts,
or just equating the exponent to 1 for very small v). Using the screening
effect as discussed above, b = oo is replaced by b, and b = 0 is replaced
by bnin €qual to the closest approach [, (see figure 2.1), defined by

2
Z¢ _ kT (2.32)

lca

In the plasma literature one can find that if the electron de Broglie wavelength
l4p 18 larger than the closest approach one has to take b, = lyp:
h h

lyg = = . 2.33
P mevr (2mehkyT,)"? (2:33)

However, in this case the entire classical approach is not appropriate
(Lifshitz and Pitaevskii 1981) and one has to calculate the cross section
correctly according to quantum mechanics (Landau and Lifshitz 1965).
Therefore for the classical approximation /;, is always given by (2.32).

A simple order of magnitude estimate for the electron ion collision
frequency can be obtained by taking the cross section

oo~ o< T, 2. (2.34)

The proportionality is derived from (2.32). Using this equation together with
equations (2.23) and (2.30), one gets an estimate for the electron ion collision
frequency

37 et
Ve z\[”—”’m (2.35)
\/me(kBTe)
A more accurate calculation (see section 9.3) yields
402m)' 1 Z%e*n; In A Z*ni(em ) In A
vy = 220 T2 mInA o e Zimlem )InA ) 5

3\/’77;(kB Te)3/2 [Te<ev)]3/2
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bin:
A =T 2.37
bmin ( )
In the right-hand side of (2.36), n; is the ion density in cm * and T.(eV) is the
electron temperature in electronvolt (eV).

2.3 Transport Coefficients

2.3.1 Electrical conductivity

The Drude model is used to get a simple estimate on the electrical conductivity
of a plasma gas. The same formalism is a good approximation for solids
(Ashcroft and Mermin 1976). The definition of the electrical conductivity
is given by

jo = —neev. = ogE (2.38)

where v, is the electron velocity, j. is the electric current, 7, is the electron
density and o is the electric conductivity. The relation between the electric
current and the electric field is known as Ohm’s law. Due to the local electric
field E, assumed constant (d.c.) in this model, an electron is accelerated
between any two collisions with the background particles. Newton’s law
yields

dv, ¢E
—_— = 2.39
dr e ( )
It is assumed that the collisions are instantaneous and suddenly alter the
electron velocity. In this picture the electrons are bumping from particle to
particle. Denoting by ¢ the time that passed since the last collision of the
electron, the solution of (2.39) is v(,_g) — eEt/m,. Since in this model an
electron emerges from a collision in a random direction, v(,_g, does not
contribute to the average velocity. Therefore, assuming that the average
time between collisions is the relaxation time 7, the velocity in (2.38) is
eET 1
Ve = — , T=—. (2.40)

me Vei

An electron in the plasma collides with the ions, the other electrons and if the
plasma is not fully ionized it collides also with the neutral atoms. In equation
(2.40) it is assumed that this frequency is dominated by electron—ion
collisions. Substituting the velocity from (2.40) into (2.38) one gets the
electrical conductivity

n.e*

(2.41)

O =
MeVej
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where o is in s~! in c.g.s. units, (Qm) ! in m.k.s. (standard units) and the

relation between the units is: 1(Qm) ' =9 x 10°s™'. Using equation
(2.36), in (2.41) the electrical conductivity can be written as

. 17 7.\’ -1
og(ei) =2.7x 10 Z<@> [s7] (2.42)
where the electron temperature is in keV. It is worthwhile to compare this
numerical result (equation (2.42)) with the conductivity of a very good
conductor such as copper, og(copper) = 5.5 x 1017571,

For comparison between plasma (known as a good conductor) and a gas
(known as a very bad conductor), it is interesting to calculate the d.c. electrical
conductivity of air. The first question is how many free electrons are in
air at standard conditions. Using the Saha equation (2.16) one gets
ne ~ exp(—1/(2Tev))); I = 15eV and the room temperature is 7 ~ 1/40¢V,
therefore the exponential factor is exp(—300), implying practically a zero
n.. However, due to cosmic radiation the number of induced electrons is of
the order ~%(statcoulomb)/(yearcm3)% 30 electrons/(cm3 s) (this number
changes for different locations on Earth). These free electrons are attached
to the air molecules; taking a lifetime of about 10 ns for these electrons, one
gets a steady state number of free electrons about n, ~ 3 x 107 cm°.
Using this electron density, the electron cross section for colliding with a
neutral molecule (2.22), and using the collision frequency (2.23), in (2.41)
one gets o (air) ~ 3 X 10~s™!, a number that is about 26 orders of magni-
tude smaller than the electrical conductivity of copper.

2.3.2 Thermal conductivity

Consider a medium in which the temperature is not uniform, i.e. 7" is a func-
tion of space 7' = T'(r). The tendency to reach equilibrium requires a flow of
heat from the region of higher temperature to that of lower temperature.
Defining qy as the energy crossing a unit area per unit time in the direction
orthogonal to this area, the heat flux (in erg/(cm”s)) can be defined by

qu = —kVT. (2.43)

The value of k can be easily estimated in a simple model. We assume that the
temperature is a function of x, the particles have an average energy ¢(x), a
density n and a velocity v. This simplification does not affect the calculations
since x does not depend on the model that is calculated. The flux of the
particles in the +x direction, normal to the y—z plane, is %(nv) (the factor %
can be understood by considering three dimensions x—y—z and each dimen-
sion has two directions). The heat flux gy (x) in the direction of +x is
1 1 0 1 0e OT

g =g (m)e(x — 1) —elx + D] m —gmul o= —zmol o = (2.44)
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where / is the mean free path discussed in the previous section. Since the
energy derivative with respect to the temperature is the heat capacity (at
constant volume for a process that the density is constant), one gets

1 oT
= ——nvley —. 2.4
n 3nvlcv Ox (243)

/ is the mean free path of the particles that are transporting the heat (for
example, the molecules in a gas and the electrons in a plasma), cy is the
heat capacity per particle at constant volume, and assuming that v equals
the thermal velocity v, one gets

2
k= Lpeyloy = VT T2 forgf(em -5 - K)). (2.46)
3 3Vei
The second equality was obtained using (2.23). For the last proportionality
it was assumed that the electrons are transporting the heat, v ~ T, /2,
vh ~ T,, and taking for the plasma under consideration a constant cy.

It is worth mentioning that the heat transport in a gas is done by the gas
molecules; and in this case (to a first approximation) the cross section is
temperature-independent, the collision frequency is proportional to the
temperature square root, and therefore

r(gas) oc T1/? (2.47)

where T is the gas temperature.

Comparing the electrical conductivity o, equation (2.41), with the
thermal conductivity « (2.46) and using the ideal gas equation of state
(Eliezer et al. 1986), cy = %kB and (2.30) we get the Wiedemann and Franz law

K 3 sz
L2 (B 2.4
OE 2(6) ( 8)

2.3.3 Diffusion

In equilibrium the electrons are distributed uniformly throughout the plasma
so that n, is independent of position. Suppose that a disturbance causes the
electron density to depend on position 7.(r). In this case the electrons will
move in such a way as to restore equilibrium. This motion is described by
the diffusion equation

M _ . (DVny) (2.49)
ot
where D is the diffusion coefficient, defined by the relation
jn = —DVn. (2.50)

jn = nv is the particle current density.
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The diffusion coefficient can be calculated using the simple model used
above (to calculate the thermal conductivity coefficient). The density is a func-
tion of one space dimension, n(x), and the particle flux in the +x direction is

o1 1 On

Jn = g[ane(x — 1) —vrne(x + )] = _§UT18_;
The right-hand side of the equation was obtained by the first-order Taylor
expansion. From this equation the diffusion coefficient is

. (2.51)

1 T5/2
D= §UTZ o ’: [cm?/s]. (2.52)

In the presence of a magnetic field in a fully ionized plasma the diffusion coef-
ficient in a direction perpendicular to the magnetic field, D, is a function of
the magnetic field. In this case, for a steady-state plasma the Ohm law (2.38)
(in c.g.s. units) is generalized to

B
j:aE<E+V>Z ) (2.53)

where ¢ is the speed of light. The magnetic force (force/volume) J x B/c is
balanced by the pressure gradient (force/volume) VP

jx

= VP. (2.54)
The plasma velocity in the perpendicular direction to the magnetic field is
obtained by taking the cross-product of the generalized Ohm’s law with
the magnetic field [(2.53) x B] and using (2.54) for an ideal gas pressure
with constant temperature, VP = kg7 Vn. The derived perpendicular
velocity v, is

_cExB ChyT

Vi=7p o B2 Vi = Varie + Vdiftusion- (2.55)
Therefore, the diffusion coefficient D | is (—nvgifrusion/ V72
2
“nkg T
p, =" B fem?/s). (2.56)
O'EB

This value for D, is known as the classical diffusion. However, it appeared in
many experiments that the 1 /B2 scaling law of D is not satisfied and instead
a 1/B dependence was derived (Bohm er al 1949). Bohm, Burhop and
Massey, who were using an arc discharge in the presence of a magnetic
field for uranium isotope separation, first noted this anomalous diffusion in
1946. Bohm suggested the semi-empirical formula

- CkB Te

L= 6B = Dy [em?/s]. (2.57)
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The diffusion following this law is called the Bohm diffusion. Note that Dy,
unlike D |, does not depend on the density. It was found that (2.57) is satisfied
in a surprisingly large number of experiments.

2.3.4 Viscosity

The pressure is in general a tensor Py, the first index designating the orienta-
tion of the plane and the second index the component of the force exerted
across this plane. In Cartesian coordinates, i or j is equal to x, y, z. Viscosity
arises when adjacent fluid elements flowing with different velocities exchange
momentum. The tensor P; is given by

ov;  Ov; 811‘ o)
Pi/ = P(Si/ + PV — n(a—x + 8YI 3 3361 > Z 8 k 61/ (258)
i )

The Navier—Stokes equation of ordinary fluid dynamics can be written in the
form (Landau and Lifshitz 1987)

pvl o 8Ptk
Z . (2.59)

In general the coefficients of viscosity 7 (the first coefficient) and ¢ (the second
coefficient) are positive numbers that are functions of temperature and density.
P is the scalar pressure given by the equation of state (Eliezer et al. 1986)

P="PpT) (2.60)

where p is the density of the plasma fluid. For an incompressible fluid the diver-
gence of the velocity vanishes, V - v = 0, and the second coefficient of viscosity
¢ does not contribute to the pressure tensor. In many plasma systems the
effects of viscosity are negligible since the first two terms in (2.58) are much
larger than the viscous terms. However, we shall estimate the coefficients of
viscosity 7 in a simple model, as described above for the coefficients of diffu-
sion and conductivity. We take an x dependence only and a flow velocity
v =(0,0,v.), so that the only off-diagonal tensor element of the pressure is
v,
Tox
P.., known as the stress, is the mean increase of the momentum flux in the z
direction transported by the fluid particles per unit time and per unit area in
the x direction (the y—z plane). In this model P,. is defined by

Py, =g (mvr)mlv.(x — ) — v.(x +1)] (2.62)

where m is the mass of the particle fluid under consideration. A first-order
Taylor expansion of v. yields

P, —— (; nmvﬂ) S _ _ 0 (2.63)

P.=— (2.61)

8x
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In the calculation of the transport coefficients derived above, the coefficient
factors are not to be taken too seriously. However, the scaling laws with the
mass m, the mean free path /, the density » and the average velocity (denoted
by vt) of the particles under consideration give a reasonable approach for the
behaviour of the transport coefficients: og, «, D and 7.

2.4 Radiation Conductivity

In high-power laser interaction with plasma medium, x-ray radiation is
produced (Gauthier 1989, Kauffman 1991, More 1991). Laser-produced
plasmas achieved the highest brightness of x-ray source in the laboratory.
The x-rays are produced by the different electron transitions, shown
schematically in figure 2.2. In this figure three classes of transitions are
described: bound-bound (bb), bound—free (bf) and free—free (ff).

2.4.1 Bound-bound (bb) transitions

A photon is emitted when an electron jumps from a higher to a lower
energetic quantum state of the ion, or a photon is absorbed when an electron
is excited to a higher energetic state. The emission is in the form of a line and
is denoted by LE (line emission) in figure 2.2, while the absorption in this case

Energy (B) 11=)] Continuum
, [free electrans)
(RF) (PE)
i el
(LE) (LAY o
ion eigenstates
Dy """ {(bound electrons)

J

Figure 2.2. Electron transitions in an ion (or atom) associated with radiation emission or
absorption. The notation is B =bremsstrahlung, 1B =inverse bremsstrahlung, RR =ra-
diative recombination, PE =photoelectric effect (known also as photoionization),
LE =line emission and LA = line absorption.
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is denoted by LA (line absorption). This can be described by

LE (line emission): i; — i, + 7,
LA (line absorption): v + 1, — ij,

where 1 states for an ion, 1 and 2 describe the quantum numbers of the ion
states, and +y is the photon.

It should be noted that for high-Z atoms there are many possible
configurations of LE so that this fact together with line broadening (e.g.
Doppler) changes the discrete line emission with an effective energy band
(Bauche et al. 1988).

2.4.2 Bound—free (bf) transitions

A photon is emitted when a free electron is caught by an ion, known as the
radiative recombination (RR) process, while in the inverse process the
absorption of a photon is associated with the release of a bound electron.
This later process is the famous photoelectric effect (PE), known also as
photoionization. These processes can be described by

RR (radiative recombination): ¢~ +i; — i, + 7,
PE (photoelectric effect): v +1, — i; +¢°,

where e~ denotes a free electron, i; and i, are different charge ion states and ~y
is the photon.

2.4.3 Free—free (ff) transitions

In the bremsstrahlung effect a free electron collides with an ion and emits a
photon, while in the inverse process a photon is absorbed. This last transition
plays a major role in laser absorption by plasma. These processes can be
described by

B (bremsstrahlung): e” +1— ¢ +1i+ 7,
IB (inverse bremsstrahlung): ¢~ +i+~v —i+e¢ .

2.4.4 Energy transport

The production of x-rays is a superposition of lines and continuous energies
according to the above processes. The derived spectrum depends on the
medium characteristics such as atomic number Z, degree of ionization,
density and temperature. Most of the x-rays are produced in the domain
of high electron density, as the probability of the above processes is propor-
tional to the square of the plasma density. Since shorter laser wavelengths
penetrate with higher electron density, the x-ray conversion efficiency
increases with the decrease of the laser wavelength.
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Detailed studies of the conversion of laser light into x-rays were
performed for a wide parameter range of laser intensity, wavelength and
pulse duration for targets of various atomic numbers. The x-ray generation
efficiency (x-ray energy/absorbed laser energy) for soft x-rays, between 0.1 to
1 keV of energy, reaches the high value of 80% for a gold target irradiated
with a 263 nm laser pulse of the order of 1 ns duration.

Since for high-Z materials a significant part of the laser energy is converted
into x-rays, the transport of these x-rays plays an important role in these plasma
media. In this section the transport of energy by radiation is analysed. The
radiation can be treated classically by electromagnetic fields or quantum
mechanically by the description of particles called photons. The equation of
radiative transfer can be generally stated as the conservation of a physical quan-
tity X (such as the number of photons or the energy density) with a given
frequency v and direction €2 in an arbitrary volume ¥ bounded by a closed
surface ¥. Schematically this statement can be written in the following way:

change of X (v, Q) = X (flow out of volume V' via surface 3)
+ X (absorption in the volume V)
+ X (scattering ‘out’ from (v, Q) to (v, Q') within V)
+ X (scattering ‘in’ from (v, Q) to (v, ) within V).
(2.64)

There are many ways to formulate quantitatively this statement of radiation
transport (Zeldovich and Raizer 1966, Pomraning 1973, Mihalas and Mihalas
1984, Minguez 1993). We shall follow the simplest approach given by
Zeldovich and Raizer. For this purpose we introduce a variety of quantities
usually used to describe the radiation energy transport.

The wavelength X or the frequency v (at which the electromagnetic fields
oscillate) characterizes the radiation that can also be considered as photon
particles with energy E, and momentum p,. A, v, p, and E, are related by
the Planck constant /# and the speed of light ¢:

¢ hv

)‘:77 El,:hl/, Pv
v c

(2.65)

The distribution function of the photon particles 1’ ([em ™3 s]), where fis a
function of the photon frequency v, the photon position r and direction €
at a time ¢, is described by

f(v,r,9Q,1)dvd*rdQ = number of photons with frequency v at (r,7) (2.66)

The speed of light in the plasma medium is equal to ¢/ng, where ny is the
index of refraction for photons with a frequency v and is given by

Vge 1/2
= (1-5 (2.67)
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where v, is the electron oscillation frequency in the plasma. In the domain of
the critical density, where the incident laser beam is reflected because it
cannot penetrate into higher densities, one has for a laser with photon
energy ~1eV and an x-ray photon ~100eV a refractive index ng =~ 0.99995.
Therefore, it is conceivable to assume that in the domain of the critical
density and lower densities the x-ray photons move with the speed of
light in vacuum. Hence, one can define the spectral radiation intensity 7,
[erg/cm?®] as the radiation energy per frequency between v and v+ du,
crossing a unit area per unit time in the direction (2, within the solid angle
dQ, by

L(r,Q, ) dvdQ = hwef (r, @, 1) dv dQ, ]Lrirzg J - JI,,(]',Q, 1) dv.

(2.68)

The radiation field is defined either by f or by 7, (both scalar quantities). Two
more useful functions are defined in order to describe the radiation transport,
the spectral energy density scalar U, [erg - s/cm3] and the spectral energy flux
vector S, [erg - s/cm2]

U,(r,t) = lJ[,, dQ, Ulerg/cm’] = J U,(r,t)dv
c
N (2.69)
S,(r,f) = JIUQ dQ, Slerg/cm’] = J S,(r,t)dv, J dQ =4n
0

where € is the unit vector in the direction of the photon motion.

In a state of thermodynamic equilibrium, the number of photons in a unit
volume emitted per unit time by the medium in the interval (dv, dQ?) is equal
to the number of absorbed photons in the same interval. The equilibrium
radiation field is isotropic and depends only on frequency and the medium
temperature 7. In this case the Planck functions are given for the spectral
radiation intensity /,, [erg/cm’] and the spectral energy density scalar Uy,
[erg - s/cm’]:

cU,

_ %Y
P 4y

8mhy’ hv -1
0o = (%) o (7)1

00 4
Uplerg/cm’] = J U,pdv = ( (TCSB> T
0

(2.70)

20k}

= Tspa = 5.6705 x 10> [ergi/(cm? - s - deg*)]

0SB
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where ogp is the Stefan—Boltzmann constant. The Planck function U, ,,, which
describes the energy distribution for radiative equilibrium, has a maximum at
a photon energy hvy,, = 2.822kgT. The isotropic equilibrium radiation
implies that the spectral energy flux vector S, is zero. However, it is possible
to define the one-sided spectral energy flux S,,, by integrating /,,, cos 6 (see
(2.69) and (2.70)) over a hemisphere, where 6 is the angle between {2 and

the flux vector direction:

2 7/2 ) cUp
Spp = Jo dg Jo dosin (1, cos 0) = 7l,, = —
(2.71)

Sp[erg/(cm2 -s)] = L Sypdv = osp T,

Before writing the transport equation, a few more variables have to be
defined. The emissivity j, (erg/cm’) describes the spontaneous emission of
the medium, and it depends on the medium atoms, the degree of ionization
and the temperature, but it is independent of the existence of radiation.
The spontaneous emission is defined by

7, dvdQ = [energy/(volume x time)] of spontaneous emission. (2.72)

In order to calculate the total emission of the medium one has to add the
induced emission, given by

2

1

J, (%) dvdQ = [energy/(volume x time)] of induced emission. (2.73)
1%

The term in the brackets is the number of photons in the same phase space
cell as the emitted photon (with a definite polarization). The total emission
is given by the sum of (2.72) and (2.73).

A transport equation in the form of (2.64) requires the knowledge of
absorption and scattering. This can be written in the form

k, 1, dv dQ = [energy/(volume X time)] absorbed or scattered
by the medium

1
Ry, = -—= njaw
I, Zj

where x, (cm™!) is the opacity (occasionally in the literature, the value
Ky/p (cmz/g) where p = density is defined as the opacity), the appropriate
mean free path is /, (cm), n; (cm %) is the density of particles of type j and
o,; is the appropriate cross section for absorption or scattering of the
processes under consideration, as described in figure 2.2. For example

(2.74)
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(More 1991), the inverse bremsstrahlung cross-section is given by

2Bra I \'? Iy
B, \ 3 H LaY 2 2
o (V) = (3\/§)(neaB) (kBT> (/w) Ziag

_2mem 1
Oé == =
he ~ 137.036
“ (2.75)
h
ap = ——5—20.529 x 10 *cm
4me m,

2
=S ~13.6eV
2HB
where Z; is the effective ion charge. For /hv=kgT =100eV and
ne = 10* cm ™ one gets a cross section of 4.34 x 10*252i2 (cmz).
For a hydrogen-like atom the photoelectric cross-section is given by
(Zeldovich and Raizer 1966)

4 4 3
o oA em Z; % ~79x%10°'8 7”2 £y [em?]  for hv > I,
op (v) = 3V3hoen® ) v Zi ) \hv
. for hv < I,

(2.76)

where I, = I/ n” and n is the quantum level of the electron.

Finally, combining equations (2.72), (2.73) and (2.74) with ‘the change’
(in an equation like (2.64)) given by the total derivative of the intensity with
respect to time, one gets the transport equation

1 (oI, . 1,
p (E + Q- VI,,) =, (1 + W) — k. (2.77)

Since the value of j, does not depend on the character of the radiation, but
is a property of the medium under consideration, one can estimate this
quantity in a thermal equilibrium system. In thermal equilibrium the ratio
of the spontaneous emission to the absorption is a universal function of
the frequency and temperature and is given by (see section 1.1)

j, 2 hv hv
=2 exp __kBT =1,|1 —exp _kB—T
Jv =Kyl (2.78)

_— 1—e¢ _ﬂ
Ky = Ky Xp T/ |

Equation (2.78), known as Kirchhoff’s law, is based on the general law of
detailed balance between emission and absorption of a physical process,




Debye Length 33

where 7 is the temperature of the medium. For this equation to be valid, it is
not mandatory for the radiation to be in equilibrium with the matter, but it is
required that a local temperature can be defined for the atoms and ions of the
medium.

Substituting (2.70) into (2.78), one finds that the right-hand side of
(2.77) equals j, — k,{1 —exp|—hv/(kgT)]}1,. Using again the relations
(2.78), the transport equation (2.77) can be rewritten as

ol,
cot

Integrating this equation over the solid angle and using the relations (2.69)
and (2.71), one gets another equivalent form of the transport equation

ouU,

—L4+V-S, = cx, (U,

5 + cky(

This transport equation describes the radiation energy conservation of a
frequency v. In order to use this equation the matter of the medium
should be in local thermodynamic equilibrium (LTE).

+Q-VI, = k,(I, — 1) (2.79)

o= U,). (2.80)

2.5 Debye Length

In plasma the Coulomb interaction range is reduced due to the screening
effect. In order to calculate the screening scale length, called the Debye
length and denoted by Ap, imagine a charge Ze at rest at the origin of the
coordinates surrounded by plasma electrons. The vector position from
the ion is given by r. The plasma system is neutral, i.e. one can look at
the ions as a neutralizing background for the plasma electrons having a
temperature 7.
The equation of motion of the electron fluid in this case is given by

neeE + VP, =0 (2.81)

where E is the electric field and P, the electronic pressure. Assuming an ideal
gas equation of state

P, = n.kyT, (2.82)
with a constant electron temperature, 7., and defining the electrostatic
potential ¢, E = —V, one gets from the electron equation of motion (2.81)

n.eVo = kgT,Vn, (2.83)

the following electron distribution

e
ne = Nge EXP (kBT ) (2.84)
€
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where 7y, is initial uniform density of the electrons. The electron potential ¢
is obtained by solving the Poisson equation (in c¢.g.s. units):

V2 = —4nZeb(x) + 4re(n, — nge) (2.85)

where 6(r) is the Dirac function and it takes care that for r — 0, ¢ — Ze/r.
Substituting (2.84) into (2.85) and expanding the exponential for
ep/(kgT,) < 1, one gets the differential equation

1
<V2 - E) @ +4rZed(r) =0 (2.86)
c
where the electron Debye length Ap, is
kgT. \'/* T.(eV) \!/?
Moo = (KBTI ) ¢ qgn(TeleV) VT (2.87)
4me’ng, nge(cm™>)
The solution of equation (2.86) is
Ze r
=— - . 2.88
i r =P < >‘De> ( )

This solution shows that the screening effect, namely the Coulomb interac-
tion 1/r law of the electrostatic potential, is changed according to equation
(2.88), implying that the effective infinite range of the Coulomb interaction
is shortened to a distance of the order of Ap..

At this stage let us compare the characteristic lengths of a plasma
medium with the Debye length Ap.. In discussing the binary collisions
between charged particles, the closest approach was introduced, i.e. (2.32).
For an ion with a charge Z = 1 one has

_l44x10”’

lea(cm) ~ T(eV) (2.89)

The cross section for close collisions between charged particles is of the order
of 72,; therefore the mean free path /, equation (2.19), is of the order of
T(eV)?

1 12
/ =—= ~489 x 10" ——=-. 2.90
(cm) no  nwl2, x n(cm=3) (290)

Taking the scale of length as the average distance between charged particles,

ay = n71/3, we get

A / -1/2 / 1/4

De ~0.29 (—) ~ 0.50(—) . (2.91)
do ao do

For example, for a laser plasma interaction with n = 10! cm ™3, T'= 100 eV,
one gets ay = 10.0 x 105 cm, \p/ay = 2.37, I,y /ag = 0.014 and //a, = 490,
so that in this case / > A\p > ay > [,.
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Another scale length is introduced by the gyro motion of charged
particles in the presence of a magnetic field B. The electron gyroradius r.,
known as the Larmor radius, is given by

MV, C

T.(eV)'/?
p = eV g 3g TeeV)
eB B(gauss)

[cm]. (2.92)

The evaluation of the right-hand side of (2.92) was done with v, equal to the
thermal velocity. In the above numerical example, the gyroradius r, is of the
order of the mean free path / for a magnetic field of about 0.5 megagauss
(MG), a value achieved easily in laser plasma interactions. For r, to be
equal to the Debye length, a magnetic field of 100 MG is needed.

Assume that, in a plasma with dimension L large in comparison to Ap.,
a local charge fluctuation is created or an external potential is introduced.
In this case the created electric fields are shielded for a distance smaller
than L. However, within dimensions of the order of Ap. the plasma is not
neutral and the electric forces do not vanish there, although the plasma is
neutral on the large scale, L > Ap.. This situation is described by saying
that the plasma is quasineutral.

The Debye shielding is effective only if the number of electrons in the
cloud surrounding the ion is large enough. If on average there are only one
or two electrons in a sphere with a radius Ap., known as a Debye sphere,
then the Debye shielding is not a statistically valid concept. Therefore,
defining the number of electrons, Np., in a sphere with a radius Ap. by

Npe = mnAbe (2.93)

the effective Debye shielding requires Np, > 1. Np, is usually called the
plasma parameter.

For example, in a typical plasma created in laser solid interaction with
an electron temperature of 1keV and an electron density of 10°! cm ™, one
has Ape = 7.5 x 1078 cm and Np, = 170. Note that the typical laser wave-
length );, of the order of 1 pm, is about 10* larger than Ap,.

For plasmas where the ion temperature, 7}, is not zero the ions also
contribute to the Debye shielding. The ion fluid equation of motion, similar
to equation (2.81), is

Zen;E — VP, =0 (2.94)
and the ion pressure, P;, is given by the ideal gas equation of state

Similarly, to the derivation of (2.84) for the ion distribution; one gets

Ze
n; = njp eXp (— kB—;) (2.96)
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The initial uniform ion density #;, is related to the electron undisturbed
density ny by

Ny = L. (2.97)
Instead of (2.86), the Poisson equation (2.85) yields the equation
1 1
<v2 abvaie F) @ +4nZed(r) =0 (2.98)
De Di

where Zep/(kgT,) < 1 has been assumed and the ion Debye length is

defined by
ksT, 1/2
Api = . . 2.99
Di <4ﬁe2ni0> ( )

In the solution of the Poisson equation (2.88) one has to substitute Ap, with
Ap defined by

1 1 1

i 4+ —.
Abi

e

2.6 Plasma Oscillations and Electron Plasma Waves

In this section the equations describing the plasma oscillations and the
electron plasma waves are derived from a set of very simple equations,
based on the hydrodynamic theory without a magnetic field in the plasma.
The plasma is assumed to be cold, that is, the plasma temperature is zero,
and therefore the thermal velocities of the electrons and the ions vanish. In
hydrodynamic theory this means that no pressure forces exist in the
plasma. Also, as is usually done with the simplest models, it is assumed
that the ions are a stationary background of charge which neutralizes the
unperturbed plasma at each point. In this case a perturbation is applied in
space only to the electrons and due to this disturbance an electric field is
created in the plasma. The question is how the electrons move in this case.

Although the mathematics of this model are quite simple, the solution
illustrates a general behaviour of the plasma. For this problem the following
Maxwell equation is of interest (in c¢.g.s.):

V- E = 4rp, (2.101)

where p, is the electric charge density related to the local current density
je, given in (2.38). The equation of charge conservation is given by (see
appendix A)

Ipe

je+—=-=0. 2.102
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Substituting into (2.102) the density current from (2.38), taking the time
derivative of this equation and using (2.101), one gets the following equation
for p.:

62 4 2
af; + ( ”;l ”e>pe —0. (2.103)

The quantity in the brackets of (2.103) has the dimensions of the square of an
angular frequency known as the plasma frequency wy,:

dnein \/2
Wpe = ( e ”> ~ 5.64 x 10* /n;  (rad/s) (2.104)

e

where the electron density 7, is given in cm . This result can be easily under-
stood in one dimension by considering a slab of plasma. A perturbation is set
up to displace the electrons through a small distance x in a direction normal
to the slab, while the positive ions are fixed and at rest (i.e. assuming an
infinite mass for the positive ions). This translation of the electrons induces
an effective surface charge density +#n.ex on the faces of the original slab
and —n.ex on the faces of the shifted electrons. The charge separation creates
a uniform electric field equal to 4men.x that applies a restoring force on each
electron. Newton’s law of motion gives a simple harmonic motion of the
electrons at the plasma frequency. From this picture one can conclude that
the mechanism of plasma oscillations is an expression of the plasma to
preserve its electrical neutrality.

Equation (2.103) does not describe a wave, that is, the oscillations do
not propagate. In order to get a wave the plasma should have a nonzero
temperature. We shall analyse the case where the electrons have a tempera-
ture 7, and the ions are at rest, i.e. 7; = 0. The two hydrodynamic equations
in this case are the mass conservation

0
iy, (neve) =0 (2.105)
ot
and the momentum conservation
v,
Melle | 5=+ (Ve - V)V | = —en.E — VP, (2.106)

where n, and v, are the electron density and velocity respectively, —e and m,
are the appropriate charge and mass of the electron, E is the electric field in
the plasma and P, is the electronic pressure. The relation between the
pressure and the temperature is known as the equation of state. The ideal
gas equation of state for the electrons in the plasma is

P, = nekyT.. (2.107)
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Moreover, an isentropic (constant entropy) equation for the ideal gas is
assumed with constant specific heats and a constant number of electrons

P, = Cn (2.108)

where C is a function of the entropy and is constant for the isentropic

process. The adiabatic exponent ~ is defined by
2

__8te (2.109)

Y 4

where ¢p and ¢y are the specific heats at constant pressure and volume respec-
tively and g is the number of degrees of freedom. In one dimension v = 3
(g = 1) while in three dimensions v = 5/3 (g = 3) for free moving particles.
From (2.107) and (2.108) one gets

Vn,

ne

VP, = ng( ) = kg T, Vn,. (2.110)

Equations (2.106), (2.107) and (2.110) are to be solved together with the
Maxwell equation

V -E = 4re(n; —n,). (2.111)

These equations are nonlinear and therefore it is not easy to get a solution in
the general case. However, if all the amplitudes of oscillations are small and
higher-order terms of the amplitude factors can be neglected, then the equa-
tions can be easily solved by the procedure of linearization. We denote the
equilibrium part by a subscript 0 and the oscillating amplitudes by the
subscript 1:

He = Mgy + M1y Ve = Voo + Vi, E=E,+E,. (2.112)

The equilibrium conditions for the simple model discussed here is
0
ngy = n; = const., Voo = 0, E, =0, E{neo,VeO,Eo} =0. (2.113)

As already mentioned, the linearization approach requires (1 /l’leg)2 <
(Me1/1e0)s (Ver - V)Vey < Ovgy /01, ete., therefore reducing equations (2.105),
(2.106), (2.110) and (2.111) to
8”61
ot

+ I’leov Vo = 0
m 8V61

¢ ot

V -E; = —4nen,.

(2.114)

= —¢eE; — kg T.Vn,,

For further simplicity a one-dimension model is assumed so that all variables
are functions of time ¢ and space x, and the adiabatic exponent is v = 3.
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Substituting a monochromatic wave solution with a frequency w and a wave
number k& = 27/ where ) is the wavelength

ne = nexpli(kx — wrt)]
Vep = vexpli(kx — wt)] (2.115)
E; = Eexpli(kx — wt)]
into (2.114), a set of linear algebraic equations is obtained
wn — nepkv =0
—iwmev + eE + 3ikkgTen =0 (2.116)
1kE + 4men = 0.

The solution of (2.116) is the following dispersion relation for the electron
plasma wave, known also as a plasmon:

W = w + 3K, (2.117)

The thermal velocity vy, in the one-dimension model is

[ky T,
Vg = k:T (2.118)
€

The two velocities related to the wave, the phase velocity v, and the group
velocity v, (the velocity that energy is transferred), defined by

w _dw
ko T dk

are connected to the thermal velocity by the dispersion relation (2.117)

(2.119)

Uo:

IR (2.120)

Laser light can interact directly with the plasma particles and also with the
plasma waves (Kruer 1988, Liu and Tripathi 1995). The plasma waves may
be of an electromagnetic nature, i.e. transverse waves, or of an electrostatic
or acoustic nature, i.c. longitudinal waves, like the one described above (the
plasmon).

In the presence of magnetic fields a large zoo of plasma waves are possible
(Stix 1992).

In a plasma state of equilibrium it is important to know what happens if
one of the plasma parameters is slightly disturbed. If the disturbance grows,
the plasma is unstable, while if the small disturbance decays and disappears,
the plasma is in a stable equilibrium. Plasma instabilities are classified in two
large categories: macroinstabilities are associated with a departure from
equilibrium of a large part of the plasma system, and microinstabilities are
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associated with small disturbances in the velocity of the plasma particles,
which can increase and cause the plasma to be unstable.

It is worth mentioning some of the colourful descriptive names given
to plasma wave instabilities: sausage, kink, banana, firehose, flute, inter-
change, two-stream, tearing, loss-cone, mirror, ion-acoustic, Brillouin,
Raman, parametric, two-plasmon, Rayleigh—-Taylor, Richtmyer—Meshkov,
Kelvin—Helmholtz, etc. We shall encounter some of these instabilities (in
bold letters) in the following chapters.

Every wave has its own dispersion relation, namely a relation between
the wave number k& and the frequency w described by some function
F(w, k) = 0. Denoting the plasma wave amplitude for any parameter (such
as density, temperature, electric field, magnetic field, pressure, etc.) by 1,
one can write

P ox expli(kx — wi)]. (2.121)

There are two ways to analyse the different domains of the dispersion relation
in w—k space:

(a) The wave instability in time at a given x. The solution of the disper-
sion relation F(w, k) = 0 may yield a complex frequency w = wg + iwy, where
wg and wy are the real and imaginary values of w. If w* < 0 then w; # 0, and
from (2.121) one gets

P o< exp(wit). (2.122)

For t — oo the amplitude ¢ goes to infinity for w; > 0, namely the domain in
w—k space where wy > 0 is unstable, and if the wave is ‘allowed’ to be there by
the dispersion relation then we get an instability.

The nonzero imaginary part of the frequency, wy, plays an important
role in the physical phenomenon of collisionless damping, known also as
Landau damping. This effect describes the damping of a plasma wave as it
propagates away from its point of origination, even though there are no
binary collisions in the plasma.

(b) If instead we want to know how a disturbance develops in space for
a fixed frequency, then one must solve F(w,k) =0 for k in terms of w.
A complex k = ki + ik; implies

1 o exp(—kyx) (2.123)

and for a very large plasma system with k; < 0 the amplitude 1 goes to
infinity for x — oo, and an instability arises.

2.7 The Dielectric Function

In this section it is shown that the plasma medium can also be described as a
dielectric medium with a scalar function e. In the general case ¢ is a tensor.
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The Maxwell equations are summarized in Appendix A. The plasma is
described there as a vacuum with electromagnetic sources, given by the
electric charge density p. and electric current density J.. In Gaussian units
the two Maxwell equations that include the sources are

10E 4
V- E=drp, V-B=-2"4+""g. (2.124)
cdt ¢
These equations are equivalent to the following two equations of a dielectric
medium:

J(eE)
or
The other two Maxwell equations are identical in vacuum and in a dielectric

medium. For simplicity we shall prove the equivalence of equations (2.124)
and (2.125) for the following sources:

1
V- (E)=0, V- B=- (2.125)

Pe = —en, + gny, J. = —en.v.. (2.126)

Equations (2.126) assume that the ions are stationary and serve as a charge-
neutralizing background (i.e. gny = constant) to the electron motion. More-
over, we assume a monochromatic electromagnetic field

E(r, ) = E(r) exp(—iwt), B(r, 1) = B(r) exp(—iw?). (2.127)
The electron velocity v, in the electric current is calculated from Newton’s
law:
Ov,

e .
B + VeV = — m—eE(’ ) exp(—iw?) (2.128)

where v, is the electron collision frequency, for example the electron—ion
collision frequency. The solution of (2.128) for constant v, is

vo(r, 1) = —ieE(r, 1)

AL (2.129)

Substituting this solution into the electric current density (2.126), one gets

2

=" 2.130
4m(w + iv,) ( )

J.(r,0) = ogE(r, 1), o il
where og is the (complex) electrical conductivity and w. is the plasma
angular frequency as defined in (2.104). Substituting J. and using
0/0t = —iw (note that this relation is correct only for linear equations)
into the second equation of (2.124), one gets the second equation of
(2.125) if the dielectric function of the plasma medium is defined by

wlzje 4oy
=1+ . (2.131)

w(w + iv) w

e=1-
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The proof of the equivalence of the first equation of (2.124) and (2.125) is
given as

V- (eE)=V-E+ V. [(e—1)E] =4mp.+V-[(e — 1)E]
2

4me 47
=4mpe — WV - (n.E) = 4mp. — EV - (—eneve)
B 4 B 47r Ope B
= 47p, in J. = <8t +V- J) =0. (2.132)

In the third equality, equation (2.131) and wﬁe x n, were used; the fourth
equality was obtained with the help of equation (2.129); the next equality
uses the current density definition; and the last step is the continuity
equation.

In summary, we have seen that a plasma can be described as a dielectric
medium with a dielectric function, as given in equation (2.131) (for the
electromagnetic sources of (2.126)).

Assuming a spatial dependence exp(ik - r) for the electric and magnetic
fields, one gets from Maxwell equations the following dispersion relation for
the electromagnetic field:

=5 & w=uwp+kc. (2.133)
C

In this case, the index of refraction for the electromagnetic wave propagating
in the plasma medium is given by

2.8 The Laser-induced Plasma Medium

The purpose of this section is to define some of the nomenclature used in the
following chapters and to get some orders of magnitude for the plasma systems
to be discussed. In this book we consider high-power laser irradiation, from
I ~10°W/em?® up to I, ~ 10° W/em?, with laser pulse duration between
7.~ 10ns and as short as 7y ~ 10fs. Practically, up to about I; A} ~
10 W/ cm?)pum’ has been experimentally achieved with the long laser
pulse duration (7 ~ 1ns), while values as high as I; \{ ~ 10 (W/cm?) pm?
have been achieved with the so-called femtosecond lasers (73 between 10
and 500 fs).

The maximum electric (E,,,,) and magnetic (By,y) fields of the laser in
vacuum are related to the laser irradiance /i (in Gaussian units) by

CEmax _ B

L =——=—"7-2= 2.135
L 8 8 ( )
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Figure 2.3. A schematic description of laser—plasma interaction.

and in practical units one has

1% N 0 IL 1/2
Emax |:<C_m>:| ~ 275 %10 (41016 W/sz)

1/2
Bax|Gauss] 22 9.2 x 10° (IL2> .
10' W /cm

(2.136)

For the long laser pulses a corona is created, while the laser—plasma system is
described schematically in figure 2.3. This figure is relevant for the long laser
pulses (typically ~1 ns). As an order of magnitude for low and high densities
in figure 2.3, the following values can give an indication about the plasma
systems: absorption domain: density <0.01 g/cm?, temperature ~1000eV (in
energy units); transport domain: density between ~0.01 g/cm® and the solid
target density py, temperature ~30eV to 1000eV; compression domain:
density ~ py up to 10p,, temperature ~1eV to 30eV.

The laser propagates up to the critical density n., about 10*' cm™ for a
laser with a wavelength of 1 um. Note that the critical density is inversely
proportional to the square of the laser wavelength

2
nfem =] = 1.1 x 10 <1§in) . (2.137)
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The plasma system from the critical density outwards (towards the laser
irradiation) is defined as the corona. The electrons in the corona absorb
the laser. The absorbed energy is transported from the critical density to
the area where the plasma is created, defined as the ablation surface in
figure 2.3. The blow-off velocity of the plasma (towards the laser) is about
equal to the sound speed ¢t (at constant temperature) at the critical density

7k Te 1/2 7 1/2 Te 1/2
ublow_off[cm/s] X = < n}; > ~ 3 X 107 l:(;) <keV) :| (2138)

and the size of the corona is about few times ¢y7. Therefore, for the femto-
second laser pulses the corona is extremely small, and practically it does not
exist. In this case the laser is absorbed in the skin depth 6 of the solid target

) 103 em—\1/2
5=~ 1.68%x10° (0&) fem). (2.139)

wp e

For high laser irradiance, I; \{ > 10" (W/cm?) pm?, two (or more) types
of electrons are produced: the ‘cold’ electrons, with a temperature 7, of
the order of 1keV; and the ‘hot’ electrons, with a typical temperature
Ty > 10keV. Occasionally the situation is more complicated since a local
thermodynamic equilibrium for the electrons cannot be defined for the two
species of electrons (‘cold’” and ‘hot’). The ‘cold’ electrons carry energy
away from the point of absorption by the diffusion process (thermal conduc-
tion). The ‘hot’ electrons deposit their energy ahead of the thermal conduction
front induced by the ‘cold’ electrons, causing ‘hot’ electron preheating. For
LA > 10" (W/em?) pm? the transport of energy inside the undisturbed
target seems to be inhibited in comparison with the classical diffusion
process.

There are a few kinds of pressure in laser produced plasma. First, the
light pressure P caused by the direct laser radiation

Iy Iy
Pr=—(1+R %3.3Mbar<7> 1+ R 2.140
e T RSURCRY

where R is the laser reflectivity (0 < R < 1) and c is the speed of light. One
can see that for very high laser irradiance, of the order of 3 x 10'® W/cmz,
one can get a radiation pressure of 1Gbar, an extremely high pressure.
One of the effects of Py is to steepen the density gradient near the critical
density.

The second kind of pressure in the corona is the thermal pressure of
plasma particles: the ‘cold’ electron pressure P., the ‘hot’ electron pressure
Py and the ion pressure P;, associated with the different temperatures 7,
Ty and T; accordingly. The two electron temperatures are obtained if the
electrons in the corona have two distinct velocity distributions. To a good
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approximation, the ideal gas equations of state may be used, namely

n T.
P. = T.~ l.6Mbar| ——— | [ —
e = nekp T 6 bM(loﬂ cm3> (keV)

Py = ngkg Ty
Pi = nikBTi.

(2.141)

The third kind of pressure is the ablation pressure P, associated with the
flow of heated plasma from the solid target. The ablation pressure drives a
shock wave into the solid target and causes it to compress. The inhibition of
energy transport and the creation of ‘hot’ electrons reduce the value of the
ablation pressure. A very important feature related to the ablation pressure
is related to hydrodynamic instability. Since the ablation pressure acts by
a lower density (hot plasma) on a higher density (cold plasma), the
Rayleigh—Taylor instability occurs.

Between the critical and the ablation surfaces the plasma might be
strongly coupled. In ideal plasma, like in the corona, the Coulomb inter-
actions are weak in comparison with the thermal energy. Defining the ratio
between the Coulomb and thermal energies by T,

_ Coulomb interaction energy
~ Thermal interaction energy

{F > 1 for strongly coupled plasmas } (2.142)

I' < 1 for ideal plasmas

It is convenient to use the mean spacing between particles by the radius of the
sphere that each particle occupies:

3 \1/3
a, = ( ) , k=ecori. (2.143)

47Tl’lk

The strongly coupled parameters, I'; for ions (with a charge Ze), T, for elec-
trons and I'; for the electron—ion coupling, can be defined by
22 2 2
AN L S U (2.144)
aikB Ti aekB Te aekB Te
In ideal plasma, unlike in strongly coupled plasma, a large number of
particles participate in the screening, namely many particles are in the
Debye sphere. In a strongly coupled plasma the electrons are degenerate
(like in a solid) so that the Fermi—Dirac distribution describes the electrons,
while the ideal electrons in plasma are described by the Maxwell distribution.
A good review of strongly coupled plasma can be found in More (1986).
Last but not least, for very high laser irradiances relativistic effects might
become important. In the relativistic regime, the relativistic factor - is related
to the quiver energy E, and the quiver velocity vy of the electrons (in the
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electromagnetic field of the laser) by

Ey = Mt = [(fymevq)zc2 + m2cY)

eEL
Vq =
MWy,
o — 27T)\L
L= .
4

Using (2.135) we get

12

(2.145)

iy iy
y=(l+——= ~ (14 T 3 D
D 1.4 x 10" (W /cm?) pm

w=(5)"5 el

(2.146)

Therefore, the relativistic effects for the electrons are important for

LA > 10" (W/em?) pm?.



Chapter 3

The Three Approaches to Plasma Physics

There are three basic approaches to plasma physics: the hydrodynamic theory,
the kinematic theory and the particle theory. The particle theory approach is
using the equations of motion for the individual plasma particles, and with
the help of particle simulation codes and appropriate averages the plasma
physics is analysed. The kinematic theory is based on a set of equations
for the distribution functions of the plasma particles, together with Maxwell
equations. In the hydrodynamic model the conservation laws of mass,
momentum and energy are coupled to Maxwell equations. In addition, for
a fluid model, a local thermodynamic equilibrium is assumed and the knowl-
edge of the equations of state (relations between pressure, temperature,
energy, entropy, etc.) is mandatory for solving the problem.

3.1 Fluid Equations

3.1.1 Mass conservation

We define p(r, 7) as the mass density and u(r, 7) its velocity for a mass element
positioned at r at time 7. Denoting the differential volume and surface vector
by dV and dA accordingly, the mass conservation can be written in an
integral form by

QJ pdV—!—J) pu- dA = 0. (3.1)
ot )r S

The first term, the change of mass in a volume I, is balanced by the mass flow
across surface S enclosing the volume I' (the second term). Using Gauss’
theorem, one gets for equation (3.1)

%erdV+JFV~(pu)dV:O. (3.2)

47
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Since the last relation is true for any arbitrary volume I', one obtains the
following equation (known also as the equation of continuity) which describes
the conservation of mass:

Op

EJFV. (pu) = 0. (33)

3.1.2 Momentum conservation

It is convenient to consider the frame of reference of a moving volume whose
surface encloses a constant amount of fluid. This fluid mass pdV, called a
“fluid particle’, has a vector velocity u. D/Dr¢ describes the change in time
(total derivative) of a moving fluid volume and is related to the partial time
derivative by

D 0

—_—=— - V. 3.4

Dr ot u (34)
Denoting the surface forces by a tensor f, with dimension of (force/area), and
the volume forces by a vector F, with dimensions of (force/volume), one can

write Newton’s second law as

D
J p—“dV:j@ f~dA+J Fdv. (3.5)
r Dt S r
Neglecting viscosity, the tensor f is given by

where P is the pressure and i,/ = 1,2, 3 denotes three orthogonal directions
in space, e.g. x—y—z directions. The first term on the right-hand side of (3.5)
can be transformed into a volume integral by using Gauss’ theorem

3
oP
iZﬁ-jdAjf —jESPdA,»f—L%dV. (3.7)

o j:1
Using this relation in (3.5), one gets
D
J p=2 dV:—J VPdV+J Fdv. (3.8)
r Dt T T

Since the last equation is satisfied for any arbitrary volume I', the following
differential equation is valid:

u

—=-VP+F. 3.9
oy + (3.9)
Using (3.4) the momentum conservation equation is derived in the form
suggested by Euler:

Ou

pa—kp(u-V)u: —VP+F. (3.10)
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The volume forces F are acting on the fluid and differ from one problem to
another. For example, the electromagnetic force due to the motion of free
charges is equal to (in m.k.s. units)

F=pE+JxB (3.11)

where E and B are the electric and magnetic fields respectively, J is the sum of
the current flow due to the transport of charges and p, is the electric charge
density. In a similar way, the polarization force, the magnetization force, the
gravitational force or any other force acting on the volume elements can be
taken into account.

3.1.3 Energy conservation

The energy conservation (units of [energy/second]) in the frame of reference
of the moving fluid element is
2
[P v+ | pREar = ut Ot We s W (312)
r Dt r Dt

The first term and the second term on the left-hand side of the equation are
the rate of change of the kinetic energy and the internal energy accordingly. ¢
is the energy of the fluid per unit mass (energy/mass). The increase of the fluid
particle energy (left-hand side of the equation) is balanced by the external
energy sources Q. the heat conduction Qy, the work per unit time done
by the volume forces W, and the surface forces W;. The rate of work
done by the surface forces is obtained by integrating u - f over the surface
of the fluid particle. Neglecting viscosity, one gets

Wf:jﬁ u-f- dA:_jﬁ Pu.- dA:—J Vo(Po)dr.  (3.13)
S S T

Again, Gauss’ theorem was applied in the last equality. The rate of work
done by the volume forces is

WF:JFF-udV. (3.14)

The energy entering the fluid particle per unit time by heat conduction is
QH:JFquV:fJFV~(nVT)dV. (3.15)
The rate at which external energy enters the fluid particle depends on the

system under consideration. In particular for the electric (Ohm) deposition
of energy

Qext:J qexth:J E-JdV. (316)
r r
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Substituting (3.13)—(3.16) into (3.12), one gets

D
pﬁ(a—i-%uz)—i—v-(Pu)

—F-u—V:(kVT)+E-J cnerey . (3.17)
volume x second

Using (3.4), the first term on the left-hand side of (3.17) is

0
(e + 1)+ pu- V(e +1u)

2

pﬁﬂ
ap

T V- [pu(e + 1))

0
=5, (e +3pu) = (e + 300)

— (e + 1)V - (pu)

0
za[p(e—k%uz)]—kv-[pu(s—{—%uz)]. (3.18)
The mass conservation (3.3) was used to obtain the last relation. Substituting
(3.18) into (3.17), the differential equation that describes the energy conser-
vation is derived in its known form:

%[p(s +1)+ V- [pu(e +1u’) + Pul=F-u—-V-(kVT)+E-J. (3.19)
The differential equations describing a fluid system are: mass conservation
(3.3), momentum conservation (3.10) and the energy conservation (3.19). For
these equations one has to define initial conditions and boundary values.
Moreover, it is necessary to know the relations between p—P-T—¢, known
as the equations of state. Furthermore, the knowledge of the transport
coefficients such as x is required. Last but not least, for a plasma system
the fluid equations are coupled to the Maxwell equations (given in Appendix
A) since the volume forces F and also the pressure may be a function of the
electromagnetic fields. For the external energy deposition we took the Ohmic
heating term, E - J; however, for a laser plasma system this source of energy
might need a ‘special treatment’.

The fluid equations for the laser-induced plasma system are given below.
We consider the general case where the electron temperature 7 is not equal
to the ion temperature 7;. The ideal equations of state are taken separately

for the ion fluid and the electron fluid, i.e.
Pe = nekB Tev Pi = nikB Ti (320)
Ee :%nekBTea Ei :%nikBTi

where m,, m; and v,, v; are the masses and the velocities of the electron and
the ion accordingly, and n; and E; (j = e or i) are the particle and the energy
densities. The fluid equations (3.3), (3.10) and (3.19) for the electrons and the
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ions are obtained by using the definitions of the densities p; = m;n; and
g; = E;/p; for j = e or i for the ideal equations of state.

Moreover, the following assumptions are used in deriving the two fluid
energy equations:

(a) The electron fluid is coupled to the ion fluid through the electron—ion
collisions described by the term (7, — T3).

(b) The volume force is given only by the electric field in the plasma E.

(¢c) As usually happens the external source term (energy/(volume - time)),
denoted by ¢;, contributes only to the electron fluid, i.e. the electrons
absorb the laser energy.

(d) Since the ion is much heavier than the electron only the electrons do the
heat transport.

(e) Ideal gas equations of state were taken for both fluids (see (3.20)).

The two temperature fluid equations are

on on;
e . = _1 c(nv:) = 3.21
Ot + V- (neve) =0, ot + V- (myvi) =0 ( )
M, (aav; + (Ve V)ve) =-VP, —enE
(3.22)
8vi
n;n; (E + (Vi . V)Vi) = —VPi + ZeniE
o (3 meve 5 Mevs
E_ne(szTe—F B ):| —|—V {neve(szTe—F 2 ):l
=qL — ’7<Te - Tl) - eneE've -V ("{VTe)
- i i (3.23)
a [ 3 n; vy 5 m;v;

=T~ Ti) + eniE - v;.

Equations (3.21) describe the mass conservation, (3.22) the momentum
conservation and (3.23) the energy conservation. It is worth mentioning
that both m.k.s. and c.g.s. units can be used (in a consistent way) in equations
(3.23). If a magnetic field is introduced, e.g. in the momentum equation,
then E—E+vxB in mk.s. and E— E+vxB/c in c.g.s. units. The
fluid equations are coupled to the electromagnetic Maxwell equations.

3.2 Eulerian and Lagrangian Coordinates
The fluid equation variables (velocity, pressure, energy, entropy, etc.),

described by functions of space coordinates and time, are called the Eulerian
coordinates. In contrast to the Eulerian coordinates, which determine the
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fluid variables at a given point in space for all times, the Lagrangian
coordinates describe in time the fluid variables of a given fluid particle.
Mathematically the time derivative in Lagrangian coordinates is equal to the
total derivative D/D¢, which is related to the usual Eulerian time derivative
0/0t by equation (3.4) (V is the usual Eulerian space derivative). The
Lagrangian coordinates are useful in general for problems with plane, cylind-
rical or spherical symmetry. The fluid particle is described either by its position
at time 7 = 0 or by the total mass from the first particle to the particle under
consideration. In a one-dimensional plane geometry with Eulerian coordinates
(x, 1), the Lagrangian coordinate « or m is defined by
B ’* 0 0 p 0

mpoa—Llpdx, 8x_p8m_p0 Oa’
The following notation is used here: u is the fluid velocity, p is the density
related to the specific volume V' = 1/p, m is the mass of a column of fluid
of unit cross-section in plane geometry and P is the pressure. The first fluid
particle is located at x; and the fluid particle under consideration is located
at x. The initial density is defined by py = p(x,7=0). For the following
Eulerian mass and momentum conservation (Newton second law) the
appropriate Lagrangian equations are given:

(3.24)

- o 0 B Ou Ou  10P

Eulerian: 5 ox (pu) =0, o T4 p Ox (3.25)

Loeranaian: 2V O ou__op |
agranglan: a _om’ ot om’

Note that in one dimension with a planar geometry, m has the dimensions of
(mass/area). The x coordinate does not enter explicitly in the Lagrangian
equations and therefore the Eulerian position x of the particle is obtained
from the Lagrangian solution V (m, ¢):
m

x(my 1) = Jo V(m,t)dm + x;. (3.26)
We end this section with a set of equations (a model) in a Lagrangian
coordinate describing the laser—plasma interactions with two temperatures,
the electron temperature 7, and the ion temperature 7;, where T, # T:.
The density of the fluid is p = n;m; (since n.m, < n;m;) and its velocity is u.
The two temperatures (7, T;), the two appropriate pressures (P., P;) and
their associated energies (E., E;) (energy/mass) are related by the equations
of state, e.g. (3.20). In this model we have one equation for the mass
conservation, one equation for the momentum conservation and two
energy equations, one for electrons and one for ions. The electrons absorb
the laser energy and they also transport the heat energy. The two physical
quantities describing these phenomena are the /; and the heat energy flux
1., both with dimension of (energy/(area-time)). There is a coupling
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energy term between the ions and the electrons proportional to 7, — 7;. The
fluid equations of this model, in Lagrangian coordinates, are

oV Ou
9t Om
Ou  O(P.+P;)
5‘t+ om N

(3.27)
OE, _ ou oI 0l

o e om = am om 8T~ T0
8Ei ou
ER +Pi%—g(Te_Ti)-

The dimensions of the above equations are: (energy/(mass - second)) for the
energy equations, (length/second’) for the momentum equation and
(length® /(mass - second)) for the continuity equation. The energy equations
in (3.23) have the dimension of (energy/(volume -second)) and therefore
have to be divided by the density p in order to obtain the energy equations
in (3.27). For example, the values of the electron ion energy coupling in
(3.23) and (3.27) are related by g = v/p.

We end this section with a generalization of equations (3.25) for
problems with plane, cylindrical or spherical symmetry. One fluid is assumed
where the body forces, heat conduction and energy sources are absent. In
the following equations, r denotes the spatial coordinate: r = x for plane
symmetry, > = x> + y2 for cylindrical symmetry, and > = x> + y2 + 22 for
the spherical symmetry, and u = dr/0t.

L o o p () B Ou Ou 10P
Bulerian: 5t T i o 0 e e T 0
L A1) ou 0P
Lagrangian: TR w—— 0, 5 4 o 0.
(3.28)

Equations (3.28) describe the mass conservation and the momentum
conservation for the following cases: kK = 1 for plane symmetry; k = 2 for
cylindrical symmetry; and k = 3 for spherical symmetry.

The energy equation for the above fluid is

OE  9E P 9(F 'w)

Eulerian: - tuo =0
ot or  pi or (3.29)
OE oV
L iani. —+P—=0
agrangian ot + o

and as usual, the knowledge of the equations of state P = P(E, p) is needed in
order to solve the problem.
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3.3 ‘Femtosecond’ Laser Pulses

The word ‘femtosecond’ stands for very short laser pulse duration or, more
accurately, the laser—target interaction is during a time so short that the
hydrodynamics are not important. For example, for a 50fs laser pulse the
plasma motion is about Ar ~ ¢,At &~ 10° (cm/s) - 5 x 107'*(s) = 5 A, which
is much smaller than the laser penetration (skin) depth 6 ~ ¢/w, ~ 100 A
(where 1A =10"%cm). ¢, and ¢ are the speed of sound and the speed of
light accordingly and wy, is the plasma frequency for a solid density. It is
conceivable to assume in this case that during the laser—target interaction
the solid target density does not change and the flow velocity is negligible.
Therefore, during this short time the system is described mainly by the
energy equations.

In a metal irradiated by fs-laser pulse the temperature 7, of the
electrons in the conduction band and the temperature 7; of the ion lattice
(i.e. of the phonons) can differ by orders of magnitude. The reason for this
effect is that the electrons absorb the laser energy and the relaxation time
for electron—ion collision is much larger than the laser pulse duration. This
happens because the heat capacity of electrons is significantly smaller than
the heat capacity of the lattice. In the following we assume that 7, and T;
are well defined. If the laser spot (x—y direction on the target) dimension
is much larger than the energy deposition (z direction) depth, then one
has a one-dimensional problem and the energy equation (3.19) for the
electrons and the ions are (Anisimov ef al. 1974)

o1, 0 oT, |
Cur) 5 = g (TG ) ~ U(T T + 00 .
T, '
G(Ti) -, = U(T., T}).

The dimension of these equations in c.g.s. units is (erg/(cm?®s)). C, and C; are
the electron and ion heat capacities (dimension (erg/(cm’®K))), « is the
electron heat conductivity (dimension (erg/(cms))), U is the energy transfer
rate from electrons to ions and can also be written as

U=~(T, - T) (3.31)
and Q is the laser energy deposition rate that can be approximated by

0(z,1) = Al (1) %exp ( 2?2) (3.32)

where A} is the absorbed laser irradiance (dimension erg/(cm2 s)), A is the
absorption coefficient and ¢ is the skin depth.
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C. and C; are derived from knowledge of the equations of state (Eliezer
et al. 1986):
242
T nkpT,
C.(low) = —=B2¢ for kT, < F,
e( ) 2EF Ble F (333)

C.(high) = 1.5kgn, for kyT, > Ex

where Ef is the Fermi energy (equals about 11.7 eV for aluminium), ky is the
Boltzmann constant and #, is electron density (equals about 1.8 x 10> cm ™
for solid aluminium). C; can be approximated by the Dulong—Petit law

Ci = 3ani (334)

where the ion density satisfies n; = n./Z, and Z is the number of ionized
electrons, including the number of electrons in the conduction band (Z =3
for aluminium).

In order to calculate U and « as functions of 7, and 7;, one has to
take into account the electron—phonon interactions, as explained in
section 5.7.

3.4 Boltzmann—Vlasov Equations

The fluid theory given in previous sections, which is considered to be the
simplest description of a plasma system, is a good approximation for many
phenomena in laser—plasma interaction. However, the fluid model is not
always adequate. All the variables (including the fluid velocity) in the fluid
equations are functions of time and position, and each species in an LTE
plasma has a Maxwellian distribution of the velocities everywhere. Physical
quantities such as temperature and pressure can be defined only in local
thermal equilibrium (LTE). Systems that are not in LTE cannot be described
by fluid equations. For example, in a laser plasma corona LTE is not always
satisfied, and in this case the fluid model is not suitable.

3.4.1 Liouville’s theorem

For a very large number of interacting particles, as in a plasma system, a
statistical description is required. In this case the starting point is the phase
space of the particles: ¢, pr, kK = 1,..., K, where the ¢, are the coordinates
for all the degrees of freedom and the p, are the corresponding momenta. N
identical particles with s degrees of freedom for each one satisfy K = sN.
The fundamental physical quantity is the probability density F(qy,py,1?),
where Fdqy,..., dgxdpy,..., dpg is the probability of finding the system at
time ¢ in the phase space domain (qi,q, +dq;),(pi,p1 +dpy),...,
(9x,q9x +dqx), (Px,px + dpk). By analogy with the continuity equation in
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the fluid theory, the conservation equation for the probability density is

oF & 8(F‘1k,t) & 3(Fpk.’,)7
EJF,C; 94 +,; o8 -0 533

where ¢;, and p;, are the time derivative of ¢; and p, accordingly. The

system is described by a Hamiltonian H(qy, py, 1), satisfying the following
equations of motion:

_OH _ OH

Qi = apk7 Pyt = aqk .

From these equations one gets Jqy ,/0qx = —Opi,/Opi (= 6‘2H/8pk Aqy).
Using this result in (3.35) the Liouville theorem is obtained:

K
ZCIkr ZP/uaF br =0 (3.37)

where D/Dt is the time derivative in the frame of the appropriate phase space
element (i.e. moving with the phase space element). From the Liouville theorem
one can conclude that F is invariant (i.e. F' = constant) on a phase space
trajectory of the system. From this theorem the basic assumption of statistical
mechanics is justified, namely that equal volumes of phase space have equal a
priori probability. However, for non-LTE processes a general solution is
equivalent to solving the equations of motion for all the particles (i.e. solving
(3.36)), a task that is usually impossible (and if possible it is useless) for an
extremely large number of particles, e.g. of the order of Avogadro’s number
(~10%). In this case approximations of the Liouville equation are required.

(3.36)

3.4.2 Vlasov equation

For identical particles the phase space of a single particle is considered
instead of the phase space of all the particles. We use the Cartesian co-
ordinates [x = (x,y,z),v = (vy,v,,v.)], where x and v are respectively the
position and the velocity of a particle. A function f(x,v,7) is defined
to replace the probability density of the whole phase space F. In this
approach, fd’xd’v is equal to the number of particles in the domain
[(x,x 4 dx), (v,v +dv)]. For the electron and ion particles in the plasma,
two (or more, if there are many species of ions) distribution functions f;,
for j = e or i, are defined to describe the electrons and the ions accordingly.
In analogy with the Liouville theorem (3.37) the distribution functions f;
satisfy the equations

(v V)it (a-Vy)f=0 (3.38)

g 0 0 0 0
V(aaﬂ& VV(avx’av}mav)a (3.39)
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where v is the velocity and a is the acceleration. For an electromagnetic field
the equations of motion are (in c.g.s.)

dx dv ¢ vxB

where ¢ and m are the charge and mass of e or i. Equations (3.38) coupled to
Maxwell equations are known as the Vlasov equations. The statistical content
of the Vlasov equations is expressed by assuming that f; is a smooth function
(i.e. differentiable) describing an average quantity over a phase space volume
d®x d*v containing a large number of particles. The electromagnetic fields, E
and B, are also ‘local’ smooth averaged quantities. In this picture f; is
regarded as a density of a continuous ‘fluid’ in phase space. The force
acting on any plasma particle, describing the effect of all the other particles,
is assumed to be a continuous and slowly varying function of space. This is a
good approximation only if the collective effect is larger than the ‘direct’
collisions with nearby particles; therefore, the Vlasov equations are consid-
ered to be ‘collisionless’. If the ‘direct’ collisions are important then the
Vlasov equations (3.38) are replaced by the Boltzmann equations.

3.4.3 Boltzmann equation

Taking short-range collisions into account, equations (3.38) are replaced by

%,

ot

e+ @ vg = () (.41)

The collisions are described formally by the term (9f;/01).. One of the
simplest models for the collision term, known as the BGK (Bhatnagar,
Gross and Krook 1956) model, is given by

<8]§) Z —fi) (3.42)

where f; is assumed to be a Maxwellian distribution in velocity space and v;
is an empirical collision frequency taken as a constant in the simplest model.
—Vjfj represents the rate of loss of particles in the phase space under
consideration described by f;, while vy f; is the rate of gain. v is proportional
to the particle density 7y, therefore vy = Cyny and Cy = Ck,

The BGK model is appropriate for collisions between charged and
neutral particles. However, this model is not a good approximation for
collisions between charged particles (the Coulomb interactions) since the
collisions are not predominantly binary. In the Coulomb interactions,
the cumulative effect of many small collisions between particles at large
distances is more important than a nearby binary collision. The major
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contribution to (9f;/0t). comes from electron and ion collisions within the
Debye sphere (radius Ap) and not from the colhslon of nearby particles (at
the distance n; -1/ 3), for plasmas where \p > n/ Suppressmg the subscript
Jj of the distribution function, the following Fokker—Planck collision term is
appropriate (see section 9.4):

(%): - iaé;, [ Fif + 223 Dy f) ] (3.43)

where F; and D;, are the friction and diffusion ‘coefficients’ respectively. The
subscripts i and k denote the x—y—z components in Cartesian coordinates. In
general, these ‘coefficients’ are not only functions of (x,v,?) but also of f
itself. For simplicity it can be assumed that

Fi=—v(v; — u), Dy, = Dby, (3.44)

where u is the local drift velocity, D is the diffusion coefficient and v is a
constant describing the effective collision frequency.

3.4.4 The moment equations

In this section we suppress the subscript j on the distribution f;; however, it is
understood that the following equations and relations are obtained for each
species of the plasma particles (e.g. electrons and ions). The moment (Q) is
defined by

(0) = jQ(vmx, o,1) d% (3.45)

where the distribution function f'(x, v, f) is given by the Boltzmann equation,
which we rewrite in the following way (equations (3.40) and (3.41)):

U] <E+VXB>-Q=<Q>- (3.46)

ot ox c ) ov \or).

For example, for Q =1, v and *, the moments correspond to the
macroscopic quantities of density, momentum and energy respectively. For
O = equation (3.46), the zero moment, one has to average the equation
over the velocity in order to obtain the continuity equation (mass conserva-
tion). The integral over d*v of the first term of (3.46) gives On/0t. The integral
of the second term gives the space derivative of the integral of v/. One can see
that the integral of the third term vanishes after integration by parts and
using the property that / goes to zero as v tends to infinity. Last but not
least, the integral of (9f/0r). vanishes since the collisions do not change
the number of particles. This last statement is not correct if there is ionization
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or some other process, e¢.g. fusion, such that the collision can change the
number of particles of the species under consideration. Thus, the zero
moment of the Boltzmann equation yields the following continuity equation
(mass conservation):

8n 0
o 8x < (na) =0 (3.47)

where 7 is the particle density and u is the average velocity defined by
n= Jf(x,v, 1) d*o, na = Jvf(x,v, 1 d. (3.48)

Taking the first moment of the Boltzmann equation (3.46), one gets the
momentum equation. The first term gives

‘[dS Zi é%( w). (3.49)

The integral of the second term yields

3 g_ﬁj 3 :EJ Sy — _ -
Jdvvv = O dvvvf_ax d’v(v—u+u)(v—u+u)f
2 % 9 [
I Jd (v—u)(v—u)f—i—&-Jdvuuf
o I 0
=ox n_1+& nuu (3.50)

where II (with components II;) is the pressure tensor, and we have used
(3.48) to calculate the (v— u)f integral. The integral of the third term
gives, after integrating by parts,

Jd3vv <E+“XB>.af"q<E+“XB). (3.51)
m ¢ ov m c

Using the following procedure:

(a) assuming the pressure to be isotropic, Iy = Pd,

(b) defining
Jd3 (Z > (a(gt"))c (3.52)

(c) collecting (3.49)—(3.52),
(d) wusing the continuity equation, and
(e) introducing the subscripts e and i for electrons and ions,
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the following momentum conservation equations are derived (a generaliza-
tion of the momentum equations (3.22)):

Ou, Ou, en, ( u, x B) 1 OP, (8(neue)>
g2 t=——<(E+ —— 2 '

"o ox me c me Ox ot
(9ui 8ui N Zeni u; X B 1 (9Pl a(niui)
niEJrnlul.ai m; <E+ ¢ ) omy Ox < ot )eai (3.53)

(). =),

where Ze is the ion charge and —e the electron charge. The last equation of
(3.53) represents the conservation of the momentum exchange by collisions
between electrons and ions. The momentum equations for electrons and
ions can be combined together to yield an equation for one species by
using the following relations:

_ mmug A Rl

[centre of mass velocity]
nim; + nem,

p = mm; + nam, = nym;  [mass density] (3.54)
J = e(Znu; — ngu,) [current density]
pe = e(Zn; — ng) [charge density].

In a similar way as above, by taking the moment of Q =v* times the
Boltzmann equation (3.46), the following energy equation is derived:

0 0 2n 0

E(nm) + o (n(vv)) — qu u= (E (n<v2>)>c (3.55)
where (v?) and (v’v) are defined in (3.45) for Q =+* and Q =1’y
respectively.

In taking the moment of Q = o* times the Boltzmann equation (3.46), a
o+ term is introduced. For k = 0 the mean velocity appears (a k = 1 term),
for k =1 the pressure tensor (a k = 2 term) is introduced, for k£ = 2 a tensor
of rank 3 appears (i.e. a k = 3 term) describing the energy flow, etc. There-
fore, the moment equations are an infinite set of equations and a truncation
is required in order to solve these equations. For example, by using the
equations of motion, defining the pressure and assuming an isotropic
process, then the energy equation is no longer required and the moment
equations are truncated in such a way that the mass and momentum fluid
equations are practically derived. If the diffusion and the heat transport
are important, then the moment equations have to be truncated after the
energy equation is considered. In this case a knowledge of the transport
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coefficients is necessary besides the full equations of state. However, the
equations of state are well defined only in local thermodynamic equilibrium,
so if LTE is not satisfied other ideas of truncation are required.

3.5 Particle Simulations

The particle theory approach uses the equations of motion for the individual
plasma particles, and with the help of particle simulation codes (some known
as ‘particle in cell’ (PIC) codes) the plasma physics is analysed. In this
approach the plasma is described by electrons and ions moving under the
influence of the electric and magnetic fields due to their own charge, and
of the laser fields (Dawson 1962, Hockney and Eastwood 1981, Adam
1982, Birdsall and Langdon 1985, Evans 1986, Kruer 1988, Pert 1989).
The equations of motion for the particles are

dl‘,-
FrER

@ Maxwell equations, where (3.56)

Pe = qué(rj - l‘)
J

J=2 ab(5—p)
]

where g;, m;, r;, v; are respectively the charge, mass, position and velocity for
a particle denoted by index j. ¢ is the speed of light, ¢ is the Dirac delta
function, and E, B, p, and J are the electric field, the magnetic field, the
charge density and the electric current respectively.

Defining the positions and velocities of the particles at a given time, the
electric charge and current are determined on a spatial grid. Using these
electric charges and currents in the Maxwell equations, the self-consistent
electric and magnetic fields are calculated. The electric and magnetic fields
are inserted into Lorentz’s equation of motion (the first two equations of
(3.56)) to calculate the new positions and velocities of the particles, where
they are used to calculate the electric charge and current, and so on. The
basic cycle of a particle code is described schematically by

{1,%} = (pe3) — (E,B) = {r;,v;} — etc. (3.57)

The time step of this procedure should be small enough in order to resolve
the shortest time scale in the problem. This time scale, Az, in many cases is
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determined by the plasma frequency

P 1/2
At~ = (7”2”) (3.58)
“p

en

where e and m, are the charge and the mass of the electron accordingly and n
is the particle density.

The spatial grid Ax should be small enough to resolve the collective
behaviour of the plasma. This scale length is of the order of the electron
Debye length Ap, rather than the smaller-scale length determined by direct
particle collisions. The large-angle collisions can be ignored in collisionless
plasmas, i.e. when the number of particles in a Debye sphere is much
larger than one. If the plasma is not collisionless then the particle simulation
approach is not realistic since it is extremely difficult to use a grid with a
dimension smaller than the spacing between the particles.

For practical reasons, computer simulation of plasma using particle codes
is limited to ~10° particles = N (equal also to the number of cells). In a real
plasma there are N = n}/ particles, where n is the particle density and V' the
plasma volume. For some typical laboratory laser—plasma systems one has
n~10"cm > and V ~ 107 cm’, implying N ~ 10'°. Therefore, each simula-
tion particle represents a large number of real electrons and ions. In the above
example the simulation mass and charge of ‘a particle’ is 10° times that of an
electron (or an ion). However, in the simulation it is necessary to keep the
mass-to-charge ratio of the ‘electron particle’ equal to e/m, (and similarly
for the ions), although the mass of each electron can be equal to 10°m,.
Moreover, the plasma frequency in the simulation must be equal to the real
plasma frequency. Therefore, from equation (3.58), if the charge and mass
of the ‘electron’ is 10%¢ and 10°m, accordingly, then the electron density in
the simulation is 1079ne. In a particle in cell (PIC) simulation,

N N N\
qe = <NC> e, me = (Nc>mea ne = <NC> Ne. (3'59)

Let us consider now a one-dimensional problem. In this case the particles are
surfaces of charge in the y—z plane (sheets) and the ions are positioned at a
grid defined by x;, = kAx (k=1,2,3,...).

For the one-dimensional problem, Maxwell equations are reduced to the
Poisson equation

v 47 pe. (3.60)

The grid spacing Ax is chosen to be uniform and the indices &, j and n denote
the cell, the particle and the order of the numerical time step respectively. The
finite-difference approach to the Poisson equation (3.60) gives

E{ 1)y = Ef_ypp +4mpAx, E} :%(E/’Z+I/Z+E/’Zfl/2)' (3.61)
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The second equation of (3.61) gives the electric field on the grid points. The
electric field E; at the particle position x; and the electric charge density p at
the grid posmon X (= kAx) are given by interpolation with a shape function

5%
—STESGCD, A= ned (). (3.62)
k k

Two shape functions that are popular in these simulations are the ‘nearest
grid point” model

1if |x; — x| < Ax/2
sit) = { | (3.63)
0 otherwise
and the ‘cloud in cell’ model
1 —|x;—xi|/Ax  if |x; — x| /Ax < 1
6.(x,) _{ |xj — x|/ |x; | xl/ (3.64)
0 otherwise.

The position and velocity of the particles are advanced in time by using
Newton’s law (3.56):

_ eE! At
vn+1/2 _'UI.‘I 1/2+ ‘j 7

n+l _ n +1/2
i = X = o A (3.65)

m, /

The numerical equations (3.61), (3.62), (3.63) (or (3.64)) and (3.65) are
started by defining the grid and by giving the particles a random Gaussian
velocity distribution (or an average zero velocity with a mean squared
velocity equal to the thermal velocity). The numerical stability of these
equations requires a time step Az < 2/w,, while a reasonable time accuracy
for the plasma wave motion implies w, At < 0.2. The high-frequency spatial
modes cannot be distinguished because of the finite grid spacing, i.e. the
Fourier components (of x;) k; and k; + 27/ Ax are identical (aliasing). There-
fore, it is necessary to damp the hlgh frequency spatial modes. This is done
by Landau damping k;Ap. > 0.2 and choosing a grid spacing Ax < Apy.

Table 3.1. The dimensionality and the appropriate variables for the particle simulations.

Particle Particle

Dimension position velocity Electric field Magnetic field  Notes

3D r=(x,,2) v=(v,v,v.) E=(E, E,E) B=(BB,B.) —

2.5D r=(x,»0) v=(v,v,v.) E=(E,E, E) B=(BB,B.) 0/0z=0

2D r=(x,y,0) v=(v,v,0) E=(E,E,0 B=(BB,B.) 0/0z=0

1.5D r=(x,0,0) v=(v,v,0) E=(E,E,0 B=(0,0,B.) 9/dz=0,
0/0y =0

1D r=(x,0,0) v=(v,0,00 E=(E0,0) B = (0,0,0) 0/0z =0,

9/0y =0
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The general problem described by equations (3.56) is three-dimensional;
however, since the computer programs in this case are very large and
complex, simpler systems with lower dimensionality are used, as described
in table 3.1.

The step time for solving these numerical equations is very small
(~107"s) and therefore the particle theory simulation can be done only
for periods of time much shorter than the typical laser plasma lifetime.
Moreover, this approach is suitable only for plasmas where the ratio between
the plasma dimension (L) and the Debye length (Ap.) is not very large.
Nevertheless, it turns out that the particle computer simulation of plasma
is a very useful and enlightening tool to study and understand nonlinear
plasma effects.



Chapter 4

The Ponderomotive Force

For normal laser light incidence on plasma the ponderomotive force f;, per
unit volume is given by (the proof of this equation is given at the end of
section 4.1 and in section 4.2)

2 2
(%) ()
f=——2 VEI=_ P _y(E? 4.1
P l6mw? ~° 8mw? (&) (1)

where wf, = 47mcez/mc is the plasma frequency, w; is the angular laser
frequency, E, is the space-dependent electric field of E, given by

E = E((r) coswy t (4.2)

and the time average over one laser oscillating period (i.e. over one wave-
length) is denoted by (). The ponderomotive force is a nonlinear force
where a high-frequency electromagnetic laser field induces a slow time
scale force. This force is involved in many physical phenomena, such as:

(a) momentum transfer to the target (Hora 1969, Arad et al. 1980, Hora 1981);

(b) self-focusing and filamentation of the laser beam (Kaw et al. 1973, Max
1976);

(¢) plasma profiles density changes such as the formation of cavitons and
solitons (Morales and Lee 1977, Mulser and van Kessel 1977, Evely
and Morales 1978);

(d) parametric instabilities (Chen 1977);

(e) second harmonic generation (Jackel ef al. 1981);

(f) magnetic field generation (Stamper and Tidman 1973, Lehner 1994,
Horovitz et al. 1997, Horovitz et al. 1998).

4.1 The Landau-Lifshitz Ponderomotive Force

More than 150 years ago the ponderomotive force, fi.,, was introduced by
Kelvin in order to describe the force applied by a static electric field E on a
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dielectric medium with a polarization p:
fxew = (p : V)E (43)

One hundred and twenty years ago Helmholtz (Helmholtz 1881) used
thermodynamics to obtain the ponderomotive force, fy.,, exerted on a
dielectric material with permittivity € and density p:

E2Vg + \V4 <p_E2 %)

fiam = — 4.4
Helm {7 . ap ( )

Equations (4.3) and (4.4) are given in c.g.s. units. At the turn of the last
century it was realized that these two equations are wrong (Pavlov 1979,
Kentwell and Jones 1987). Landau and Lifshitz (Landau and Lifshitz
1975) achieved the correct expression only in the 1950s. For a homogeneous
medium, without free electric charges and current (J = 0, p, = 0) with time-
independent dielectric function ¢ and magnetic permeability u, the two
Maxwell equations relevant for this discussion are
w OH ¢ OE
V xE= B Vfocal. (4.5)
Using these Maxwell equations, Landau and Lifshitz calculated the force per
unit volume f from the derivative of the stress tensor oy

. 0o 1 OExH);
f/:]; 8XIC—ET ]dndk:(x,y,z). (46)

The last term on the right-hand side of (4.6) is the rate of change of the
electromagnetic field momentum per unit volume. This term is subtracted
from the derivative of the stress tensor since o includes the momentum
of both the medium and the clectromagnetic field, while f is the force
per unit volume on the medium only. The stress tensor for the above
medium is

o = —Po(p, T)ojx + Uji + Uij

E? O eE.E,
E = - — — _— . J k
ik 8T {6 p (8p> T} O+ 47 (4.7)
H? ou pH H,
H_ _ 27 |, (2= ) STk
%k 8m {M P <8p) J et 4r

where Py(p, T) is the pressure as a function of density p and temperature T'
that exists in the medium in the absence of the electromagnetic fields (E, H).
Substituting equations (4.7) into equation (4.6) and using the Maxwell
equations (4.5), one gets the total force acting on the medium f per unit
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volume:

f=-VP+f,

f __E2V5+v @ E_2 _HZV/J,
P 8 P dp)1\87 8 (4.8)

op\ (H? (ep— 1) (E x H)
)
where f, is the correct (Landau and Lifshitz) ponderomotive force acting on
the medium defined above.

Assuming a dielectric medium with p = 1, relevant for plasma physics,
and an € as in a plasma without collisions,

_ . pln)
-1 (4.9)

e=1-—

2
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2
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then p9de/0p = —p/p. = € — 1 and equation (4.8) yields the ponderomotive
force given in equation (4.1). In general, for a dielectric medium satisfying

e=a+pPp (4.10)

one gets that the first term on the right-hand side of (4.8) is equal to
(¢ — &) V(E*/8r). The second term on the right-hand side of (4.8) vanishes
for ;4 = 1. Regarding the third term on the right-hand side of (4.8), we
assume an electric field given by (4.2), and using the Maxwell equation
(4.5) the magnetic field is

H=- <C) (V x Eq) sinwy t = Hgsinwy 1. (4.11)
Hwr,

Thus, the third term on the right-hand side of (4.8) is zero because its time
average over a laser period time scale is proportional to

<%(costhsinth)> = wy (—(sin*wy 1) + (cos” w 1)) = 0 (4.12)

where the relations (sin? wy 1) = (cos® wy 1) = 1 have been used. Therefore, in
a dielectric medium satisfying equations (4.9) or (4.10), the ponderomotive
force is

f, =

2 2
E
_w_g {V S] for e given by (4.9)
wi | 16w
i (4.13)
VE .
f,=(—-aq) [ 167r] for e given by (4.10).
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4.2 The Single-Particle Approach to Ponderomotive
Force in Plasma

The ponderomotive force per unit volume is related to the gradient of the
radiation pressure Py . If the laser propagates in vacuum with irradiance I,
and hits a sharp boundary, then the radiation pressure is

PL="(4 R (4.14)
where R is the reflection from the boundary. However, for a laser in inhomo-
geneous plasma this relation is meaningless, since the electromagnetic field in
the plasma cannot be determined only from knowledge of /; , and therefore the
light pressure is not known. In this case, knowledge of the electromagnetic
fields in the plasma is required in order to calculate the radiation pressure,
related directly to the ponderomotive force per unit volume.

In this section we calculate the ponderomotive force, analysing the
motion of a single particle in a given electromagnetic field in the plasma
(Schmidt 1966, Chen 1974). Assuming a monochromatic electric field as in
(4.2) and a plasma with a magnetic permeability p =1, we have (see
(4.11)) in c.g.s. units (H = B, etc.)

E(r,7) = E(r) coswt
¢ (4.15)
B(r, 1) = B,(r) sinwt = —;V x Eq(r) sin wt.

The electromagnetic angular frequency w in the plasma medium, as derived
from the dispersion relation, can differ from the laser frequency wy in
vacuum. The equation of motion (Lorentz equation) for an electron
moving in these fields is

dv

v . dr
mea:—e(EScoswt—&—zxBssmwl>7 vV=—.

T (4.16)

For non-relativistic electrons the v x B/c term is smaller than the E term;
therefore, to first order (v = vy, r = r;), the electron oscillates in the direction
of E, and in this case one has to solve

d d
me% + eE(rg) coswt = 0, v = % (4.17)
The solution of these equations is
v eEq(ry) sincut7 - eEs(ro)czoswt. (4.18)

mew Mew
To second order one has to consider

V=V +Vy, E; = E(rg) + (r; - V)Es(r = 1), B, = B(ry).  (4.19)



The Effect of Ponderomotive Force on Wave Dispersion 69

Substituting (4.17) and (4.19) into (4.16), we get the second order equation:

dV2 o

B in wt
Mo == —¢ [(rl - V)E,(ry) cos wt +M .

4.20
, (420)
The nonlinear force Fy; acting on an electron is given by substituting (4.18)
and (4.15) into (4.20) and averaging over time (note that (sin’wr) =
(cos® wit) =L and (sin wt coswr) = 0):

dv, ¢
P = 2 ) = g (B VEHE X (VXE)L (421

The first term on the right-hand side of (4.21) is the force which causes the
electron to move in a linear trajectory, while the second term on the right-
hand side is the E x B force acting on the electron and distorts the linear
motion into a figure 8 trajectory. Using the identity

E x (V x E) = (VE,) - E; — (E;- V)E; =1V - E2 - (E,-V)E, (4.22)
in (4.21) and multiplying with the electron density #, to get the ponderomotive
force per unit volume, the following equation is obtained:

2
_ %
167w

n.e’

f, =nFy = — 7 VE? = VEZ. (4.23)

mew’
This equation is identical to (4.1).

From equation (4.23) one can see that the ratio of the ponderomotive force
exerted on the ions, f;, to that applied on the electrons, f,. = f,, is equal to
Jpi/fpe = me/mi, where m; is the ion mass; therefore, the ponderomotive force
on the ions is negligible. However, the ponderomotive force exerted on the
electrons is transmitted to the ions by the electric fields in the plasma. Due to
the force described in (4.23) the electrons are separated from the ions, and
an electric charge separation is created in the plasma which induces an extra
electric field E., between the ion and the electrons, so that

fe = fp - e”eEcsa fi = QiniEcsv qin; = ene = fe +f = fp (424)
where f, and f; are the forces (due to the above interactions) applied on the
electron and ion fluids accordingly, and the last equation in (4.24) is due to
the charge neutrality of the plasma, which is correct on a scale length

larger than the above charge separation length (or in any case larger than
the Debye length).

4.3 The Effect of Ponderomotive Force on Wave Dispersion

4.3.1 The electron wave dispersion

The dispersion relation for electron plasma waves was derived in chapter 2
(section 2.6) without taking into account the ponderomotive force. We
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shall repeat that derivation with an added ponderomotive force. It is
assumed that:

(a) the problem is one-dimensional;

(b) the ions are immobile;

(c) the ponderomotive force in (4.23) is denoted by f; and
(d) the charge separation electric field is E.

The electron is assumed to be an ideal gas where the oscillations are
adiabatic, so that the electron pressure P, and the electron density n, are
related through the following equations of state:

P.n;> = const., P, = nkyT,. (4.25)

The electron continuity and momentum equations are

On,  O(ngv ov v oP
8: ((‘3; ) _ 0, Mg, (E + vax) = - (‘3): —en.E+n.f  (4.26)
and the appropriate Maxwell equations are reduced to the following Gauss
equation (sometimes referred to as Poisson’s equation):

g—f = —dme(n, — ny). (4.27)
From equation (4.25) the pressure derivative is calculated,
OP,/0x = 3(P,/n.)0n./0x = 3kgT,0n./0x. Equations (4.26) and (4.27) are
solved by using the linearization procedure about the steady state n, = ny,
vy =0, Ey = 0. Assuming first-order variations of the form n, = ny + n,
v=v; and E = E|, where

ny
v; p o expli(kx — wrt)] (4.28)
E,
the following first-order equations are derived:
—lwn; + ingkv; =0
(13kg Tk — f)ny — imgngwv; + engE; =0 (4.29)
4men; +ikE; = 0.
Note that for a constant density 7, one has /= 0 (since in this case VES2 =0);
therefore, the ponderomotive force in this notation is (n, — 1) /. A solution

for (ny, vy, E;) is possible only if the determinant of the coefficients of
equations (4.29) vanishes, i.c.

—iw ingk 0
ikgTk — f  —imengw  engy | = 0. (4.30)
4me 0 ik
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Equation (4.30) gives the dispersion relation for the electron wave (known
also as plasmon)

3kpTok* i
+ BT e + ﬁ .

me me

2 2
W= wp

(4.31)
The last term on the right-hand side of (4.31) gives the ponderomotive force
contribution to the wave dispersion. Due to this term w?” is complex, so that
wave growth, fed by the imposed ponderomotive force, is possible. In the
limit of zero T,, or when the ponderomotive force dominates the plasma
pressure, the real (wg) and the imaginary (wy) parts of w are

2,2 \1/2
wRp = (w}% +i> , Wy Jx (4.32)

4]’7[% w%, Zme WR '

It is interesting that even for 7, = 0 wave propagation occurs, unlike in the
case without ponderomotive force. The phase velocity (v,) and the group
velocity (v,) for a zero electron temperature are given by

w o if dw if (5 ik
U(D = E = k—zp —+ mek’ ’Ug = % = 2me (u)p + m—e) . (433)

In the usual case of no imposed ponderomotive force, the group velocity
vanishes for a zero electron temperature and wave propagation ceases.

4.3.2 The ion wave dispersion

Next we consider ion waves. In this case we are looking for a solution that the
electrons and the ions oscillate together with an angular frequency w. The
system is specified by the electron continuity and momentum equations,
the ion continuity and momentum equations, the Poisson equation, and an
isothermal (7, = const.) electron equation of state:

on, + 8(neve)

ot 0
dv, 0P,
mew—o— ~ o —enE+n.f
In;  A(mv;)
e} =0
ot ox (4.34)
a’Ui
ni E =e/ZFE
OE
i 4me(Zn; — n,)

P. =nkgT., T.=const.
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where m; and Z are the ion mass and charge accordingly and quasineutrality
nyy = Zng is assumed. Electron inertia has been neglected in the electron
momentum equation and ion pressure has been ignored in the ion momen-
tum equation. The linearization approximation is

Ne = Ne + Ny
ni = njo + njj (4.35)
Ve = Vel v = vy, E=E,.

We are looking for a wave where the electrons and ions have a common
angular frequency of oscillations, i.e. the perturbations behave like

Vet ¢ o< expli(kx — wi]. (4.36)

Substituting (4.35) and (4.36) into (4.34), one gets the following set of
equations, written in matrix form:

—iw ingk 0 0 0 ey 0

—ikkgT,+f O 0 0 —eny Vel 0
0 0 —iw injpk 0 g | =10 (4.37)

0 0 0 —lwm; —eZ vy 0

4me 0 —4re”Z 0 ik E, 0

A solution is possible only if the determinant of the matrix in (4.37) is zero,
implying the following dispersion relation:

2 <§) (kp Tk +ikf) \ (£> (kg Tuk* + ikf)
mi) || (kaTk* + ikf) mi) " Pe T (438)
47re2neo

The approximate equality in (4.38) is obtained for

kg Tk +ikf)  vrok + ikfim,
(34 k) _ viek Fikfme (4.39)
e Ne Wpe

If the ponderomotive pressure is much smaller than the thermal electron
pressure, then the ratio of (4.39) is about [(vTe/)\)/z/pe]2 ~ [Vion/upe}z < 1.
vhe ~ kg T./m., A =2m/k is the wavelength of the ion wave, vy, is of the
order of the oscillation frequency of the ion wave under consideration and
Vpe = Wpe/2m is the electron plasma oscillation frequency, which is of the
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order of the electron wave frequency. Since the ion wave frequency is much
smaller than the electron wave frequency the above approximation is
justified.

For f = 0 the approximated equation (4.38) gives the standard disper-
sion relation for an ion wave, while for 7, = 0 the real and imaginary part
of w are

Z| fk| Zfk

WR = — Wy = .
2mi ’ 21’1’1in

(4.40)

Here too, ion waves (also called acoustic waves) can propagate even for a
zero temperature, unlike in the case without the ponderomotive force.

Considering the imaginary parts of the dispersion relations of equations
(4.32) and (4.40), one can see that the dependence of the perturbations
(Mo, M1, Ver, Vi1, E1) = exp(—iwt) = exp(wy?) implies that the growth of both
electron waves and ion waves occurs for wy; > 0. From these equations one
gets that w; > 0