SUMMARY

The three fundamental physical quantities of mechanics are length, mass, and time, which in the SI system have the units meters (m), kilograms (kg), and seconds (s), respectively. Prefixes indicating various powers of ten are used with these three basic units. The density of a substance is defined as its mass per unit volume. Different substances have different densities mainly because of differences in their atomic masses and atomic arrangements.

The number of particles in one mole of any element or compound, called Avogadro's number, N_{A}, is 6.02×10^{23}.

The method of dimensional analysis is very powerful in solving physics problems. Dimensions can be treated as algebraic quantities. By making estimates and making order-of-magnitude calculations, you should be able to approximate the answer to a problem when there is not enough information available to completely specify an exact solution.

When you compute a result from several measured numbers, each of which has a certain accuracy, you should give the result with the correct number of significant figures.

QUESTIONS

1. In this chapter we described how the Earth's daily rotation on its axis was once used to define the standard unit of time. What other types of natural phenomena could serve as alternative time standards?
2. Suppose that the three fundamental standards of the metric system were length, density, and time rather than length, mass, and time. The standard of density in this system is to be defined as that of water. What considerations about water would you need to address to make sure that the standard of density is as accurate as possible?
3. A hand is defined as 4 in .; a foot is defined as 12 in . Why should the hand be any less acceptable as a unit than the foot, which we use all the time?
4. Express the following quantities using the prefixes given in

Table 1.4: (a) $3 \times 10^{-4} \mathrm{~m}$ (b) $5 \times 10^{-5} \mathrm{~s}$
(c) $72 \times 10^{2} \mathrm{~g}$.
5. Suppose that two quantities A and B have different dimensions. Determine which of the following arithmetic operations could be physically meaningful: (a) $A+B$ (b) A / B (c) $B-A$ (d) $A B$.
6. What level of accuracy is implied in an order-of-magnitude calculation?
7. Do an order-of-magnitude calculation for an everyday situation you might encounter. For example, how far do you walk or drive each day?
8. Estimate your age in seconds.
9. Estimate the mass of this textbook in kilograms. If a scale is available, check your estimate.

Problems

1, 2, 3 = straightforward, intermediate, challenging \square = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ $\square=$ Computer useful in solving problem = Interactive Physics
\square = paired numerical/symbolic problems

Section 1.3 Density

1. The standard kilogram is a platinum-iridium cylinder 39.0 mm in height and 39.0 mm in diameter. What is the density of the material?
2. The mass of the planet Saturn (Fig. P1.2) is $5.64 \times$ $10^{26} \mathrm{~kg}$, and its radius is $6.00 \times 10^{7} \mathrm{~m}$. Calculate its density.
3. How many grams of copper are required to make a hollow spherical shell having an inner radius of 5.70 cm and an outer radius of 5.75 cm ? The density of copper is $8.92 \mathrm{~g} / \mathrm{cm}^{3}$.
4. What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r_{1} and outer radius r_{2} ?
5. Iron has molar mass $55.8 \mathrm{~g} / \mathrm{mol}$. (a) Find the volume of 1 mol of iron. (b) Use the value found in (a) to determine the volume of one iron atom. (c) Calculate the cube root of the atomic volume, to have an estimate for the distance between atoms in the solid. (d) Repeat the calculations for uranium, finding its molar mass in the periodic table of the elements in Appendix C.

THE WIZARD OF ID

By permission of John Hart and Field Enterprises, Inc.

Figure P1.2 A view of Saturn from Voyager 2. (Courtesy of NASA)
6. Two spheres are cut from a certain uniform rock. One has radius 4.50 cm . The mass of the other is five times greater. Find its radius.
wes 7. Calculate the mass of an atom of (a) helium, (b) iron, and (c) lead. Give your answers in atomic mass units and in grams. The molar masses are $4.00,55.9$, and $207 \mathrm{~g} / \mathrm{mol}$, respectively, for the atoms given.
8. On your wedding day your lover gives you a gold ring of mass 3.80 g . Fifty years later its mass is 3.35 g . As an average, how many atoms were abraded from the ring during each second of your marriage? The molar mass of gold is $197 \mathrm{~g} / \mathrm{mol}$.
9. A small cube of iron is observed under a microscope. The edge of the cube is $5.00 \times 10^{-6} \mathrm{~cm}$ long. Find (a) the mass of the cube and (b) the number of iron atoms in the cube. The molar mass of iron is $55.9 \mathrm{~g} / \mathrm{mol}$, and its density is $7.86 \mathrm{~g} / \mathrm{cm}^{3}$.
10. A structural I-beam is made of steel. A view of its crosssection and its dimensions are shown in Figure P1.10.

Figure P1. 10
(a) What is the mass of a section 1.50 m long? (b) How many atoms are there in this section? The density of steel is $7.56 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
11. A child at the beach digs a hole in the sand and, using a pail, fills it with water having a mass of 1.20 kg . The molar mass of water is $18.0 \mathrm{~g} / \mathrm{mol}$. (a) Find the number of water molecules in this pail of water. (b) Suppose the quantity of water on the Earth is $1.32 \times 10^{21} \mathrm{~kg}$ and remains constant. How many of the water molecules in this pail of water were likely to have been in an equal quantity of water that once filled a particular claw print left by a dinosaur?

Section 1.4 Dimensional Analysis

12. The radius r of a circle inscribed in any triangle whose sides are a, b, and c is given by

$$
r=[(s-a)(s-b)(s-c) / s]^{1 / 2}
$$

where s is an abbreviation for $(a+b+c) / 2$. Check this formula for dimensional consistency.
13. The displacement of a particle moving under uniform acceleration is some function of the elapsed time and the acceleration. Suppose we write this displacement $s=k a^{m} t^{n}$, where k is a dimensionless constant. Show by dimensional analysis that this expression is satisfied if $m=1$ and $n=2$. Can this analysis give the value of k ?
14. The period T of a simple pendulum is measured in time units and is described by

$$
T=2 \pi \sqrt{\frac{\ell}{g}}
$$

where ℓ is the length of the pendulum and g is the freefall acceleration in units of length divided by the square of time. Show that this equation is dimensionally correct.
15. Which of the equations below are dimensionally correct?
(a) $v=v_{0}+a x$
(b) $y=(2 \mathrm{~m}) \cos (k x)$, where $k=2 \mathrm{~m}^{-1}$
16. Newton's law of universal gravitation is represented by

$$
F=\frac{G M m}{r^{2}}
$$

Here F is the gravitational force, M and m are masses, and r is a length. Force has the SI units $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$. What are the SI units of the proportionality constant G ?
Eв 17. The consumption of natural gas by a company satisfies the empirical equation $V=1.50 t+0.00800 t^{2}$, where V is the volume in millions of cubic feet and t the time in months. Express this equation in units of cubic feet and seconds. Put the proper units on the coefficients. Assume a month is 30.0 days.

Section 1.5 Conversion of Units

18. Suppose your hair grows at the rate $1 / 32 \mathrm{in}$. per day. Find the rate at which it grows in nanometers per second. Since the distance between atoms in a molecule is
on the order of 0.1 nm , your answer suggests how rapidly layers of atoms are assembled in this protein synthesis.
19. A rectangular building lot is 100 ft by 150 ft . Determine the area of this lot in m^{2}.
20. An auditorium measures $40.0 \mathrm{~m} \times 20.0 \mathrm{~m} \times 12.0 \mathrm{~m}$. The density of air is $1.20 \mathrm{~kg} / \mathrm{m}^{3}$. What are (a) the volume of the room in cubic feet and (b) the weight of air in the room in pounds?
21. Assume that it takes 7.00 min to fill a 30.0 -gal gasoline tank. (a) Calculate the rate at which the tank is filled in gallons per second. (b) Calculate the rate at which the tank is filled in cubic meters per second. (c) Determine the time, in hours, required to fill a 1-cubic-meter volume at the same rate. (1 U.S. gal $=231 \mathrm{in} .^{3}$)
22. A creature moves at a speed of 5.00 furlongs per fortnight (not a very common unit of speed). Given that 1 furlong $=220$ yards and 1 fortnight $=14$ days, determine the speed of the creature in meters per second. What kind of creature do you think it might be?
23. A section of land has an area of $1 \mathrm{mi}^{2}$ and contains 640 acres. Determine the number of square meters in 1 acre.
24. A quart container of ice cream is to be made in the form of a cube. What should be the length of each edge in centimeters? (Use the conversion $1 \mathrm{gal}=3.786 \mathrm{~L}$.)
25. A solid piece of lead has a mass of 23.94 g and a volume of $2.10 \mathrm{~cm}^{3}$. From these data, calculate the density of lead in SI units $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.
26. An astronomical unit (AU) is defined as the average distance between the Earth and the Sun. (a) How many astronomical units are there in one lightyear? (b) Determine the distance from the Earth to the Andromeda galaxy in astronomical units.
27. The mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$, and the mass of an atom of hydrogen, of which the Sun is mostly composed, is $1.67 \times 10^{-27} \mathrm{~kg}$. How many atoms are there in the Sun?
28. (a) Find a conversion factor to convert from miles per hour to kilometers per hour. (b) In the past, a federal law mandated that highway speed limits would be $55 \mathrm{mi} / \mathrm{h}$. Use the conversion factor of part (a) to find this speed in kilometers per hour. (c) The maximum highway speed is now $65 \mathrm{mi} / \mathrm{h}$ in some places. In kilometers per hour, how much of an increase is this over the $55-\mathrm{mi} / \mathrm{h}$ limit?
29. At the time of this book's printing, the U. S. national debt is about $\$ 6$ trillion. (a) If payments were made at the rate of $\$ 1000 / \mathrm{s}$, how many years would it take to pay off a $\$ 6$-trillion debt, assuming no interest were charged? (b) A dollar bill is about 15.5 cm long. If six trillion dollar bills were laid end to end around the Earth's equator, how many times would they encircle the Earth? Take the radius of the Earth at the equator to be 6378 km . (Note: Before doing any of these calculations, try to guess at the answers. You may be very surprised.)
30. (a) How many seconds are there in a year? (b) If one micrometeorite (a sphere with a diameter of $1.00 \times$ $10^{-6} \mathrm{~m}$) strikes each square meter of the Moon each second, how many years will it take to cover the Moon to a depth of 1.00 m ? (Hint: Consider a cubic box on the Moon 1.00 m on a side, and find how long it will take to fill the box.)
weB
31. One gallon of paint (volume $=3.78 \times 10^{-3} \mathrm{~m}^{3}$) covers an area of $25.0 \mathrm{~m}^{2}$. What is the thickness of the paint on the wall?
32. A pyramid has a height of 481 ft , and its base covers an area of 13.0 acres (Fig. P1.32). If the volume of a pyramid is given by the expression $V=\frac{1}{3} B h$, where B is the area of the base and h is the height, find the volume of this pyramid in cubic meters. (1 acre $=43560 \mathrm{ft}^{2}$)

Figure P1.32 Problems 32 and 33.
33. The pyramid described in Problem 32 contains approximately two million stone blocks that average 2.50 tons each. Find the weight of this pyramid in pounds.
34. Assuming that 70% of the Earth's surface is covered with water at an average depth of 2.3 mi , estimate the mass of the water on the Earth in kilograms.
35. The amount of water in reservoirs is often measured in acre-feet. One acre-foot is a volume that covers an area of 1 acre to a depth of 1 ft . An acre is an area of $43560 \mathrm{ft}^{2}$. Find the volume in SI units of a reservoir containing 25.0 acre-ft of water.
36. A hydrogen atom has a diameter of approximately $1.06 \times 10^{-10} \mathrm{~m}$, as defined by the diameter of the spherical electron cloud around the nucleus. The hydrogen nucleus has a diameter of approximately $2.40 \times 10^{-15} \mathrm{~m}$. (a) For a scale model, represent the diameter of the hydrogen atom by the length of an American football field (100 yards $=300 \mathrm{ft}$), and determine the diameter of the nucleus in millimeters. (b) The atom is how many times larger in volume than its nucleus?
37. The diameter of our disk-shaped galaxy, the Milky Way, is about 1.0×10^{5} lightyears. The distance to Messier 31 - which is Andromeda, the spiral galaxy nearest to the Milky Way-is about 2.0 million lightyears. If a scale model represents the Milky Way and Andromeda galax-
ies as dinner plates 25 cm in diameter, determine the distance between the two plates.
38. The mean radius of the Earth is $6.37 \times 10^{6} \mathrm{~m}$, and that of the Moon is $1.74 \times 10^{8} \mathrm{~cm}$. From these data calculate (a) the ratio of the Earth's surface area to that of the Moon and (b) the ratio of the Earth's volume to that of the Moon. Recall that the surface area of a sphere is $4 \pi r^{2}$ and that the volume of a sphere is $\frac{4}{3} \pi r^{3}$.
we 39. One cubic meter $\left(1.00 \mathrm{~m}^{3}\right)$ of aluminum has a mass of $2.70 \times 10^{3} \mathrm{~kg}$, and $1.00 \mathrm{~m}^{3}$ of iron has a mass of $7.86 \times 10^{3} \mathrm{~kg}$. Find the radius of a solid aluminum sphere that balances a solid iron sphere of radius 2.00 cm on an equal-arm balance.
40. Let $\rho_{\mathrm{A} 1}$ represent the density of aluminum and ρ_{Fe} that of iron. Find the radius of a solid aluminum sphere that balances a solid iron sphere of radius r_{Fe} on an equalarm balance.

Section 1.6 Estimates and Order-ofMagnitude Calculations

wes 41. Estimate the number of Ping-Pong balls that would fit into an average-size room (without being crushed). In your solution state the quantities you measure or estimate and the values you take for them.
42. McDonald's sells about 250 million packages of French fries per year. If these fries were placed end to end, estimate how far they would reach.
43. An automobile tire is rated to last for 50000 miles. Estimate the number of revolutions the tire will make in its lifetime.
44. Approximately how many raindrops fall on a 1.0 -acre lot during a $1.0-\mathrm{in}$. rainfall?
45. Grass grows densely everywhere on a quarter-acre plot of land. What is the order of magnitude of the number of blades of grass on this plot of land? Explain your reasoning. (1 acre $=43560 \mathrm{ft}^{2}$.)
46. Suppose that someone offers to give you $\$ 1$ billion if you can finish counting it out using only one-dollar bills. Should you accept this offer? Assume you can count one bill every second, and be sure to note that you need about 8 hours a day for sleeping and eating and that right now you are probably at least 18 years old.
47. Compute the order of magnitude of the mass of a bathtub half full of water and of the mass of a bathtub half full of pennies. In your solution, list the quantities you take as data and the value you measure or estimate for each.
48. Soft drinks are commonly sold in aluminum containers. Estimate the number of such containers thrown away or recycled each year by U.S. consumers. Approximately how many tons of aluminum does this represent?
49. To an order of magnitude, how many piano tuners are there in New York City? The physicist Enrico Fermi was famous for asking questions like this on oral Ph.D. qual-
ifying examinations and for his own facility in making order-of-magnitude calculations.

Section 1.7 Significant Figures

50. Determine the number of significant figures in the following measured values: (a) 23 cm (b) 3.589 s (c) $4.67 \times 10^{3} \mathrm{~m} / \mathrm{s}$ (d) 0.0032 m .
51. The radius of a circle is measured to be $10.5 \pm 0.2 \mathrm{~m}$. Calculate the (a) area and (b) circumference of the circle and give the uncertainty in each value.
52. Carry out the following arithmetic operations: (a) the sum of the measured values $756,37.2,0.83$, and 2.5 ; (b) the product 0.0032×356.3; (c) the product $5.620 \times \pi$.
53. The radius of a solid sphere is measured to be $(6.50 \pm$ $0.20) \mathrm{cm}$, and its mass is measured to be (1.85 ± 0.02) kg . Determine the density of the sphere in kilograms per cubic meter and the uncertainty in the density.
54. How many significant figures are in the following numbers: (a) 78.9 ± 0.2, (b) 3.788×10^{9}, (c) 2.46×10^{-6}, and (d) 0.005 3?
55. A farmer measures the distance around a rectangular field. The length of the long sides of the rectangle is found to be 38.44 m , and the length of the short sides is found to be 19.5 m . What is the total distance around the field?
56. A sidewalk is to be constructed around a swimming pool that measures $(10.0 \pm 0.1) \mathrm{m}$ by $(17.0 \pm 0.1) \mathrm{m}$. If the sidewalk is to measure $(1.00 \pm 0.01) \mathrm{m}$ wide by ($9.0 \pm 0.1) \mathrm{cm}$ thick, what volume of concrete is needed, and what is the approximate uncertainty of this volume?

ADDITIONAL PROBLEMS

57. In a situation where data are known to three significant digits, we write $6.379 \mathrm{~m}=6.38 \mathrm{~m}$ and $6.374 \mathrm{~m}=$ 6.37 m . When a number ends in 5 , we arbitrarily choose to write $6.375 \mathrm{~m}=6.38 \mathrm{~m}$. We could equally well write $6.375 \mathrm{~m}=6.37 \mathrm{~m}$, "rounding down" instead of "rounding up," since we would change the number 6.375 by equal increments in both cases. Now consider an order-of-magnitude estimate, in which we consider factors rather than increments. We write $500 \mathrm{~m} \sim 10^{3} \mathrm{~m}$ because 500 differs from 100 by a factor of 5 whereas it differs from 1000 by only a factor of 2 . We write $437 \mathrm{~m} \sim$ $10^{3} \mathrm{~m}$ and $305 \mathrm{~m} \sim 10^{2} \mathrm{~m}$. What distance differs from 100 m and from 1000 m by equal factors, so that we could equally well choose to represent its order of magnitude either as $\sim 10^{2} \mathrm{~m}$ or as $\sim 10^{3} \mathrm{~m}$?
58. When a droplet of oil spreads out on a smooth water surface, the resulting "oil slick" is approximately one molecule thick. An oil droplet of mass $9.00 \times 10^{-7} \mathrm{~kg}$ and density $918 \mathrm{~kg} / \mathrm{m}^{3}$ spreads out into a circle of radius 41.8 cm on the water surface. What is the diameter of an oil molecule?
59. The basic function of the carburetor of an automobile is to "atomize" the gasoline and mix it with air to promote rapid combustion. As an example, assume that $30.0 \mathrm{~cm}^{3}$ of gasoline is atomized into N spherical droplets, each with a radius of $2.00 \times 10^{-5} \mathrm{~m}$. What is the total surface area of these N spherical droplets?
60. In physics it is important to use mathematical approximations. Demonstrate for yourself that for small angles $\left(<20^{\circ}\right)$

$$
\tan \alpha \approx \sin \alpha \approx \alpha=\pi \alpha^{\prime} / 180^{\circ}
$$

where α is in radians and α^{\prime} is in degrees. Use a calculator to find the largest angle for which $\tan \alpha$ may be approximated by $\sin \alpha$ if the error is to be less than 10.0%.
61. A high fountain of water is located at the center of a circular pool as in Figure P1.61. Not wishing to get his feet wet, a student walks around the pool and measures its circumference to be 15.0 m . Next, the student stands at the edge of the pool and uses a protractor to gauge the angle of elevation of the top of the fountain to be 55.0°. How high is the fountain?

Figure P1. 61
62. Assume that an object covers an area A and has a uniform height h. If its cross-sectional area is uniform over its height, then its volume is given by $V=A h$. (a) Show that $V=A h$ is dimensionally correct. (b) Show that the volumes of a cylinder and of a rectangular box can be written in the form $V=A h$, identifying A in each case. (Note that A, sometimes called the "footprint" of the object, can have any shape and that the height can be replaced by average thickness in general.)
63. A useful fact is that there are about $\pi \times 10^{7} \mathrm{~s}$ in one year. Find the percentage error in this approximation, where "percentage error" is defined as

$$
\frac{\mid \text { Assumed value }- \text { true value } \mid}{\text { True value }} \times 100 \%
$$

64. A crystalline solid consists of atoms stacked up in a repeating lattice structure. Consider a crystal as shown in Figure P1.64a. The atoms reside at the corners of cubes of side $L=0.200 \mathrm{~nm}$. One piece of evidence for the regular arrangement of atoms comes from the flat surfaces along which a crystal separates, or "cleaves," when it is broken. Suppose this crystal cleaves along a face diagonal, as shown in Figure P1.64b. Calculate the spacing d between two adjacent atomic planes that separate when the crystal cleaves.

Figure P1. 64
65. A child loves to watch as you fill a transparent plastic bottle with shampoo. Every horizontal cross-section of the bottle is a circle, but the diameters of the circles all have different values, so that the bottle is much wider in some places than in others. You pour in bright green shampoo with constant volume flow rate $16.5 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is its level in the bottle rising (a) at a point where the diameter of the bottle is 6.30 cm and (b) at a point where the diameter is 1.35 cm ?
66. As a child, the educator and national leader Booker T. Washington was given a spoonful (about $12.0 \mathrm{~cm}^{3}$) of molasses as a treat. He pretended that the quantity increased when he spread it out to cover uniformly all of a tin plate (with a diameter of about 23.0 cm). How thick a layer did it make?
67. Assume there are 100 million passenger cars in the United States and that the average fuel consumption is $20 \mathrm{mi} / \mathrm{gal}$ of gasoline. If the average distance traveled by each car is $10000 \mathrm{mi} / \mathrm{yr}$, how much gasoline would be saved per year if average fuel consumption could be increased to 25 mi / gal?
68. One cubic centimeter of water has a mass of $1.00 \times$ $10^{-3} \mathrm{~kg}$. (a) Determine the mass of $1.00 \mathrm{~m}^{3}$ of water. (b) Assuming biological substances are 98% water, esti-
mate the mass of a cell that has a diameter of $1.0 \mu \mathrm{~m}$, a human kidney, and a fly. Assume that a kidney is roughly a sphere with a radius of 4.0 cm and that a fly is roughly a cylinder 4.0 mm long and 2.0 mm in diameter.
69. The distance from the Sun to the nearest star is $4 \times$ $10^{16} \mathrm{~m}$. The Milky Way galaxy is roughly a disk of diameter $\sim 10^{21} \mathrm{~m}$ and thickness $\sim 10^{19} \mathrm{~m}$. Find the order of magnitude of the number of stars in the Milky Way. Assume the $4 \times 10^{16}-\mathrm{m}$ distance between the Sun and the nearest star is typical.
70. The data in the following table represent measurements of the masses and dimensions of solid cylinders of alu-
minum, copper, brass, tin, and iron. Use these data to calculate the densities of these substances. Compare your results for aluminum, copper, and iron with those given in Table 1.5.

Substance	Mass (g)	Diameter $(\mathbf{c m})$	Length (cm)
Aluminum	51.5	2.52	3.75
Copper	56.3	1.23	5.06
Brass	94.4	1.54	5.69
Tin	69.1	1.75	3.74
Iron	216.1	1.89	9.77

Answers to Quick Quizzes

1.1 False. Dimensional analysis gives the units of the proportionality constant but provides no information about its numerical value. For example, experiments show that doubling the radius of a solid sphere increases its mass 8 -fold, and tripling the radius increases the mass 27 -fold. Therefore, its mass is proportional to the cube of its radius. Because $m \propto r^{3}$ we can write $m=k r^{3}$. Dimensional analysis shows that the proportionality constant k must have units $\mathrm{kg} / \mathrm{m}^{3}$, but to determine its numerical value requires either experimental data or geometrical reasoning.
1.2 Reporting all these digits implies you have determined the location of the center of the chair's seat to the nearest $\pm 0.0000000001 \mathrm{~m}$. This roughly corresponds to being able to count the atoms in your meter stick because each of them is about that size! It would probably be better to record the measurement as 1.044 m : this indicates that you know the position to the nearest millimeter, assuming the meter stick has millimeter markings on its scale.

THE WIZARD OF ID

By Parker and Hart

[^0]
[^0]: By permission of John Hart and Field Enterprises, Inc.

